# Southampton 

School of Physics and Astronomy

## Neutrino Mixing Sum Rules

## Steve King,

## 58th Rencontres de Moriond

## La Thuille,

29th March 2024



## Neutrino mass and mixing


$\square$ Neutrinos have tiny masses (much less than electron)

- Neutrinos mix a lot (unlike the quarks)
- Up to 9 new params: 3 masses, 3 angles, 3 phases
$\square$ Origin of mass and mixing is unknown

CUORE Irene Nutini

## Dirac or Majorana?

Pasquale Di Bari



## $P_{\text {violated }}$


left-handed
neutrino

## $C_{\text {violated }}$



## CP <br> conserved

or not?



## PMNS mixing matrix

$$
U_{P M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i \frac{\alpha_{31}}{2}}
\end{array}\right)
$$

## Atmospheric Reactor <br> Solar <br> Majorana

$=\left(\begin{array}{cc}c_{12} c_{13} & \text { CP violating phase } \\ s_{12} c_{13} \\ -s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} \\ c_{13} s_{23} \\ s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta} \\ c_{13} c_{23}\end{array}\right)$
CP violating Majorana phases
$\times \operatorname{diag}\left(1, e^{i \alpha_{21} / 2}, e^{i \alpha_{31} / 2}\right)$

SuperK Andrew Santos T2K Phil Litchfield NOvA Mayly Sanchez

## Muon Neutrino Oscillations

$P\left(\nu_{\mu} \rightarrow \nu_{\mu} ; E, L\right)=1-\sin ^{2}\left(2 \theta_{23}\right) \sin ^{2}\left(\frac{\Delta L}{2}\right)+\mathcal{O}(\epsilon)$
Matter effect $P\left(\nu_{\mu} \rightarrow \nu_{e} ; E, L\right) \equiv P_{1}+P_{\frac{3}{2}}+\mathcal{O}\left(\epsilon^{2}\right) \quad P_{1}=\frac{4}{\left(1-r_{A}\right)^{2}} \sin ^{2} \theta_{23} \sin ^{2} \theta_{13} \sin ^{2}\left(\frac{\left(1-\Gamma_{A}\right) \Delta L}{2}\right)$

Accelerator LBL (1st atm max)

$$
\frac{\Delta m_{31}^{2} L}{4 E}=\frac{\pi}{2}
$$

$$
\epsilon \equiv \Delta m_{21}^{2} / \Delta m_{31}^{2} \approx 0.03 \sim O\left(\sin ^{2} \theta_{13}\right)
$$

# Global Fits (Pre-NOvA/T2K) $3 \sigma$ ranges 

$$
\begin{aligned}
& \theta_{23}=\left[39.6^{\circ}, 51.9^{\circ}\right] \text { Octant? } \\
& \sin ^{2} \theta_{23}=\frac{1}{2} ? 45^{\circ} ? \text { Max Mix? }
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{12}=\left[31.31^{\circ}, 35.74^{\circ}\right] \\
& \sin ^{2} \theta_{12}=\frac{1}{3} ? 35.26^{\circ} ? \text { TBM? }
\end{aligned}
$$

$$
\begin{array}{ccc}
\delta=\left[0^{\circ}, 44^{\circ}\right] \& & {\left[108^{\circ}, 360^{\circ}\right]} \\
0^{\circ} ? & 180^{\circ} ? & 270^{\circ} ? \\
\text { CPC? } & \text { Max CPV? }
\end{array}
$$



## Is there a pattern in the matrix? 

Symmetry
can enforce

$$
\begin{aligned}
& \sin \theta_{23}=\frac{1}{\sqrt{2}} \\
& \sin \theta_{13}=0
\end{aligned}
$$

$$
U_{0}=\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Where large $\sin \theta_{12}$ can come from the same symmetry


## Non-Abelian Family Symmetry



## Some Simple Symmetrical Examples


$\sin \theta_{12}=\frac{1}{\sqrt{2}}$

a) $\tan \theta_{12}=\frac{2}{1+\sqrt{5}}=\frac{1}{\phi}$
b) $\cos \theta_{12}=\phi / 2$
$A_{5}$.
All these patterns involve $\sin \theta_{13}=0$ so they need to be corrected
S.F.K. and C.Luhn, 1301.1340

Why is $\theta_{13}$ predicted to be zero?


## Why is $\theta_{13}$ predicted to be zero?

■ Diagonal charged lepton

$$
\begin{gathered}
T^{\dagger}\left(M_{e} M_{e}^{\dagger}\right) T=M_{e} M_{e}^{\dagger} \\
T=\operatorname{diag}\left(1, \omega^{2}, \omega\right) \\
\omega=e^{i 2 \pi / N}
\end{gathered}
$$



- Group G generators T,S, U
- Klein neutrino symmetry

$$
M^{\nu}=S^{\dagger} M^{\nu} S^{*} \quad M^{\nu}=U^{\dagger} M^{\nu} U^{*}
$$

-Diagonal charged lepton

neutrino symmetry

$$
\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \begin{aligned}
& \sin \theta_{12} \\
& \text { Fixed by } \\
& \text { symmetry }
\end{aligned}
$$

## How to switch on $\theta_{13}$ ?



## How to switch on $\theta_{13}$ ?

## 1. Break T

Charged Lepton Corrections

$$
\begin{array}{ll}
\theta_{12}^{e} \neq 0 & \text { Assume } \\
\theta_{23}^{e} \neq 0 & \theta_{13}^{e}=0
\end{array}
$$

$U_{\mathrm{PMNS}}=U_{e} U_{\nu}$

$$
s_{13}=\frac{s_{12}^{e}}{\sqrt{2}}
$$

## How to switch on $\theta_{13}$ ?

## 1. Break T

Charged Lepton Corrections

$$
\begin{array}{ll}
\theta_{12}^{e} \neq 0 & \text { Assume } \\
\theta_{23}^{e} \neq 0 & \theta_{13}^{e}=0
\end{array}
$$

$U_{\mathrm{PMNS}}=U_{e} U_{\nu}$

$$
s_{13}=\frac{s_{12}^{e}}{\sqrt{2}}
$$



## Solar Sum Rule Predictions



## RG corrections to GRa solar sum rule

SM, NO


MSSM, $\tan \beta=30$, NO


SM, IO

$10^{13} \mathrm{GeV} \rightarrow M_{Z}$

$$
\theta_{12}^{e} \neq 0
$$

$$
\theta_{23}^{e} \neq 0
$$

$$
\theta_{13}^{e}=0
$$

## How to switch on $\theta_{13}$ ?



## 2. Break U

First or second PMNS column preserved $\left(\begin{array}{c}\sqrt{\frac{2}{3}}-- \\ -\frac{1}{\sqrt{6}}-- \\ \frac{1}{\sqrt{6}}--\end{array}\right)\left(\begin{array}{l}-\sqrt{\frac{1}{3}}- \\ -\sqrt{\frac{1}{3}}- \\ --\sqrt{\frac{1}{3}}-\end{array}\right)$
$s_{13}$ free parameter

## How to switch on $\theta_{13}$ ?



Atmospheric Sum Rules

## 2. Break U

First or second PMNS column preserved $\left(\begin{array}{c}\sqrt{\frac{2}{3}}-- \\ -\frac{1}{\sqrt{\sqrt{6}}}-- \\ \frac{1}{\sqrt{6}}\end{array}\right)\left(\begin{array}{c}-\sqrt{\frac{1}{3}}- \\ -\sqrt{\frac{1}{3}}- \\ --\sqrt{\frac{1}{3}}-\end{array}\right)$
$s_{13}$ free parameter

$$
\left(\begin{array}{cll}
\sqrt{\frac{2}{3}} & -- \\
-\frac{1}{\sqrt{6}} & - & - \\
\frac{1}{\sqrt{6}} & - & -
\end{array}\right)
$$

$$
s_{12}^{2}=\frac{\left(1-3 s_{13}^{2}\right)}{3\left(1-s_{13}^{2}\right)} \quad \cos \delta=-\frac{\cot 2 \theta_{23}\left(1-5 s_{13}^{2}\right)}{2 \sqrt{2} s_{13} \sqrt{1-3 s_{13}^{2}}}
$$

$$
s_{12}^{2}=\frac{1}{3\left(1-s_{13}^{2}\right)} \quad \cos \delta=\frac{2 c_{13} \cot 2 \theta_{23} \cot 2 \theta_{13}}{\sqrt{2-3 s_{13}^{2}}}
$$

$$
\left(\begin{array}{c}
-\sqrt{\frac{1}{3}}- \\
-\sqrt{\frac{1}{3}}- \\
--\sqrt{\frac{1}{3}}-
\end{array}\right)
$$

## Atmospheric Sum Rule Predictions



Reactor angle $\sin ^{2}\left(\theta_{13}\right) \quad$ Atmospheric angle $\sin ^{2}\left(\theta_{23}\right)$

$$
\begin{aligned}
& \text { Only } \\
& \text { viable } \\
& \text { patterns } \\
& \text { TM1 }\left(\begin{array}{c|c}
\sqrt{\frac{2}{3}} & - \\
-\frac{1}{5} & - \\
\frac{1}{\sqrt{6}} & -
\end{array}\right) \\
& \begin{array}{l}
\text { TM2 }\left(\begin{array}{c}
-\sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{3}} \\
-\sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{3}}
\end{array}\right) \\
\text { disfavoured }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta_{12}^{\nu}=\frac{1}{\phi}
\end{aligned}
$$

## Future Prospects



## Will put sum rules to the test!

## Conclusions

- Mixing sum rules are relics of simple PMNS matrices enforced by remnant symmetry which allows non-zero $\sin \theta_{13}$ and predicts $\cos \delta$ (not $\delta$ )
- Solar sum rules from charged lepton corrections to simple PMNS matrices
- Atmospheric sum rules from first/second column of simple PMNS matrix
- RG corrections can be small (NH) or large (2HDM, large $\tan \beta$ )
- Future precision expts will test sum rules and the symmetry approach


## Bibliography

## 口TB

－TB P．F．Harrison，D．H．Perkins，and W．G．Scott，＂Tri－bimaximal mixing and the neutrino oscillation data，＂Phys．Lett．B 530 （2002）167，arXiv：hep－ph／0202074．
－Z．－z．Xing，＂Nearly tri bimaximal neutrino mixing and CP violation，＂Phys．Lett．B 533
（2002）85－93，arXiv：hep－－h／0204049．

## 口 BM

－V．D．Barger，S．Pakvasa，T．J．Weiler，and K．Whisnant，＂Bimaximal mixing of three neutrinos，＂Phys．Lett．B 437 （1998）107－116，arXiv：hep－ph／9806387．
－S．Davidson and S．F．King，＂Bimaximal neutrino mixing in the MSSM with a single right－handed neutrino，＂Phys．Lett．B 445 （1998）191－198，arXiv：hep－ph／9808296．

## 口 GR

－A．Datta，F．－S．Ling，and P．Ramond，＂Correlated hierarchy，Dirac masses and large mixing angles，＂Nucl．Phys．B 671 （2003）383－400，arXiv：hep－ph／／0306002．
－Y．Kajiyama，M．Raidal，and A．Strumia，＂The Golden ratio prediction for the solar neutrino mixing，＂Phys．Rev．D 76 （2007）117301，arXiv：0705．4559［hep－ph］．
－L．L．Everett and A．J．Stuart，＂Icosahedral（A（5））Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing，＂Phys．Rev．D 79 （2009）085005，arXiv：0812．1057［hep－ph］．
－W．Rodejohann，＂Unified Parametrization for Quark and Lepton Mixing Angles，＂Phys．Lett．B 671 （2009）267－271，arXiv：0810．5239［hep－ph］

## －Klein neutrino symmetry

－S．F．King and C．Luhn，＂On the origin of neutrino flavour symmetry，＂JHEP 10 （2009）093，arXiv：0908． 1897 ［hep－ph］．
－S．F．King and C．Luhn，＂Neutrino Mass and Mixing with Discrete Symmetry，＂Rept．Prog．Phys． 76 （2013）056201，arXiv：1301． 1340 ［hep－ph］．

## －Experiment

－Super－Kamiokande Collaboration，Y．Fukuda et al．，＂Evidence for oscillation of atmospheric neutrinos，＂Phys．Rev．Lett． 81 （1998）1562－1567，arXiv：hep－ex／9807003．
－SNO Collaboration，Q．R．Ahmad et al．，＂Measurement of the rate of $v_{\mathrm{e}}+\mathrm{d} \rightarrow \mathrm{p}+\mathrm{p}+\mathrm{e}^{-}$interactions produced by ${ }^{8} \mathrm{~B}$ solar neutrinos at the Sudbury Neutrino Observatory，＂Phys．Rev．Lett． 87 （2001） 071301 ，arXiv：nucl－ex／0106015
－Daya Bay Collaboration，F．P．An et al．，＂Observation of electron－antineutrino disappearance at Daya Bay，＂，Phys．Rev．Lett． 108 （2012）171803，arXiv： 1203.1669 ［hep－ex］．

## －Solar sum rule

－S．F．King，JHEP 08 （2005）， 105 doi：10．1088／1126－6708／2005／08／105［arXiv：hep－ph／5506297［hep－ph］］．
－I．Masina，Phys．Lett．B 633 （2006），134－140 doi：10．1016／j．physlett．2005．10．097［arXiv：hep－ph／0508031［hep－ph］］．
－S．Antusch and S．F．King，Phys．Lett．B 631 （2005）， $42-47$ doi：10．1016／j．physletb． 2005.09 .075 ［arXiv：hep－ph／0508044［hep－ph］］．
－S．Antusch，P．Huber，S．F．King and T．Schwetz，JHEP 04 （2007），060 doi：10．1088／1126－6708／2007／04／060［arXiv：hep－ph／0702286［hep－ph］］．
－P．Ballett，S．F．King，C．Luhn，S．Pascoli and M．A．Schmidt，JHEP 12 （2014）， 122 doi：10．1007／JHEP 12 （2014） 122 ［arXiv：1410．7573［hep－ph］］
－D．Marzocca，S．T．Petcov，A．Romanino，M．C．Sevilla，JHEP 1305 （2013） 073 ［arXiv：1302．0423］；
－I．Girardi，S．T．Petcov，A．V．Titov，Nucl．Phys．B 894 （2015） 733 ［arXiv： 1410.8056 ［hep－ph］］．
－F．Costa and S．F．King，＂Neutrino mixing sum rules and the Littlest Seesaw，＂arXiv：2307．13895［hep－ph］

[^0]- Atmospheric sum rules
- Simple Patterns

$$
\left|U_{e 1}\right|=\sqrt{\frac{2}{3}},\left|U_{\mu 1}\right|=\left|U_{\tau 1}\right|=\frac{1}{\sqrt{6}} \quad\left|U_{e 2}\right|=\left|U_{\mu 2}\right|=\left|U_{\tau 2}\right|=\frac{1}{\sqrt{3}}
$$

$U_{\nu}^{\mathrm{TB}}=\left(\begin{array}{ccc}\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right)$

$$
U_{\mathrm{TM} 1} \approx\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & - & - \\
-\frac{1}{\sqrt{6}} & - & - \\
\frac{1}{\sqrt{6}} & - & -
\end{array}\right)
$$

$U_{\nu}^{\mathrm{BM}}=\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}}\end{array}\right)$

$$
s_{12}^{2}=\frac{\left(1-3 s_{13}^{2}\right)}{3\left(1-s_{13}^{2}\right)} \quad \cos \delta=-\frac{\cot 2 \theta_{23}\left(1-5 s_{13}^{2}\right)}{2 \sqrt{2} s_{13} \sqrt{1-3 s_{13}^{2}}}
$$

$$
\begin{gathered}
\left|U_{e 2}\right|=\left|U_{\mu 2}\right|=\left|U_{\tau 2}\right|=\frac{1}{\sqrt{3}} \\
U_{\mathrm{TM} 2} \approx\left(\begin{array}{ccc}
- & \sqrt{\frac{1}{3}} & - \\
- & \sqrt{\frac{1}{3}} & - \\
- & -\sqrt{\frac{1}{3}}-
\end{array}\right) \\
s_{12}^{2}=\frac{1}{3\left(1-s_{13}^{2}\right)} \quad \cos \delta=\frac{2 c_{13} \cot 2 \theta_{23} \cot 2 \theta_{13}}{\sqrt{2-3 s_{13}^{2}}}
\end{gathered}
$$

$U_{\nu}^{\mathrm{GR}}=\left(\begin{array}{ccc}c_{12}^{\nu} & s_{12}^{\nu} & 0 \\ -\frac{s_{12}^{12}}{\sqrt{2}} & \frac{c_{12}^{\nu_{2}}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
a. $\quad \tan \theta_{12}^{\nu}=\frac{2}{1+\sqrt{5}}=\frac{1}{\phi}$
b. $\quad \cos \theta_{12}^{\nu}=\frac{1+\sqrt{5}}{4}=\frac{\phi}{2}$
$\square$ Charged lepton corrections (also $s_{23}^{e}$ but not $s_{13}^{e}$ )

$$
U_{\mathrm{PMNS}}=\left(\begin{array}{cccc}
c_{12}^{e} & s_{12}^{e} e^{-i \delta_{12}^{e}} & 0 \\
-s_{12}^{e} e^{i \delta_{12}} & c_{12}^{e} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{ccc}
\cdots & \cdots & \frac{s_{12}^{e}}{\sqrt{2}} e^{-i \delta_{12}^{e}} \\
\cdots & \cdots & \frac{c_{12}^{e}}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

$$
\frac{\left|U_{\tau 1}\right|}{\left|U_{\tau 2}\right|}=\frac{\left|s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta}\right|}{\left|-c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta}\right|}=\frac{1}{\sqrt{2}}
$$

- Solar sum rule

$$
\cos \delta=\frac{\tan \theta_{23} \sin \theta_{12}^{2}+\sin \theta_{13}^{2} \cos \theta_{12}^{2} / \tan \theta_{23}-\left(\sin \theta_{12}^{v}\right)^{2}\left(\tan \theta_{23}+\sin \theta_{13}^{2} / \tan \theta_{23}\right)}{\sin 2 \theta_{12} \sin \theta_{13}}
$$


[^0]:    －RENO Collaboration，J．K．Ahn et al．，＂Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment，＂Phys．Rev．Lett． 108 （2012）191802，arXiv：1204．0626［hep－ex］．

