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Neutrino mass 
and mixing

   Neutrinos have tiny masses (much less than electron) 
   Neutrinos mix a lot (unlike the quarks) 
   Up to 9 new params: 3 masses, 3 angles, 3 phases 
   Origin of mass and mixing is unknown                  
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Figure 1: The probability that a particular neutrino mass state ⌫i with mass mi contains a particular charged
lepton mass basis state (⌫e, ⌫µ, ⌫⌧ ) is represented by colours. The left and right panels of the figure are referred
to as normal or inverted mass squared ordering, respectively, referred to as NO or IO. The value of the lightest
neutrino mass is presently unknown but there is a cosmological limit: m1 + m2 + m3 < 0.23 eV [33]. For
example, if m1 = 0, then NO would give m2 = 0.0086 eV and m3 = 0.050 eV, hence m1 + m2 + m3 ⇡ 0.06 eV.
While for IO with m3 = 0, we would find m2 ⇡ m1 = 0.050 eV, hence m1 + m2 + m3 ⇡ 0.10 eV. Prospects for
future cosmological limits approaching this value are discussed in [34].

by a product of Euler rotations: (⌫e, ⌫µ, ⌫⌧ )T = R23R13R12(⌫1, ⌫2, ⌫3)T where Rij is a real orthogonal
rotation matrix in the ij plane, as shown in Eq.4 (with the phase set to zero) and depicted in Fig.2.

The measured mixing angles depend on whether the neutrino masses are in the NO or the IO pattern
as shown in Fig.3. Tri-bimaximal mixing would correspond to sin2 ✓23 = 1/2 and sin2 ✓13 = 1/3, and
indicated by the dashed lines in Fig.3, which translates into ✓23 = 45�, ✓12 = 35.26�. The current best
lepton mixing angle one sigma ranges are displayed in Table 1 for the NO case: ✓23 ⇡ 41.4�

± 1.6�,
✓12 ⇡ 33.2�

± 1.2�, ✓13 ⇡ 8.45�
± 0.15�. These values are extracted from the two recently updated global

fits of [38, 39]. The non-zero reactor angle excludes the original version of tri-bimaximal mixing with
a zero reactor angle. The alternative tri-bimaximal-reactor mixing is evidently excluded by about two
sigma. In addition, there is weak evidence for a non-zero CP violating phase. Present data (slightly)
prefers a normal ordered (NO) neutrino mass pattern, with a CP phase � = �100�

± 50�, and (more
significantly) non-maximal atmospheric mixing. The meaning of the CP phase � is discussed below.

The PDG [41] advocates CKM and the PMNS mixing matrices being parameterised by unitary
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8 Chapter 1 Introduction

In the PDG parametrisation, UPMNS is described by three mixing angles ✓`ij and three

phases �`, ↵21 and ↵31. With cij = cos ✓`ij and sij = sin ✓`ij ,

UPMNS =

0
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0 c23 s23
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⇥ diag(1, ei↵21/2, ei↵31/2).

(1.23)

If neutrinos are Dirac particles, the phases ↵21 and ↵31 become unphysical, and the

PMNS matrix is exactly analogous to the CKM matrix. In shorthand, we may write the

above as UPMNS = R`
23
U `
13
R`

12
P .

Neutrino oscillation experiments do not measure the neutrino masses directly, and can

only constrain the mass squared di↵erences �m2

ij = m2

i � m2

j . The absolute scale of

neutrino mass, characterised by the lightest neutrino mass m1, is not known. Moreover,

the ordering of neutrino masses is not yet fixed. While it is known that the first and

second neutrinos obey m1 < m2 (equivalent to �m2

21
> 0), at current experimental

precision it is not known whether the third neutrino with mass m3 is the heaviest, so-

called normal ordering (NO), or the lightest, dubbed inverted ordering (IO). In other

words, the sign of �m2

31
is undetermined, although global fits to data show a mild

preference for normal ordering [36]. For normal ordering, the strongest hierarchy occurs

when m1 is small: for m1 . 5 meV, m2/m3 ⇠ 0.2 meV. Meanwhile an inverted ordering

requires the first and second neutrinos to be similar, i.e. m1 . m2, while the third

neutrino is lighter. Observations of the cosmic microwave background (CMB) puts an

upper bound on the sum of neutrino masses
P

mi < 0.23 eV [37]. Bounds on the

neutrino masses are also given by searches for neutrinoless double beta (0⌫2�) decay.

Specifically, the 0⌫2� decay rate is proportional to the square of the e↵ective Majorana

mass |m�� | = |
P

i U
2

eimi|. Future experiments may be able to place upper bounds on

|m�� | which is in tension with oscillation data for an inverted hierarchy (or conversely,

confirm it).

In Table 1.3 we present the current best fit values for normal ordering to the three

lepton mixing angles ✓`ij , Dirac charge-parity (CP ) phase �` and neutrino mass-squared

di↵erences�m2

ij , taken from the NuFit collaboration [36], as well as the measured masses

of the electron, muon and tau [23].

1.3 The flavour puzzle

The flavour puzzle can be approached in a number of equivalent ways. For instance, we

may ask

thus not only confirmed solar neutrino oscillations, but has also uniquely specified the LMA

solar solution, heralding a new era in neutrino physics.

2.4 Reactor neutrino mixing

Until recently, the reactor angle θ13 was not measured, only limited by CHOOZ, a reactor

experiment that failed to see any signal of neutrino oscillations over the Super-Kamiokande

mass range. CHOOZ data from ν̄e → ν̄e disappearance not being observed provided a

significant constraint on θ13 over the Super-Kamiokande preferred range of ∆m2
32 [11]:

sin2 2θ13 < 0.2. (2.10)

Direct evidence for θ13 was first provided by T2K, MINOS and Double Chooz [12]. Re-

cently the Daya Bay [13], RENO [14], and Double Chooz [15] collaborations have measured

sin2(2θ13):

Daya Bay : sin2(2θ13) = 0.084 ± 0.005(stat. & syst.) ,

RENO : sin2(2θ13) = 0.082 ± 0.009(stat.) ± 0.006(syst.) ,

Double Chooz : sin2(2θ13) = 0.090+0.032
−0.029(syst. & stat.) .

(2.11)

This corresponds to

|Ue3| = sin θ13 ≈ 0.15, (2.12)

or a reactor angle θ13 ≈ 8.5◦.

2.5 Three neutrino mixing including phases

If the reactor angle were zero then there would be no CP violation in neutrino oscillations.

The measurement of the reactor angle means that we cannot ignore the presence of phases

any more. Including the phases, assuming the light neutrinos are Majorana, UPMNS can

be parameterised in terms of three mixing angles θij, a Dirac phase δ, together with two

Majorana phases β1,β2, as follows [5],

UPMNS = R23U13R12P12, (2.13)

where

U13 =

⎛

⎜⎝
c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

⎞

⎟⎠ , P12 =

⎛

⎜⎝
eiβ1 0 0

0 eiβ2 0

0 0 1

⎞

⎟⎠ , (2.14)

and R23 and R12 were defined below Eq. (2.1), giving,

UPMNS =

⎛

⎜⎝
c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

⎞

⎟⎠P12. (2.15)

Alternatively the lepton mixing matrix may be expressed as a product of three complex

Euler rotations [57],

UPMNS = U23U13U12, (2.16)
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Muon Neutrino Oscillations

where E is the neutrino energy, L the oscillation baseline, and the ordered terms Pn = O(✏n)

are given by

P1 =
4

(1� rA)2
sin2 ✓23 sin

2 ✓13 sin
2

✓
(1� rA)�L

2

◆
, (2.2)

P 3
2
= 8Jr

✏

rA(1� rA)
cos

✓
� +

�L

2

◆
sin

✓
rA�L

2

◆
sin

✓
(1� rA)�L

2

◆
, (2.3)

where Jr = cos ✓12 sin ✓12 cos ✓23 sin ✓23 sin ✓13, rA = 2
p
2GFNeE/�m2

31
and� = �m2

31
/2E.

Using the same scheme, the disappearance channel can be written at leading order as

P (⌫µ ! ⌫µ;E,L) = 1� sin2(2✓23) sin
2

✓
�L

2

◆
+O(✏). (2.4)

For both channels, equivalent expressions for antineutrino probabilities can be obtained by

the mapping rA ! �rA and � ! ��.

2.1 Mass ordering, CPV and the octant of ✓23

The sensitivity of long-baseline experiments to the questions of the neutrino mass ordering,

the existence of CPV and the octant of ✓23, are by now well studied topics (for a recent

review see e.g. Ref. [44]). To help us clarify the role of the designs of DUNE and T2HK,

as well as their possible modifications, we will briefly recap how experiments on these

scales derive their sensitivities using the approximate formulae expressed by Eqs. (2.2),

(2.3) and (2.4).

The dependence on the sign of �m2
31
, and therefore the mass ordering, arises at long-

baseline from the interplay with matter. Changing from Normal Ordering (NO, �m2
31

> 0)

to Inverted Ordering (IO, �m2
31

< 0) requires the replacements � ! �� and rA ! �rA.

However, in vacuum (rA = 0) the leading-order term in Eq. (2.1) remains invariant under

this mapping. This invariance is broken once a matter term is included (rA 6= 0), and

the oscillation probability acquires a measurable enhancement or suppression dependent

on the sign of �m2
32
. The size of this enhancement increases with baseline length, and

this e↵ect is expected to be very relevant for any oscillation channel at a long-baseline

experiment. However, the determination of the mass ordering is further facilitated by the

contrasting behaviour of neutrinos and antineutrinos. Due to the dependence on rA, for NO

larger values of the matter density cause an enhancement in the probability for ⌫µ ! ⌫e
oscillation at the first maximum, whilst suppressing the probability for ⌫µ ! ⌫e. This

behaviour is reversed for IO, and by observing the relative magnitudes of the oscillation

probabilities at the first maximum, long-baseline oscillation experiments can exploit this

e↵ect to determine the mass ordering.

To detect CPV in neutrino oscillation an experiment requires sensitivity to �. Un-

fortunately, the leading order appearance probability is independent of the CP phase � in

vacuum. CP asymmetries between neutrino and antineutrino channels first appear with the

subdominant term P 3
2
. In the presence of a background medium, CP violating e↵ects are

instead introduced at leading order; however, these o↵er no sensitivity to the fundamen-

tal CP violating parameter �, arising instead from the CP asymmetry of the background

– 5 –
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2 Oscillation phenomenology at DUNE and T2HK

The fundamental parameters which describe the oscillation phenomenon are the angles

and Dirac phase of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix as well

as two independent mass-squared splittings e.g. �m2
21

and �m2
31
. The PMNS matrix is

the mapping between the bases of mass and flavour states (denoted with latin and greek

indices, respectively), which can be written as

⌫↵ = U⇤
↵i⌫i,

where U will be expressed by the conventional factorization [37]:

UPMNS = U23U13U12P,

=

0
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B@
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CAP,

where P is a diagonal matrix containing two Majorana phases ↵1 and ↵2 which play no role

in oscillation physics. The mixing angles ✓12, ✓13 and ✓23 are often referred to as the solar,

reactor and atmospheric mixing angles respectively; all of these angles are now known to

be non-zero [38]. The remaining parameter in U is the phase �, which is currently poorly

constrained by data. This parameter dictates the size of CP violating e↵ects in vacuum

during oscillation. All such e↵ects will be proportional to the Jarlskog invariant of UPMNS,

J =
1

8
sin � sin (2✓23) sin (2✓13) sin (2✓12) cos ✓13.

For the theory to manifest CP violating e↵ects, J must be non-zero. Given our knowledge

of the mixing angles, the exclusion of � /2 {0,⇡} would be su�cient to establish fundamental

leptonic CP violation.

Long-baseline experiments such as DUNE and T2HK aim to improve our knowledge

of U , as well as the mass squared splitings, by the precision measurement of both the

appearance ⌫µ ! ⌫e and disappearance oscillation channels ⌫µ ! ⌫µ, as well as their

CP conjugates. In the following section, we will discuss the key aims of the long-baseline

program and the important design features of these experiments which lead to their sen-

sitivities. To facilitate this discussion, we introduce an approximation of the appearance

channel following Ref. [39], which is derived by performing a perturbative expansion in the

small parameter ✏ ⌘ �m2
21
/�m2

31
⇡ 0.03 under the assumption that sin2 ✓13 = O(✏)1. The

expression for the oscillation probability is decomposed into terms of increasing power of

✏,

P (⌫µ ! ⌫e;E,L) ⌘ P1 + P 3
2
+O

�
✏2
�
, (2.1)

1
For alternative schemes of approximation, see Ref. [40–43].
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where E is the neutrino energy, L the oscillation baseline, and the ordered terms Pn = O(✏n)

are given by

P1 =
4

(1� rA)2
sin2 ✓23 sin

2 ✓13 sin
2

✓
(1� rA)�L

2

◆
, (2.2)

P 3
2
= 8Jr

✏

rA(1� rA)
cos

✓
� +

�L

2

◆
sin

✓
rA�L

2

◆
sin

✓
(1� rA)�L

2

◆
, (2.3)

where Jr = cos ✓12 sin ✓12 cos ✓23 sin ✓23 sin ✓13, rA = 2
p
2GFNeE/�m2

31
and� = �m2

31
/2E.

Using the same scheme, the disappearance channel can be written at leading order as

P (⌫µ ! ⌫µ;E,L) = 1� sin2(2✓23) sin
2

✓
�L

2

◆
+O(✏). (2.4)

For both channels, equivalent expressions for antineutrino probabilities can be obtained by

the mapping rA ! �rA and � ! ��.

2.1 Mass ordering, CPV and the octant of ✓23

The sensitivity of long-baseline experiments to the questions of the neutrino mass ordering,

the existence of CPV and the octant of ✓23, are by now well studied topics (for a recent

review see e.g. Ref. [44]). To help us clarify the role of the designs of DUNE and T2HK,

as well as their possible modifications, we will briefly recap how experiments on these

scales derive their sensitivities using the approximate formulae expressed by Eqs. (2.2),

(2.3) and (2.4).

The dependence on the sign of �m2
31
, and therefore the mass ordering, arises at long-

baseline from the interplay with matter. Changing from Normal Ordering (NO, �m2
31

> 0)

to Inverted Ordering (IO, �m2
31

< 0) requires the replacements � ! �� and rA ! �rA.

However, in vacuum (rA = 0) the leading-order term in Eq. (2.1) remains invariant under

this mapping. This invariance is broken once a matter term is included (rA 6= 0), and

the oscillation probability acquires a measurable enhancement or suppression dependent

on the sign of �m2
32
. The size of this enhancement increases with baseline length, and

this e↵ect is expected to be very relevant for any oscillation channel at a long-baseline

experiment. However, the determination of the mass ordering is further facilitated by the

contrasting behaviour of neutrinos and antineutrinos. Due to the dependence on rA, for NO

larger values of the matter density cause an enhancement in the probability for ⌫µ ! ⌫e
oscillation at the first maximum, whilst suppressing the probability for ⌫µ ! ⌫e. This

behaviour is reversed for IO, and by observing the relative magnitudes of the oscillation

probabilities at the first maximum, long-baseline oscillation experiments can exploit this

e↵ect to determine the mass ordering.

To detect CPV in neutrino oscillation an experiment requires sensitivity to �. Un-

fortunately, the leading order appearance probability is independent of the CP phase � in

vacuum. CP asymmetries between neutrino and antineutrino channels first appear with the

subdominant term P 3
2
. In the presence of a background medium, CP violating e↵ects are

instead introduced at leading order; however, these o↵er no sensitivity to the fundamen-

tal CP violating parameter �, arising instead from the CP asymmetry of the background
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rA, � change sign for antineutrinos

where E is the neutrino energy, L the oscillation baseline, and the ordered terms Pn = O(✏n)
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where Jr = cos ✓12 sin ✓12 cos ✓23 sin ✓23 sin ✓13, rA = 2
p
2GFNeE/�m2

31
and� = �m2

31
/2E.
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2
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2

◆
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For both channels, equivalent expressions for antineutrino probabilities can be obtained by

the mapping rA ! �rA and � ! ��.

2.1 Mass ordering, CPV and the octant of ✓23

The sensitivity of long-baseline experiments to the questions of the neutrino mass ordering,

the existence of CPV and the octant of ✓23, are by now well studied topics (for a recent

review see e.g. Ref. [44]). To help us clarify the role of the designs of DUNE and T2HK,

as well as their possible modifications, we will briefly recap how experiments on these

scales derive their sensitivities using the approximate formulae expressed by Eqs. (2.2),

(2.3) and (2.4).

The dependence on the sign of �m2
31
, and therefore the mass ordering, arises at long-

baseline from the interplay with matter. Changing from Normal Ordering (NO, �m2
31

> 0)

to Inverted Ordering (IO, �m2
31

< 0) requires the replacements � ! �� and rA ! �rA.

However, in vacuum (rA = 0) the leading-order term in Eq. (2.1) remains invariant under

this mapping. This invariance is broken once a matter term is included (rA 6= 0), and

the oscillation probability acquires a measurable enhancement or suppression dependent

on the sign of �m2
32
. The size of this enhancement increases with baseline length, and

this e↵ect is expected to be very relevant for any oscillation channel at a long-baseline

experiment. However, the determination of the mass ordering is further facilitated by the

contrasting behaviour of neutrinos and antineutrinos. Due to the dependence on rA, for NO

larger values of the matter density cause an enhancement in the probability for ⌫µ ! ⌫e
oscillation at the first maximum, whilst suppressing the probability for ⌫µ ! ⌫e. This

behaviour is reversed for IO, and by observing the relative magnitudes of the oscillation

probabilities at the first maximum, long-baseline oscillation experiments can exploit this

e↵ect to determine the mass ordering.

To detect CPV in neutrino oscillation an experiment requires sensitivity to �. Un-

fortunately, the leading order appearance probability is independent of the CP phase � in

vacuum. CP asymmetries between neutrino and antineutrino channels first appear with the

subdominant term P 3
2
. In the presence of a background medium, CP violating e↵ects are

instead introduced at leading order; however, these o↵er no sensitivity to the fundamen-

tal CP violating parameter �, arising instead from the CP asymmetry of the background
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Long-baseline experiments such as DUNE and T2HK aim to improve our knowledge

of U , as well as the atmospheric mass-squared splitting, by the precision measurement of

both the appearance ⌫µ ! ⌫e and disappearance oscillation channels ⌫µ ! ⌫µ, as well

as their CP conjugates. In the following section, we will discuss the key aims of the

long-baseline program and the important design features of these experiments which lead

to their sensitivities. To facilitate this discussion, we introduce an approximation of the

appearance channel probability following Ref. [47], which is derived by performing a per-

turbative expansion in the small parameter ✏ ⌘ �m2
21
/�m2

31
⇡ 0.03 under the assumption

that sin2 ✓13 = O(✏)1. The expression for the oscillation probability is decomposed into

terms of increasing power of ✏,

P (⌫µ ! ⌫e;E,L) ⌘ P1 + P 3
2
+O

�
✏2
�
, (2.1)

where E is the neutrino energy, L the oscillation baseline, and the ordered terms Pn = O(✏n)

are given by

P1 =
4

(1� rA)2
sin2 ✓23 sin

2 ✓13 sin
2

✓
(1� rA)�L

2

◆
, (2.2)

P 3
2
= 8Jr

✏

rA(1� rA)
cos

✓
� +

�L

2

◆
sin

✓
rA�L

2

◆
sin

✓
(1� rA)�L

2

◆
, (2.3)

where Jr = cos ✓12 sin ✓12 cos ✓23 sin ✓23 sin ✓13, rA = 2
p
2GFNeE/�m2

31
, with Ne denoting

the electron density in the medium, and � = �m2
31
/2E. Using the same scheme, the

disappearance channel can be written at leading order as

P (⌫µ ! ⌫µ;E,L) = 1� sin2(2✓23) sin
2

✓
�L

2

◆
+O(✏). (2.4)

For both channels, equivalent expressions for antineutrino probabilities can be obtained by

the mapping rA ! �rA and � ! ��.

2.1 Mass ordering, CPV and the octant of ✓23

The sensitivity of long-baseline experiments to the questions of the neutrino mass ordering,

the existence of CPV and the octant of ✓23, are by now well studied topics (for a recent

review see e.g. Ref. [52]). To help us clarify the role of the designs of DUNE and T2HK,

as well as their possible modifications, we will briefly recap how experiments on these

scales derive their sensitivities using the approximate formulae expressed by Eqs. (2.2),

(2.3) and (2.4).

The dependence on the sign of �m2
31
, and therefore the mass ordering, arises at long-

baselines from the interplay with matter, where forward elastic scattering can significantly

enhance or suppress the oscillation probability. This is governed by the parameter rA in

Eq. (2.1) and goes to zero in the absence of matter. Changing from Normal Ordering (NO,

�m2
31

> 0) to Inverted Ordering (IO, �m2
31

< 0) requires the replacements � ! �� and

rA ! �rA. However, in vacuum (rA = 0) the leading-order term in Eq. (2.1) remains

1
For alternative schemes of approximation, see Ref. [48–51].
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Matter effect

where E is the neutrino energy, L the oscillation baseline, and the ordered terms Pn = O(✏n)

are given by

P1 =
4

(1� rA)2
sin2 ✓23 sin

2 ✓13 sin
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where Jr = cos ✓12 sin ✓12 cos ✓23 sin ✓23 sin ✓13, rA = 2
p
2GFNeE/�m2

31
and� = �m2

31
/2E.

Using the same scheme, the disappearance channel can be written at leading order as

P (⌫µ ! ⌫µ;E,L) = 1� sin2(2✓23) sin
2

✓
�L

2

◆
+O(✏). (2.4)

For both channels, equivalent expressions for antineutrino probabilities can be obtained by

the mapping rA ! �rA and � ! ��.

2.1 Mass ordering, CPV and the octant of ✓23

The sensitivity of long-baseline experiments to the questions of the neutrino mass ordering,

the existence of CPV and the octant of ✓23, are by now well studied topics (for a recent

review see e.g. Ref. [44]). To help us clarify the role of the designs of DUNE and T2HK,

as well as their possible modifications, we will briefly recap how experiments on these

scales derive their sensitivities using the approximate formulae expressed by Eqs. (2.2),

(2.3) and (2.4).

The dependence on the sign of �m2
31
, and therefore the mass ordering, arises at long-

baseline from the interplay with matter. Changing from Normal Ordering (NO, �m2
31

> 0)

to Inverted Ordering (IO, �m2
31

< 0) requires the replacements � ! �� and rA ! �rA.

However, in vacuum (rA = 0) the leading-order term in Eq. (2.1) remains invariant under

this mapping. This invariance is broken once a matter term is included (rA 6= 0), and

the oscillation probability acquires a measurable enhancement or suppression dependent

on the sign of �m2
32
. The size of this enhancement increases with baseline length, and

this e↵ect is expected to be very relevant for any oscillation channel at a long-baseline

experiment. However, the determination of the mass ordering is further facilitated by the

contrasting behaviour of neutrinos and antineutrinos. Due to the dependence on rA, for NO

larger values of the matter density cause an enhancement in the probability for ⌫µ ! ⌫e
oscillation at the first maximum, whilst suppressing the probability for ⌫µ ! ⌫e. This

behaviour is reversed for IO, and by observing the relative magnitudes of the oscillation

probabilities at the first maximum, long-baseline oscillation experiments can exploit this

e↵ect to determine the mass ordering.

To detect CPV in neutrino oscillation an experiment requires sensitivity to �. Un-

fortunately, the leading order appearance probability is independent of the CP phase � in

vacuum. CP asymmetries between neutrino and antineutrino channels first appear with the

subdominant term P 3
2
. In the presence of a background medium, CP violating e↵ects are

instead introduced at leading order; however, these o↵er no sensitivity to the fundamen-

tal CP violating parameter �, arising instead from the CP asymmetry of the background
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where E is the neutrino energy, L the oscillation baseline, and the ordered terms Pn = O(✏n)

are given by
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where Jr = cos ✓12 sin ✓12 cos ✓23 sin ✓23 sin ✓13, rA = 2
p
2GFNeE/�m2

31
and� = �m2

31
/2E.

Using the same scheme, the disappearance channel can be written at leading order as

P (⌫µ ! ⌫µ;E,L) = 1� sin2(2✓23) sin
2

✓
�L

2

◆
+O(✏). (2.4)

For both channels, equivalent expressions for antineutrino probabilities can be obtained by

the mapping rA ! �rA and � ! ��.

2.1 Mass ordering, CPV and the octant of ✓23

The sensitivity of long-baseline experiments to the questions of the neutrino mass ordering,

the existence of CPV and the octant of ✓23, are by now well studied topics (for a recent

review see e.g. Ref. [44]). To help us clarify the role of the designs of DUNE and T2HK,

as well as their possible modifications, we will briefly recap how experiments on these

scales derive their sensitivities using the approximate formulae expressed by Eqs. (2.2),

(2.3) and (2.4).

The dependence on the sign of �m2
31
, and therefore the mass ordering, arises at long-

baseline from the interplay with matter. Changing from Normal Ordering (NO, �m2
31

> 0)

to Inverted Ordering (IO, �m2
31

< 0) requires the replacements � ! �� and rA ! �rA.

However, in vacuum (rA = 0) the leading-order term in Eq. (2.1) remains invariant under

this mapping. This invariance is broken once a matter term is included (rA 6= 0), and

the oscillation probability acquires a measurable enhancement or suppression dependent

on the sign of �m2
32
. The size of this enhancement increases with baseline length, and

this e↵ect is expected to be very relevant for any oscillation channel at a long-baseline

experiment. However, the determination of the mass ordering is further facilitated by the

contrasting behaviour of neutrinos and antineutrinos. Due to the dependence on rA, for NO

larger values of the matter density cause an enhancement in the probability for ⌫µ ! ⌫e
oscillation at the first maximum, whilst suppressing the probability for ⌫µ ! ⌫e. This

behaviour is reversed for IO, and by observing the relative magnitudes of the oscillation

probabilities at the first maximum, long-baseline oscillation experiments can exploit this

e↵ect to determine the mass ordering.

To detect CPV in neutrino oscillation an experiment requires sensitivity to �. Un-

fortunately, the leading order appearance probability is independent of the CP phase � in

vacuum. CP asymmetries between neutrino and antineutrino channels first appear with the

subdominant term P 3
2
. In the presence of a background medium, CP violating e↵ects are

instead introduced at leading order; however, these o↵er no sensitivity to the fundamen-

tal CP violating parameter �, arising instead from the CP asymmetry of the background
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2 Oscillation phenomenology at DUNE and T2HK

The fundamental parameters which describe the oscillation phenomenon are the angles

and Dirac phase of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix as well

as two independent mass-squared splittings e.g. �m2
21

and �m2
31
. The PMNS matrix is

the mapping between the bases of mass and flavour states (denoted with latin and greek

indices, respectively), which can be written as

⌫↵ = U⇤
↵i⌫i,

where U will be expressed by the conventional factorization [37]:

UPMNS = U23U13U12P,

=

0

B@
1 0 0

0 c23 s23
0 �s23 c23

1

CA

0

B@
c13 0 s13e�i�

0 1 0

�s13ei� 0 c13

1

CA

0

B@
c12 s12 0

�s12 c12 0

0 0 1

1

CA

0

B@
ei↵1 0 0

0 ei↵2 0

0 0 1

1

CA ,

=

0

B@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

CAP,

where P is a diagonal matrix containing two Majorana phases ↵1 and ↵2 which play no role

in oscillation physics. The mixing angles ✓12, ✓13 and ✓23 are often referred to as the solar,

reactor and atmospheric mixing angles respectively; all of these angles are now known to

be non-zero [38]. The remaining parameter in U is the phase �, which is currently poorly

constrained by data. This parameter dictates the size of CP violating e↵ects in vacuum

during oscillation. All such e↵ects will be proportional to the Jarlskog invariant of UPMNS,

J =
1

8
sin � sin (2✓23) sin (2✓13) sin (2✓12) cos ✓13.

For the theory to manifest CP violating e↵ects, J must be non-zero. Given our knowledge

of the mixing angles, the exclusion of � /2 {0,⇡} would be su�cient to establish fundamental

leptonic CP violation.

Long-baseline experiments such as DUNE and T2HK aim to improve our knowledge

of U , as well as the mass squared splitings, by the precision measurement of both the

appearance ⌫µ ! ⌫e and disappearance oscillation channels ⌫µ ! ⌫µ, as well as their

CP conjugates. In the following section, we will discuss the key aims of the long-baseline

program and the important design features of these experiments which lead to their sen-

sitivities. To facilitate this discussion, we introduce an approximation of the appearance

channel following Ref. [39], which is derived by performing a perturbative expansion in the

small parameter ✏ ⌘ �m2
21
/�m2

31
⇡ 0.03 under the assumption that sin2 ✓13 = O(✏)1. The

expression for the oscillation probability is decomposed into terms of increasing power of

✏,

P (⌫µ ! ⌫e;E,L) ⌘ P1 + P 3
2
+O

�
✏2
�
, (2.1)

1
For alternative schemes of approximation, see Ref. [40–43].
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⇠ O(sin2 ✓13)
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where ⌫e, ⌫µ, ⌫⌧ are the SU(2)L partners to the left-handed charged lepton mass eigenstates

and ⌫1,2,3 are the neutrinos in their mass basis. Following the standard convention we can

describe UPMNS in terms of three angles, one CP violation phase and two Majorana phases

UPMNS =

0

B@
1 0 0

0 c23 s23

0 �s23 c23

1

CA

0

B@
c13 0 s13e

�i�

0 1 0

�s13e
i� 0 c13

1

CA

0

B@
c12 s12 0

�s12 c12 0

0 0 1

1

CAP, (2.5)

=

0

B@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s13s23e
i�

c12c23 � s12s13s23e
i�

c13s23

s12s23 � c12s13c23e
i� �c12s23 � s12s13c23e

i�
c13c23

1

CAP, (2.6)

where P contains the Majorana phases

P = diag
⇣
1, ei↵21/2, e

i↵31/2
⌘
, (2.7)

The current 3� parameters intervals coming from the global fit of the neutrino oscillation

data by the nuFIT collaboration [32] are

✓12 = [31.31�, 35.74�], ✓23 = [39.6�, 51.9�], ✓13 = [8.19�, 8.89�], (2.8)

� = [0�, 44�] & [108�, 360�],
�2

21

10�5eV2 = [6.82, 8.03],
�2

3l

10�3eV2 = [2.428, 2.597].

(2.9)

The PMNS matrix reads

|U |w/o SK-atm
3� =

0

B@
0.803 ! 0.845 0.514 ! 0.578 0.142 ! 0.155

0.233 ! 0.505 0.460 ! 0.693 0.630 ! 0.779

0.262 ! 0.525 0.473 ! 0.702 0.610 ! 0.762

1

CA . (2.10)

These results are obtained considering normal ordering, which is the current best fit, and

without including the Super-Kamiokande (SK) data. Simple mixing patter such TB, BM

or GR could explain the first neutrino oscillation data. These patterns can be enforced via

symmetries of the mass matrices. Let us take a basis where the charged lepton Me mass

matrix is diagonal and we notice that for 3 generations we have that ZT
3 is a symmetry of

the Lagrangian

T
†
⇣
M

†
eMe

⌘
T = M

†
eMe, (2.11)

where T = diag
�
1,!2

,!
�
and ! = e

i2⇡/3. The light Majorana neutrino mass matrix is

invariant under the Klein symmetry: Z
U
2 ⇥ Z

S
2 . This can be seen taking the diagonal

neutrino mass matrix and performing the transformations
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3� ranges (NO)

NuFIT 5.2 (2022)
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Normal Ordering (best fit) Inverted Ordering (�‰2
= 2.3)

bfp ±1‡ 3‡ range bfp ±1‡ 3‡ range

sin
2 ◊12 0.303+0.012

≠0.011 0.270 æ 0.341 0.303+0.012
≠0.011 0.270 æ 0.341

◊12/¶
33.41+0.75

≠0.72 31.31 æ 35.74 33.41+0.75
≠0.72 31.31 æ 35.74

sin
2 ◊23 0.572+0.018

≠0.023 0.406 æ 0.620 0.578+0.016
≠0.021 0.412 æ 0.623

◊23/¶
49.1+1.0

≠1.3 39.6 æ 51.9 49.5+0.9
≠1.2 39.9 æ 52.1

sin
2 ◊13 0.02203+0.00056

≠0.00059 0.02029 æ 0.02391 0.02219+0.00060
≠0.00057 0.02047 æ 0.02396

◊13/¶
8.54+0.11

≠0.12 8.19 æ 8.89 8.57+0.12
≠0.11 8.23 æ 8.90

”CP/¶
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+42
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≠32 192 æ 360

�m2
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10≠5 eV
2 7.41+0.21
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Normal Ordering (best fit) Inverted Ordering (�‰2
= 6.4)
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sin
2 ◊12 0.303+0.012

≠0.012 0.270 æ 0.341 0.303+0.012
≠0.011 0.270 æ 0.341

◊12/¶
33.41+0.75

≠0.72 31.31 æ 35.74 33.41+0.75
≠0.72 31.31 æ 35.74

sin
2 ◊23 0.451+0.019

≠0.016 0.408 æ 0.603 0.569+0.016
≠0.021 0.412 æ 0.613

◊23/¶
42.2+1.1

≠0.9 39.7 æ 51.0 49.0+1.0
≠1.2 39.9 æ 51.5

sin
2 ◊13 0.02225+0.00056

≠0.00059 0.02052 æ 0.02398 0.02223+0.00058
≠0.00058 0.02048 æ 0.02416

◊13/¶
8.58+0.11

≠0.11 8.23 æ 8.91 8.57+0.11
≠0.11 8.23 æ 8.94

”CP/¶
232

+36
≠26 144 æ 350 276

+22
≠29 194 æ 344

�m2
21

10≠5 eV
2 7.41+0.21

≠0.20 6.82 æ 8.03 7.41+0.21
≠0.20 6.82 æ 8.03

�m2
3¸

10≠3 eV
2 +2.507+0.026

≠0.027 +2.427 æ +2.590 ≠2.486+0.025
≠0.028 ≠2.570 æ ≠2.406
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where ⌫e, ⌫µ, ⌫⌧ are the SU(2)L partners to the left-handed charged lepton mass eigenstates

and ⌫1,2,3 are the neutrinos in their mass basis. Following the standard convention we can

describe UPMNS in terms of three angles, one CP violation phase and two Majorana phases

UPMNS =

0

B@
1 0 0

0 c23 s23

0 �s23 c23

1

CA

0

B@
c13 0 s13e

�i�

0 1 0

�s13e
i� 0 c13

1

CA
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B@
c12 s12 0

�s12 c12 0

0 0 1

1

CAP, (2.5)

=
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B@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s13s23e
i�

c12c23 � s12s13s23e
i�

c13s23

s12s23 � c12s13c23e
i� �c12s23 � s12s13c23e

i�
c13c23

1

CAP, (2.6)

where P contains the Majorana phases

P = diag
⇣
1, ei↵21/2, e

i↵31/2
⌘
, (2.7)

The current 3� parameters intervals coming from the global fit of the neutrino oscillation

data by the nuFIT collaboration [32] are

✓12 = [31.31�, 35.74�], ✓23 = [39.6�, 51.9�], ✓13 = [8.19�, 8.89�], (2.8)

� = [0�, 44�] & [108�, 360�],
�2

21

10�5eV2 = [6.82, 8.03],
�2

3l

10�3eV2 = [2.428, 2.597].

(2.9)

The PMNS matrix reads

|U |w/o SK-atm
3� =

0

B@
0.803 ! 0.845 0.514 ! 0.578 0.142 ! 0.155

0.233 ! 0.505 0.460 ! 0.693 0.630 ! 0.779

0.262 ! 0.525 0.473 ! 0.702 0.610 ! 0.762

1

CA . (2.10)

These results are obtained considering normal ordering, which is the current best fit, and

without including the Super-Kamiokande (SK) data. Simple mixing patter such TB, BM

or GR could explain the first neutrino oscillation data. These patterns can be enforced via

symmetries of the mass matrices. Let us take a basis where the charged lepton Me mass

matrix is diagonal and we notice that for 3 generations we have that ZT
3 is a symmetry of

the Lagrangian

T
†
⇣
M

†
eMe

⌘
T = M

†
eMe, (2.11)

where T = diag
�
1,!2

,!
�
and ! = e

i2⇡/3. The light Majorana neutrino mass matrix is

invariant under the Klein symmetry: Z
U
2 ⇥ Z

S
2 . This can be seen taking the diagonal

neutrino mass matrix and performing the transformations
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where ⌫e, ⌫µ, ⌫⌧ are the SU(2)L partners to the left-handed charged lepton mass eigenstates

and ⌫1,2,3 are the neutrinos in their mass basis. Following the standard convention we can

describe UPMNS in terms of three angles, one CP violation phase and two Majorana phases

UPMNS =

0
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where P contains the Majorana phases

P = diag
⇣
1, ei↵21/2, e

i↵31/2
⌘
, (2.7)

The current 3� parameters intervals coming from the global fit of the neutrino oscillation

data by the nuFIT collaboration [32] are

✓12 = [31.31�, 35.74�], ✓23 = [39.6�, 51.9�], ✓13 = [8.19�, 8.89�], (2.8)

� = [0�, 44�] & [108�, 360�],
�2

21

10�5eV2 = [6.82, 8.03],
�2

3l

10�3eV2 = [2.428, 2.597].

(2.9)

The PMNS matrix reads

|U |w/o SK-atm
3� =

0

B@
0.803 ! 0.845 0.514 ! 0.578 0.142 ! 0.155

0.233 ! 0.505 0.460 ! 0.693 0.630 ! 0.779

0.262 ! 0.525 0.473 ! 0.702 0.610 ! 0.762

1

CA . (2.10)

These results are obtained considering normal ordering, which is the current best fit, and

without including the Super-Kamiokande (SK) data. Simple mixing patter such TB, BM

or GR could explain the first neutrino oscillation data. These patterns can be enforced via

symmetries of the mass matrices. Let us take a basis where the charged lepton Me mass

matrix is diagonal and we notice that for 3 generations we have that ZT
3 is a symmetry of

the Lagrangian

T
†
⇣
M

†
eMe

⌘
T = M

†
eMe, (2.11)

where T = diag
�
1,!2

,!
�
and ! = e

i2⇡/3. The light Majorana neutrino mass matrix is

invariant under the Klein symmetry: Z
U
2 ⇥ Z

S
2 . This can be seen taking the diagonal

neutrino mass matrix and performing the transformations

– 5 –

sin2 ✓23 = 1
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1 Introduction

Neutrino mass and mixing represents the first and so far only new physics beyond the

Standard Model (SM) of particle physics. We know it must be new physics because its

origin is unknown and it is not predicted by the SM. Independently of the whatever the new

(or nu) SM is, we do know that the minimal paradigm involves three active neutrinos, the

weak eigenstates ⌫e, ⌫µ, ⌫⌧ (the SU(2)L partners to the left-handed charged lepton mass

eigenstates) which are related to the three mass eigenstates m1,2,3 by a unitary PMNS

mixing matrix [1].

The PMNS matrix is similar to the CKM matrix which describes quark mixing, but in-

volves three independent leptonic mixing angles ✓23, ✓13, ✓12 (or s23 = sin ✓23, s13 = sin ✓13,

s12 = sin ✓12), one leptonic CP violating Dirac phase � which a↵ects neutrino oscillations,

and possibly two Majorana phases which do not enter into neutrino oscillation formu-

las. Furthermore neutrino oscillations only depend on the two mass squared di↵erences

�m
2
21 = m

2
2 � m

2
1, which is constrained by data to be positive, and �m

2
31 = m

2
3 � m

2
1,

which current data allows to take a positive (normal) or negative (inverted) value. In 1998,

the angle ✓23 was first measured to be roughly 45o (consistent with equal bi-maximal ⌫µ�⌫⌧

mixing) by atmospheric neutrino oscillations, while ✓12 was determined to be roughly 35o

(consistent with equal tri-maximal ⌫e�⌫µ�⌫⌧ mixing) in 2002 by solar neutrino oscillation

experiments, while ✓13 was first accurately found to be 8.5o in 2012 by reactor oscillation

experiments.

Various simple ansatzes for the PMNS matrix were proposed, the most simple ones

involving a zero reactor angle and bimaximal atmospheric mixing, s13 = 0 and s23 = c23 =

1/
p
2, leading to a PMNS matrix of the form,

U0 =

0

B@
c12 s12 0

� s12p
2

c12p
2

1p
2

s12p
2

� c12p
2

1p
2

1

CA , (1.1)
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|U |w/o SK-atm
3‡ =

Q

ca
0.803 æ 0.845 0.514 æ 0.578 0.142 æ 0.155

0.233 æ 0.505 0.460 æ 0.693 0.630 æ 0.779

0.262 æ 0.525 0.473 æ 0.702 0.610 æ 0.762

R

db

|U |with SK-atm
3‡ =

Q

ca
0.803 æ 0.845 0.514 æ 0.578 0.143 æ 0.155

0.244 æ 0.498 0.502 æ 0.693 0.632 æ 0.768

0.272 æ 0.517 0.473 æ 0.672 0.623 æ 0.761

R

db

Small

Large

sin ✓23 = 1p
2

sin ✓13 = 0

Symmetry 
can enforce

Where large sin ✓12 can come from the same symmetry

NuFit 5.2
Large
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1 Introduction

Neutrino mass and mixing represents the first and so far only new physics beyond the

Standard Model (SM) of particle physics. We know it must be new physics because its

origin is unknown and it is not predicted by the SM. Independently of the whatever the new

(or nu) SM is, we do know that the minimal paradigm involves three active neutrinos, the

weak eigenstates ⌫e, ⌫µ, ⌫⌧ (the SU(2)L partners to the left-handed charged lepton mass

eigenstates) which are related to the three mass eigenstates m1,2,3 by a unitary PMNS

mixing matrix [1].

The PMNS matrix is similar to the CKM matrix which describes quark mixing, but in-

volves three independent leptonic mixing angles ✓23, ✓13, ✓12 (or s23 = sin ✓23, s13 = sin ✓13,

s12 = sin ✓12), one leptonic CP violating Dirac phase � which a↵ects neutrino oscillations,

and possibly two Majorana phases which do not enter into neutrino oscillation formu-

las. Furthermore neutrino oscillations only depend on the two mass squared di↵erences

�m
2
21 = m

2
2 � m

2
1, which is constrained by data to be positive, and �m

2
31 = m

2
3 � m

2
1,

which current data allows to take a positive (normal) or negative (inverted) value. In 1998,

the angle ✓23 was first measured to be roughly 45o (consistent with equal bi-maximal ⌫µ�⌫⌧

mixing) by atmospheric neutrino oscillations, while ✓12 was determined to be roughly 35o

(consistent with equal tri-maximal ⌫e�⌫µ�⌫⌧ mixing) in 2002 by solar neutrino oscillation

experiments, while ✓13 was first accurately found to be 8.5o in 2012 by reactor oscillation

experiments.

Various simple ansatzes for the PMNS matrix were proposed, the most simple ones

involving a zero reactor angle and bimaximal atmospheric mixing, s13 = 0 and s23 = c23 =

1/
p
2, leading to a PMNS matrix of the form,

U0 =

0

B@
c12 s12 0

� s12p
2

c12p
2

1p
2

s12p
2

� c12p
2

1p
2

1

CA , (1.1)
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Bimaximal Tri-bimaximal Golden Ratio 

For bimaximal (BM) mixing (see e.g. [95–98] and references therein), one has s12 =

c12 = 1/
p

2 (✓12 = 45�) into Eq. (2.1),

UBM =

0

B@

1p
2

1p
2

0

�1
2

1
2

1p
2

1
2 �1

2
1p
2

1

CA . (2.3)

For golden ratio (GRa) mixing [99–103], the solar angle is given by tan ✓12 = 1/�, where
� = (1 +

p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [104] which we refer to as GRb mixing, and
GRc where cos ✓12 = �/

p
3 and ✓12 ⇡ 20.9�.

Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the
hexagonal mixing (HEX) where ✓12 = ⇡/6 [105, 106].

As we discuss in the next subsection, these simple patterns may be enforced by discrete
non-Abelian family symmetry. Although these simple patterns are excluded by current
data, mainly because of the non-zero reactor angle, it is possible that some relic of these
patterns may survive, either due to charged lepton mixing corrections, or due to the first or
second column of these matrices surviving, where these situations correspond to a controlled
symmetry breaking as discussed in the next subsection.

2.2 Symmetry of the lepton mass matrices

The starting point for family symmetry models is to consider the symmetry of the mass
matrices. In a basis where the charged lepton mass matrix Me is diagonal, the symmetry
is,

T †(MeM
†
e )T = MeM

†
e (2.4)

where T = diag(1, !2, !) and ! = ei2⇡/n. For example for n = 3 clearly T generates a cyclic
group ZT

3 .
In the diagonal charged lepton mass basis, assuming UeL

= I,

U †
PMNSM

⌫U⇤
PMNS = diag(m1, m2, m3) (2.5)

and the neutrino mass matrix in this basis may be expressed as

M⌫ = UPMNS diag(m1, m2, m3)U
T

PMNS = m1G1 + m2G2 + m3G3 (2.6)

where Gi = GT

i
= �i�T

i
and �i are the three columns of UPMNS ⌘ (�1, �2, �3) with

�†
i
�j = �ij .

The Klein symmetry ZS

2 ⇥ ZU

2 of the light Majorana neutrino mass matrix defined in
Eq. (1.26) is given by the four element group (I, S, U, SU) [107],

M⌫ = S†M⌫S⇤, M⌫ = U †M⌫U⇤, M⌫ = (SU)†M⌫(SU)⇤ (2.7)

where

S = UPMNS diag(�1, +1,�1) U †
PMNS = �G0

1 + G0
2 � G0

3 (2.8)
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Some Simple Symmetrical Examples

A4 S4 A5

where the zero subscript reminds us that this form has ✓13 = 0 (and ✓23 = 45�).

For golden ratio (GRa) mixing [2], the solar angle is given by tan ✓12 = 1/�, where

� = (1 +
p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [3] which we refer to as GRb mixing, and GRc

where cos ✓12 = �/
p
3 and ✓12 ⇡ 20.9�.

For bimaximal (BM) mixing (see e.g. [4–6] and references therein), we insert s12 =

c12 = 1/
p
2 (✓12 = 45�) into Eq. (1.1),

UBM =

0

B@

1p
2

1p
2

0

�1
2

1
2

1p
2

1
2 �1

2
1p
2

1

CA . (1.2)

For tri-bimaximal (TB) mixing [7], alternatively we use s12 = 1/
p
3, c12 =

p
2/3

(✓12 = 35.26�) in Eq. (1.1),

UTB =

0

BB@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6

� 1p
3

1p
2

1

CCA . (1.3)

Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the

hexagonal mixing (HEX) where ✓12 = ⇡/6.

These proposals are typically by finite discrete symmetries such as A4, S4, S5 (for a

review see e.g. [8]). After the reactor angle was measured, which excluded all these ansatze,

there were various proposals to rescue them and hence to maintain the notion of predictivity

of the leptonic mixing parameters, in particular the Dirac CP phase �, which is not directly

measured so far and remains poorly determined even indirectly. Two approaches have been

developed, in which some finite symmetry (typically a subgroup of A4, S4, S5) can enforce a

particular structure of the PMNS matrix consistent with a non-zero reactor angle, leading

to solar and atmospheric sum rules, as we now discuss.

The first approach, which leads to solar sum rules, is to assume that the above patterns

of mixing still apply to the neutrino sector, but receive charged lepton mixing corrections

due to the PMNS matrix being the product of two unitary matrices, which in our convention

is written as VeLV
†
⌫L , where V

†
⌫L is assumed to take the BM, TB or GR form, while VeL

di↵ers from the unit matrix. If VeL involves negligible 13 charged lepton mixing, then it

is possible to generate a non-zero 13 PMNS mixing angle, while leading to correlations

amongst the physical PMNS parameters, known as solar mixing sum rules [9–12]. This

scenario may be enforced by a subgroup of A4, S4, S5 which enforces the V⌫ structure [8]

while allowing charged lepton corrections.

In the second approach, which leads to atmospheric sum rules, it is assumed that

the physical PMNS mixing matrix takes the BM, TB or GR form but only in its first or

second column, while the third column necessarily departs from these structures due to the

non-zero 13 angle. Such patterns again lead to correlations amongst the physical PMNS

parameters, known as atmospheric mixing sum rules. This scenario may be enforced by

– 2 –

Tri
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3

sin ✓12 = 1p
2

tan ✓12 = 2
1+

p
5
= 1

�

sin ✓13 = 0All these patterns involve so they need to be corrected

Bi

Z2

Bi

Z2

BiZ2
GR

Z3 Z5

where the zero subscript reminds us that this form has ✓13 = 0 (and ✓23 = 45�).

For golden ratio (GRa) mixing [2], the solar angle is given by tan ✓12 = 1/�, where

� = (1 +
p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [3] which we refer to as GRb mixing, and GRc

where cos ✓12 = �/
p
3 and ✓12 ⇡ 20.9�.

For bimaximal (BM) mixing (see e.g. [4–6] and references therein), we insert s12 =

c12 = 1/
p
2 (✓12 = 45�) into Eq. (1.1),

UBM =

0
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2
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2
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2
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2
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CA . (1.2)

For tri-bimaximal (TB) mixing [7], alternatively we use s12 = 1/
p
3, c12 =

p
2/3

(✓12 = 35.26�) in Eq. (1.1),
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0
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3
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� 1p
6

1p
3

1p
2

1p
6

� 1p
3

1p
2

1

CCA . (1.3)

Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the

hexagonal mixing (HEX) where ✓12 = ⇡/6.

These proposals are typically by finite discrete symmetries such as A4, S4, S5 (for a

review see e.g. [8]). After the reactor angle was measured, which excluded all these ansatze,

there were various proposals to rescue them and hence to maintain the notion of predictivity

of the leptonic mixing parameters, in particular the Dirac CP phase �, which is not directly

measured so far and remains poorly determined even indirectly. Two approaches have been

developed, in which some finite symmetry (typically a subgroup of A4, S4, S5) can enforce a

particular structure of the PMNS matrix consistent with a non-zero reactor angle, leading

to solar and atmospheric sum rules, as we now discuss.

The first approach, which leads to solar sum rules, is to assume that the above patterns

of mixing still apply to the neutrino sector, but receive charged lepton mixing corrections

due to the PMNS matrix being the product of two unitary matrices, which in our convention

is written as VeLV
†
⌫L , where V

†
⌫L is assumed to take the BM, TB or GR form, while VeL

di↵ers from the unit matrix. If VeL involves negligible 13 charged lepton mixing, then it

is possible to generate a non-zero 13 PMNS mixing angle, while leading to correlations

amongst the physical PMNS parameters, known as solar mixing sum rules [9–12]. This

scenario may be enforced by a subgroup of A4, S4, S5 which enforces the V⌫ structure [8]

while allowing charged lepton corrections.

In the second approach, which leads to atmospheric sum rules, it is assumed that

the physical PMNS mixing matrix takes the BM, TB or GR form but only in its first or

second column, while the third column necessarily departs from these structures due to the

non-zero 13 angle. Such patterns again lead to correlations amongst the physical PMNS

parameters, known as atmospheric mixing sum rules. This scenario may be enforced by
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For bimaximal (BM) mixing (see e.g. [95–98] and references therein), one has s12 =

c12 = 1/
p

2 (✓12 = 45�) into Eq. (2.1),

UBM =

0

B@

1p
2

1p
2

0
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2
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For golden ratio (GRa) mixing [99–103], the solar angle is given by tan ✓12 = 1/�, where
� = (1 +

p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [104] which we refer to as GRb mixing, and
GRc where cos ✓12 = �/

p
3 and ✓12 ⇡ 20.9�.

Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the
hexagonal mixing (HEX) where ✓12 = ⇡/6 [105, 106].

As we discuss in the next subsection, these simple patterns may be enforced by discrete
non-Abelian family symmetry. Although these simple patterns are excluded by current
data, mainly because of the non-zero reactor angle, it is possible that some relic of these
patterns may survive, either due to charged lepton mixing corrections, or due to the first or
second column of these matrices surviving, where these situations correspond to a controlled
symmetry breaking as discussed in the next subsection.

2.2 Symmetry of the lepton mass matrices

The starting point for family symmetry models is to consider the symmetry of the mass
matrices. In a basis where the charged lepton mass matrix Me is diagonal, the symmetry
is,

T †(MeM
†
e )T = MeM

†
e (2.4)

where T = diag(1, !2, !) and ! = ei2⇡/n. For example for n = 3 clearly T generates a cyclic
group ZT

3 .
In the diagonal charged lepton mass basis, assuming UeL

= I,

U †
PMNSM

⌫U⇤
PMNS = diag(m1, m2, m3) (2.5)

and the neutrino mass matrix in this basis may be expressed as

M⌫ = UPMNS diag(m1, m2, m3)U
T

PMNS = m1G1 + m2G2 + m3G3 (2.6)

where Gi = GT

i
= �i�T

i
and �i are the three columns of UPMNS ⌘ (�1, �2, �3) with

�†
i
�j = �ij .

The Klein symmetry ZS

2 ⇥ ZU

2 of the light Majorana neutrino mass matrix defined in
Eq. (1.26) is given by the four element group (I, S, U, SU) [107],

M⌫ = S†M⌫S⇤, M⌫ = U †M⌫U⇤, M⌫ = (SU)†M⌫(SU)⇤ (2.7)

where

S = UPMNS diag(�1, +1,�1) U †
PMNS = �G0

1 + G0
2 � G0

3 (2.8)

– 15 –

 Diagonal charged lepton

For bimaximal (BM) mixing (see e.g. [95–98] and references therein), one has s12 =
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For golden ratio (GRa) mixing [99–103], the solar angle is given by tan ✓12 = 1/�, where
� = (1 +

p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [104] which we refer to as GRb mixing, and
GRc where cos ✓12 = �/

p
3 and ✓12 ⇡ 20.9�.

Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the
hexagonal mixing (HEX) where ✓12 = ⇡/6 [105, 106].
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2.2 Symmetry of the lepton mass matrices
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is,
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U = UPMNS diag(�1,�1, +1) U †
PMNS = �G0

1 � G0
2 + G0

3 (2.9)
SU = UPMNS diag(+1,�1,�1) U †

PMNS = G0
1 � G0

2 � G0
3 (2.10)

with G0
i
= G0†

i
= �i�

†
i

and G0
i
G0

j
= �ijG0

i
. Note that we have Gi = G0

i
in the limit that the

lepton mixing matrix UPMNS is real. One can check that S and U generate a Klein four
group and they satisfy the following identities:

S2 = U2 = 1, SU = US . (2.11)

If the generators S, U, T are identified with the generators of S4, then the Klein symmetry
enforces TB mixing. Note also that the S4 subgroups ZS

2 and ZSU

2 enforce TM2 and TM1

mixing, respectively, where the preserved column of the TB matrix in each case is given by
the eigenvector associated with the +1 eigenvalue which preserves the symmetry.

2.3 Direct Models

Charged 
Lepton Sector

Neutrino 
Sector

S,U  preserved 

G
T preserved   

�l �⌫

Family 
symmetry 

Generators 
S,T,U

Figure 5. The diagram illustrates the so called direct approach to models of lepton mixing. For
example, for the flavor symmetry group G = S4, this structure leads to tri-bimaximal mixing. To
avoid the bad prediction that ✓13 = 0, one or more of the generators S, T, U must be broken, as
discussed in the main text.

The idea of “direct models” [83], illustrated in figure 5, is that the three generators
S, T, U introduced above are embedded into a discrete family symmetry G which is broken
by new Higgs fields called “flavons” of two types: �l whose VEVs preserve T and �⌫ whose
VEVs preserve S, U . These flavons are segregated such that �l only appears in the charged
lepton sector and �⌫ only appears in the neutrino sector, thereby enforcing the symmetries
of the mass matrices. Note that the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass
matrix is enforced by symmetry in the direct approach.

There are many choices of the group G, with some examples given in figure 6, with
each choice leading to different lepton mixing being predicted. For example, consider the
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1 Introduction

Neutrino mass and mixing represents the first and so far only new physics beyond the

Standard Model (SM) of particle physics. We know it must be new physics because its

origin is unknown and it is not predicted by the SM. Independently of the whatever the new

(or nu) SM is, we do know that the minimal paradigm involves three active neutrinos, the

weak eigenstates ⌫e, ⌫µ, ⌫⌧ (the SU(2)L partners to the left-handed charged lepton mass

eigenstates) which are related to the three mass eigenstates m1,2,3 by a unitary PMNS

mixing matrix [1].

The PMNS matrix is similar to the CKM matrix which describes quark mixing, but in-

volves three independent leptonic mixing angles ✓23, ✓13, ✓12 (or s23 = sin ✓23, s13 = sin ✓13,

s12 = sin ✓12), one leptonic CP violating Dirac phase � which a↵ects neutrino oscillations,

and possibly two Majorana phases which do not enter into neutrino oscillation formu-

las. Furthermore neutrino oscillations only depend on the two mass squared di↵erences

�m
2
21 = m

2
2 � m

2
1, which is constrained by data to be positive, and �m

2
31 = m

2
3 � m

2
1,

which current data allows to take a positive (normal) or negative (inverted) value. In 1998,

the angle ✓23 was first measured to be roughly 45o (consistent with equal bi-maximal ⌫µ�⌫⌧

mixing) by atmospheric neutrino oscillations, while ✓12 was determined to be roughly 35o

(consistent with equal tri-maximal ⌫e�⌫µ�⌫⌧ mixing) in 2002 by solar neutrino oscillation

experiments, while ✓13 was first accurately found to be 8.5o in 2012 by reactor oscillation

experiments.

Various simple ansatzes for the PMNS matrix were proposed, the most simple ones

involving a zero reactor angle and bimaximal atmospheric mixing, s13 = 0 and s23 = c23 =

1/
p
2, leading to a PMNS matrix of the form,

U0 =

0

B@
c12 s12 0

� s12p
2

c12p
2

1p
2

s12p
2

� c12p
2

1p
2

1

CA , (1.1)
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matrix in Eq.3.1, while U
e corresponds to small but unknown charged lepton corrections. This

was first discussed in [30, 31, 32, 33] for the case of TB neutrino mixing where the following
sum rule involving the lepton mixing parameters, including crucially the CP phase d , was first
derived [30, 31, 32, 33] :

q12 ⇡ 35.26o +q13 cosd . (4.1)

For trimaximal mixing q12 ⇡ 35.26o (where 35.26o = sin�1 1p
3
) this sum rule predicts cosd ⇡ 0

consistent with d ⇡ 90o or 270o, with the former being disfavoured by the global fits.
To derive this sum rule, let us consider the case of the charged lepton mixing corrections

involving only (1,2) mixing, so that the PMNS matrix is given by [33],

UPMNS =

0
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Comparing Eq. 4.2 to the PMNS parametrisation in Eq.2.1, we identify the exact sum rule re-
lations [33], in terms of the elements |Ue3|, |Ut1|, |Ut2|, |Ut3| identified above. The first element
|Ue3| = s

e

12p
2

implies a reactor angle q13 ⇡ 9� if qe ⇡ qC (see e.g. the models in [12]). The second
and third elements, |Ut1|, |Ut2| after eliminating q23, yield a new relation between the PMNS pa-
rameters, q12, q13 and d . Expanding to first order, such charged lepton mixing corrections to TB
neutrino mixing gives the approximate solar sum rule relations in Eq.4.1 [30].

The above derivation assumes only q e

12 charged lepton corrections. However it is possible to
derive an accurate sum rule which is valid for both q e

12 and q e

23 charged lepton corrections (while
keeping q e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above
leads to the exact results [34]

Ut1 = s
n
12(s

n
23c

e

23 � c
n
23s

e

23e
id e

23), Ut2 =�c
n
12(s

n
23c

e

23 � c
n
23s

e

23e
id e

23),
|Ut1|
|Ut2|

=
s

n
12

c
n
12

= t
n
12. (4.3)

This relation is easy to understand if we consider only one charged lepton angle q e

12 to be non-zero,
then the third row of the PMS matrix in Eq. (4.2) is unchanged, so the elements Uti are uncorrected.
However, the last relation in Eq. 4.3 clearly holds even if both q e

12 and q e

23 are non-zero due to a
cancellation in the ratio Ut1

Ut2
. However it fails if q e

13 6= 0 [35].
The last relation in Eq. 4.3 can be translated into a prediction for cosd as [34]2

cosd =
tanq23 sinq 2

12 + sinq 2
13 cosq 2

12/ tanq23 � (sinq n
12)

2 �tanq23 + sinq 2
13/ tanq23

�

sin2q12 sinq13
, (4.4)

where only the parameter sinq n
12 is model dependent and we have respectively sinq n

12 = 1/
p

3,
sinq n

12 = 1/
p

2, tanq n
12 = 1/j and q n

12 = p/5, cosq n
12 = j/

p
3 and q n

12 = p/6 for mixing based on
TBM, BM, GRa, GRb, GRc and HEX where j = (1+

p
5)/2.

To leading order in q13, Eq.4.4 for the case of TB neutrino mixing returns the sum rule in
Eq.4.1. There has been much activity in exploring the phenomenology of various such solar mixing

sum rules (see e.g. [34, 37]). On the other hand, for a GUT example with q e

12 ⇠ qC/3 and q e

13 ⇠ qC

which violates the solar mixing sum rules see [38].
2For an alternative derivation of an equivalent sum rule see [36].
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Figure 1: Results for the predicted value of cos � from the sum rule in eq. (2.9) for the GRA
mixing scheme in the case where ✓e12 6= 0, ✓e23 6= 0 and ✓e13 = 0. The black dashed lines represent
the tree level result. The blue points are our scan points. For the angles and the mass squared
di↵erences we took the best fit values from Table 1. We let the parameters run between the
high-scale MS ⇡ 1013 GeV and the low-scale MZ . The Majorana phases are chosen randomly
between 0 and 2⇡. The plots on the left (right) side correspond to normal (inverted) mass
ordering.
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sampled in the allowed sin2 q23 region. The width of the band is given by allowing sin2 q13 to vary
in its 3s range. The yellow and green bands are the 1s range respectively of sin2 q12 and cosd .

For TBM mixing (top-left panel), where sinq n
12 = 1/

p
3 in the neutrino sector, the charged

lepton corrections lead to consistent results in all parameter space, with the prediction for cosd
being consistent with the leading order prediction in Eq. 4.1 cosd ⇡ 0 for trimaximal mixing
sin2 q12 ⇡ 0.33. For BM mixing (top-right panel), where q n

12 = 45�, the sum rule predicts cosd
almost outside the physical range and so is close to being excluded at 3s and only low values of
sin2 q12 and high values of sin2 q12 are still viable. Similarly for GRc mixing (bottom-left panel),
with cosq n

12 = j/3, the viable parameter space is very tight, only for maximal values of sinq13 and
minimal values of sinq12 and sinq23 we can obtain physical results for the CP phase. The yellow
and green bands 1s ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosd are in the negative plane. For GRa (center-left panel), with
tanq n

12 = 1/j , the whole parameter space leads to physical prediction of cosd . For GRb (center-
right panel), with q n

12 = p/5 mixing, larger values sinq23 are excluded for small values of sin2 q12.
We finally notice that TBM and HEX are the only models predicting positive values of cosd and
HEX (bottom-right panel), with q n

12 = p/6 in particular the only predicting values of cosd & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1s

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosd | ⇡ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column U

n

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]
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and given the parametrisation in Equation (2.1) we have
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��= |s12c23 � c12s13s23e
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of

the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
in terms of the other parameters. The corresponding equation for |Ut1| yields equivalent results.

The above atmospheric sum rules give powerful constraints on the mixing parameters which
may or may not be consistent with present data, and can be tested by future neutrino data. For
example, the first atmospheric sum rule for TM1 can be expressed as

c
2
12 =

2
3c

2
13
, s

2
12 =

(1�3s
2
13)

3(1� s
2
13)

(5.4)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is . 1
3 . The second atmospheric sum rule for TM1 [40] yields, after

eliminating q12,

cosd =� cot2q23(1�5s
2
13)

2
p
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q
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2
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. (5.5)

If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]
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For TM2 where the second column of TB matrix is conserved we have

|Ue2|=
��Uµ2

��= |Ut2|=
1p
3
, (5.7)

and given the parametrisation in Equation (2.1) we have

|Ue2|= |s12c13|,
��Uµ2

��= |c12c23 � s12s13s23e
id |, |Ut2|= |� c12s23 � s12s13c23e

id |. (5.8)

By comparing these last two equations we obtain two atmospheric sum rules for TM2 mixing, for
example, s12c13 =

q
1
3 and |c12c23 � s12s13s23e

id |= 1p
3
.

As before, the above atmospheric sum rules give powerful constraints on the mixing param-
eters which may or may not be consistent with present data, and can be tested by future neutrino
data. For example, the first atmospheric sum rule for TM2 can be expressed as

s
2
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2
13

=
1

3(1� s
2
13)

, (5.9)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is & 1
3 . The second atmospheric sum rule for TM2 [40] yields, after

eliminating q12,

cosd =
2c13 cot2q23 cot2q13q
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. (5.10)
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sampled in the allowed sin2 q23 region. The width of the band is given by allowing sin2 q13 to vary
in its 3s range. The yellow and green bands are the 1s range respectively of sin2 q12 and cosd .

For TBM mixing (top-left panel), where sinq n
12 = 1/

p
3 in the neutrino sector, the charged

lepton corrections lead to consistent results in all parameter space, with the prediction for cosd
being consistent with the leading order prediction in Eq. 4.1 cosd ⇡ 0 for trimaximal mixing
sin2 q12 ⇡ 0.33. For BM mixing (top-right panel), where q n

12 = 45�, the sum rule predicts cosd
almost outside the physical range and so is close to being excluded at 3s and only low values of
sin2 q12 and high values of sin2 q12 are still viable. Similarly for GRc mixing (bottom-left panel),
with cosq n

12 = j/3, the viable parameter space is very tight, only for maximal values of sinq13 and
minimal values of sinq12 and sinq23 we can obtain physical results for the CP phase. The yellow
and green bands 1s ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosd are in the negative plane. For GRa (center-left panel), with
tanq n

12 = 1/j , the whole parameter space leads to physical prediction of cosd . For GRb (center-
right panel), with q n

12 = p/5 mixing, larger values sinq23 are excluded for small values of sin2 q12.
We finally notice that TBM and HEX are the only models predicting positive values of cosd and
HEX (bottom-right panel), with q n

12 = p/6 in particular the only predicting values of cosd & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1s

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosd | ⇡ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column U

n

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of

the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
in terms of the other parameters. The corresponding equation for |Ut1| yields equivalent results.

The above atmospheric sum rules give powerful constraints on the mixing parameters which
may or may not be consistent with present data, and can be tested by future neutrino data. For
example, the first atmospheric sum rule for TM1 can be expressed as
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is easy to understand why it is . 1
3 . The second atmospheric sum rule for TM1 [40] yields, after
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If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]
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For TM2 where the second column of TB matrix is conserved we have
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and given the parametrisation in Equation (2.1) we have
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By comparing these last two equations we obtain two atmospheric sum rules for TM2 mixing, for
example, s12c13 =

q
1
3 and |c12c23 � s12s13s23e

id |= 1p
3
.

As before, the above atmospheric sum rules give powerful constraints on the mixing param-
eters which may or may not be consistent with present data, and can be tested by future neutrino
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of

the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
in terms of the other parameters. The corresponding equation for |Ut1| yields equivalent results.

The above atmospheric sum rules give powerful constraints on the mixing parameters which
may or may not be consistent with present data, and can be tested by future neutrino data. For
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If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]
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sampled in the allowed sin2 q23 region. The width of the band is given by allowing sin2 q13 to vary
in its 3s range. The yellow and green bands are the 1s range respectively of sin2 q12 and cosd .

For TBM mixing (top-left panel), where sinq n
12 = 1/

p
3 in the neutrino sector, the charged

lepton corrections lead to consistent results in all parameter space, with the prediction for cosd
being consistent with the leading order prediction in Eq. 4.1 cosd ⇡ 0 for trimaximal mixing
sin2 q12 ⇡ 0.33. For BM mixing (top-right panel), where q n

12 = 45�, the sum rule predicts cosd
almost outside the physical range and so is close to being excluded at 3s and only low values of
sin2 q12 and high values of sin2 q12 are still viable. Similarly for GRc mixing (bottom-left panel),
with cosq n

12 = j/3, the viable parameter space is very tight, only for maximal values of sinq13 and
minimal values of sinq12 and sinq23 we can obtain physical results for the CP phase. The yellow
and green bands 1s ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosd are in the negative plane. For GRa (center-left panel), with
tanq n

12 = 1/j , the whole parameter space leads to physical prediction of cosd . For GRb (center-
right panel), with q n

12 = p/5 mixing, larger values sinq23 are excluded for small values of sin2 q12.
We finally notice that TBM and HEX are the only models predicting positive values of cosd and
HEX (bottom-right panel), with q n

12 = p/6 in particular the only predicting values of cosd & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1s

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosd | ⇡ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column U

n

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]
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the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
in terms of the other parameters. The corresponding equation for |Ut1| yields equivalent results.
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Figure 4: Summary of exact atmospheric sum rule predictions which predict the solar angle for different
types of lepton mixing corresponding to a preserved column of the PMNS matrix, with only a mild depen-
dence on the reactor angle. The pink, blue, red, orange and black curves are respectively the predictions for
the surviving TM1, TM2, GRa1, GRa2 and GRb1 mixing patterns (with GRa1 just outside and TM2 just
inside the 3s allowed region in green). Other possibilities not plotted are further outside the allowed region.
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Figure 5: Summary of exact atmospheric sum rule predictions which predict cosd in terms of the other
mixing angles for different types of lepton mixing corresponding to a preserved column of the PMNS matrix.
We present with the blue band the exact sum rule prediction for TM2 for cosd letting sin2 q13 vary in its
3s range. In orange and purple we present the exact the sum rule predictions for GRa2 and TM1. Only the
viable mixing patterns are plotted. The yellow and grey regions are respectively the 1s range of sinq23 and
cosd , while the plot covers the whole 3s range. These predictions can be further tested at future neutrino
experiments [43].
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inside the 3s allowed region in green). Other possibilities not plotted are further outside the allowed region.
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sampled in the allowed sin2 q23 region. The width of the band is given by allowing sin2 q13 to vary
in its 3s range. The yellow and green bands are the 1s range respectively of sin2 q12 and cosd .

For TBM mixing (top-left panel), where sinq n
12 = 1/

p
3 in the neutrino sector, the charged

lepton corrections lead to consistent results in all parameter space, with the prediction for cosd
being consistent with the leading order prediction in Eq. 4.1 cosd ⇡ 0 for trimaximal mixing
sin2 q12 ⇡ 0.33. For BM mixing (top-right panel), where q n

12 = 45�, the sum rule predicts cosd
almost outside the physical range and so is close to being excluded at 3s and only low values of
sin2 q12 and high values of sin2 q12 are still viable. Similarly for GRc mixing (bottom-left panel),
with cosq n

12 = j/3, the viable parameter space is very tight, only for maximal values of sinq13 and
minimal values of sinq12 and sinq23 we can obtain physical results for the CP phase. The yellow
and green bands 1s ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosd are in the negative plane. For GRa (center-left panel), with
tanq n

12 = 1/j , the whole parameter space leads to physical prediction of cosd . For GRb (center-
right panel), with q n

12 = p/5 mixing, larger values sinq23 are excluded for small values of sin2 q12.
We finally notice that TBM and HEX are the only models predicting positive values of cosd and
HEX (bottom-right panel), with q n

12 = p/6 in particular the only predicting values of cosd & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1s

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosd | ⇡ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column U

n

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]
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For TM1 where the first column of TB matrix is conserved we have
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and given the parametrisation in Equation (2.1) we have

|Ue1|= |c12c13|,
��Uµ1

��= |s12c23 � c12s13s23e
id |, |Ut1|= |s12s23 � c12s13c23e

id |. (5.3)
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of

the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
in terms of the other parameters. The corresponding equation for |Ut1| yields equivalent results.

The above atmospheric sum rules give powerful constraints on the mixing parameters which
may or may not be consistent with present data, and can be tested by future neutrino data. For
example, the first atmospheric sum rule for TM1 can be expressed as

c
2
12 =

2
3c

2
13
, s

2
12 =

(1�3s
2
13)

3(1� s
2
13)

(5.4)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is . 1
3 . The second atmospheric sum rule for TM1 [40] yields, after

eliminating q12,

cosd =� cot2q23(1�5s
2
13)

2
p

2s13

q
1�3s

2
13

. (5.5)

If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]
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For TM2 where the second column of TB matrix is conserved we have

|Ue2|=
��Uµ2

��= |Ut2|=
1p
3
, (5.7)

and given the parametrisation in Equation (2.1) we have

|Ue2|= |s12c13|,
��Uµ2

��= |c12c23 � s12s13s23e
id |, |Ut2|= |� c12s23 � s12s13c23e

id |. (5.8)

By comparing these last two equations we obtain two atmospheric sum rules for TM2 mixing, for
example, s12c13 =

q
1
3 and |c12c23 � s12s13s23e

id |= 1p
3
.

As before, the above atmospheric sum rules give powerful constraints on the mixing param-
eters which may or may not be consistent with present data, and can be tested by future neutrino
data. For example, the first atmospheric sum rule for TM2 can be expressed as

s
2
12 =

1
3c

2
13

=
1

3(1� s
2
13)

, (5.9)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is & 1
3 . The second atmospheric sum rule for TM2 [40] yields, after

eliminating q12,

cosd =
2c13 cot2q23 cot2q13q

2�3s
2
13

. (5.10)
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Figure 4: Summary of exact atmospheric sum rule predictions which predict the solar angle for different
types of lepton mixing corresponding to a preserved column of the PMNS matrix, with only a mild depen-
dence on the reactor angle. The pink, blue, red, orange and black curves are respectively the predictions for
the surviving TM1, TM2, GRa1, GRa2 and GRb1 mixing patterns (with GRa1 just outside and TM2 just
inside the 3s allowed region in green). Other possibilities not plotted are further outside the allowed region.

Figure 5: Summary of exact atmospheric sum rule predictions which predict cosd in terms of the other
mixing angles for different types of lepton mixing corresponding to a preserved column of the PMNS matrix.
We present with the blue band the exact sum rule prediction for TM2 for cosd letting sin2 q13 vary in its
3s range. In orange and purple we present the exact the sum rule predictions for GRa2 and TM1. Only the
viable mixing patterns are plotted. The yellow and grey regions are respectively the 1s range of sinq23 and
cosd , while the plot covers the whole 3s range. These predictions can be further tested at future neutrino
experiments [43].
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Figure 11: The attainable 1� precision on sin2 ✓23 and � for DUNE, T2HK, and their

combination. In each case, the contours enclose the assumed true values for ✓23 and �,

marked with a point. This plot assumes the “fixed run time” configurations in Table 1 and

the true oscillation parameters, apart from ✓23, specified in Table 2.

number varies with �, and so the e↵ective run time has been modified for each value of

� to keep the observed events constant. In the left-hand panel of Fig. 13, we have fixed

the number of appearance events to be 5411 for each configuration, which is the average

number of events expected for the combination of DUNE and T2HK running for 20 years

cumulative run time. We see that events at DUNE are more valuable than events at

T2HK around maximally CP violating values; however, around CP conserving values, the

opposite is true and T2HK has more valuable events. We quantitatively assess this e↵ect in

the right-hand panel of Fig. 13. This plot compares the performance of DUNE and T2HK

with a fixed 5411 events, with the same experiments assuming double the number of events.

The figure shows that for DUNE to consistently outperform T2HK, it needs at least twice

as many events. The same is true to T2HK: it can only lead to better performance for all

values of � once its has more than twice the exposure.

Our second normalization scheme is designed to include the e↵ect of the probability

from the comparison with fixed event rates. The number of appearance channel events, S,

is to a good approximation proportional to the oscillation probability,

S / P (⌫µ ! ⌫e; hEi),

where hEi denotes the average energy of the flux, and we introduce a quantity N denoting

– 28 –
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Conclusions
Mixing sum rules are relics of simple PMNS matrices enforced by remnant 
symmetry which allows non-zero  and predicts  (not )  

 Solar sum rules from charged lepton correcEons to simple PMNS matrices 

 Atmospheric sum rules from first/second column of simple PMNS matrix 

 RG correcEons can be small (NH) or large (2HDM, large   ) 

 Future precision expts will test sum rules and the symmetry approach             

sin θ13 cos δ δ

tan β
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matrix in Eq.3.1, while U
e corresponds to small but unknown charged lepton corrections. This

was first discussed in [30, 31, 32, 33] for the case of TB neutrino mixing where the following
sum rule involving the lepton mixing parameters, including crucially the CP phase d , was first
derived [30, 31, 32, 33] :

q12 ⇡ 35.26o +q13 cosd . (4.1)

For trimaximal mixing q12 ⇡ 35.26o (where 35.26o = sin�1 1p
3
) this sum rule predicts cosd ⇡ 0

consistent with d ⇡ 90o or 270o, with the former being disfavoured by the global fits.
To derive this sum rule, let us consider the case of the charged lepton mixing corrections

involving only (1,2) mixing, so that the PMNS matrix is given by [33],
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Comparing Eq. 4.2 to the PMNS parametrisation in Eq.2.1, we identify the exact sum rule re-
lations [33], in terms of the elements |Ue3|, |Ut1|, |Ut2|, |Ut3| identified above. The first element
|Ue3| = s

e

12p
2

implies a reactor angle q13 ⇡ 9� if qe ⇡ qC (see e.g. the models in [12]). The second
and third elements, |Ut1|, |Ut2| after eliminating q23, yield a new relation between the PMNS pa-
rameters, q12, q13 and d . Expanding to first order, such charged lepton mixing corrections to TB
neutrino mixing gives the approximate solar sum rule relations in Eq.4.1 [30].

The above derivation assumes only q e

12 charged lepton corrections. However it is possible to
derive an accurate sum rule which is valid for both q e

12 and q e

23 charged lepton corrections (while
keeping q e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above
leads to the exact results [34]

Ut1 = s
n
12(s

n
23c

e
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n
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e

23e
id e

23), Ut2 =�c
n
12(s

n
23c

e
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n
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e

23e
id e

23),
|Ut1|
|Ut2|

=
s

n
12

c
n
12

= t
n
12. (4.3)

This relation is easy to understand if we consider only one charged lepton angle q e

12 to be non-zero,
then the third row of the PMS matrix in Eq. (4.2) is unchanged, so the elements Uti are uncorrected.
However, the last relation in Eq. 4.3 clearly holds even if both q e

12 and q e

23 are non-zero due to a
cancellation in the ratio Ut1

Ut2
. However it fails if q e

13 6= 0 [35].
The last relation in Eq. 4.3 can be translated into a prediction for cosd as [34]2

cosd =
tanq23 sinq 2

12 + sinq 2
13 cosq 2

12/ tanq23 � (sinq n
12)

2 �tanq23 + sinq 2
13/ tanq23

�

sin2q12 sinq13
, (4.4)

where only the parameter sinq n
12 is model dependent and we have respectively sinq n

12 = 1/
p

3,
sinq n

12 = 1/
p

2, tanq n
12 = 1/j and q n

12 = p/5, cosq n
12 = j/

p
3 and q n

12 = p/6 for mixing based on
TBM, BM, GRa, GRb, GRc and HEX where j = (1+

p
5)/2.

To leading order in q13, Eq.4.4 for the case of TB neutrino mixing returns the sum rule in
Eq.4.1. There has been much activity in exploring the phenomenology of various such solar mixing

sum rules (see e.g. [34, 37]). On the other hand, for a GUT example with q e

12 ⇠ qC/3 and q e

13 ⇠ qC

which violates the solar mixing sum rules see [38].
2For an alternative derivation of an equivalent sum rule see [36].
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3.4 Charged lepton mixing corrections and sum rules

Recall that the physical PMNS matrix in Eq.10 is given by UPMNS = U eU ⌫

TB. Now suppose that U ⌫

TB is
the TB matrix in Eq.14 while U e corresponds to small but unknown charged lepton corrections. This
was first discussed in [55–58] where the following sum rule involving the lepton mixing parameters,
including crucially the CP phase �, was first derived:

✓12 ⇡ 35.26o + ✓13 cos �, (24)

where 35.26o = sin�1 1p
3
. Eq.24 may be recast in terms of TB deviation parameters as [48],

s = r cos �. (25)

To derive this sum rule, let us consider the case of the charged lepton mixing corrections involving
only (1,2) mixing, so that the PMNS matrix is given by [58],
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Comparing to the PMNS parametrisation in Eq.4 we identify the exact sum rule relations [58],

|Ue3| = s13 =
se

12
p

2
, (27)

|U⌧1| = |s23s12 � s13c23c12e
i�
| =

1
p

6
, (28)

|U⌧2| = | � c12s23 � s12s13c23e
i�
| =

1
p

3
, (29)

|U⌧3| = c13c23 =
1

p
2
. (30)

The first equation implies a reactor angle ✓13 ⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓23, yield a new relation between the PMNS
parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:

|U⌧1|

|U⌧2|
=

|s12s23 � c12s13c23ei�
|

| � c12s23 � s12s13c23ei�|
=

1
p

2
. (31)

This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.
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parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:

|U⌧1|

|U⌧2|
=

|s12s23 � c12s13c23ei�
|

| � c12s23 � s12s13c23ei�|
=

1
p

2
. (31)

This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.
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3.4 Charged lepton mixing corrections and sum rules

Recall that the physical PMNS matrix in Eq.10 is given by UPMNS = U eU ⌫

TB. Now suppose that U ⌫

TB is
the TB matrix in Eq.14 while U e corresponds to small but unknown charged lepton corrections. This
was first discussed in [55–58] where the following sum rule involving the lepton mixing parameters,
including crucially the CP phase �, was first derived:

✓12 ⇡ 35.26o + ✓13 cos �, (24)

where 35.26o = sin�1 1p
3
. Eq.24 may be recast in terms of TB deviation parameters as [48],

s = r cos �. (25)

To derive this sum rule, let us consider the case of the charged lepton mixing corrections involving
only (1,2) mixing, so that the PMNS matrix is given by [58],
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Comparing to the PMNS parametrisation in Eq.4 we identify the exact sum rule relations [58],
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The first equation implies a reactor angle ✓13 ⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓23, yield a new relation between the PMNS
parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:
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This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.
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sampled in the allowed sin2 q23 region. The width of the band is given by allowing sin2 q13 to vary
in its 3s range. The yellow and green bands are the 1s range respectively of sin2 q12 and cosd .

For TBM mixing (top-left panel), where sinq n
12 = 1/

p
3 in the neutrino sector, the charged

lepton corrections lead to consistent results in all parameter space, with the prediction for cosd
being consistent with the leading order prediction in Eq. 4.1 cosd ⇡ 0 for trimaximal mixing
sin2 q12 ⇡ 0.33. For BM mixing (top-right panel), where q n

12 = 45�, the sum rule predicts cosd
almost outside the physical range and so is close to being excluded at 3s and only low values of
sin2 q12 and high values of sin2 q12 are still viable. Similarly for GRc mixing (bottom-left panel),
with cosq n

12 = j/3, the viable parameter space is very tight, only for maximal values of sinq13 and
minimal values of sinq12 and sinq23 we can obtain physical results for the CP phase. The yellow
and green bands 1s ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosd are in the negative plane. For GRa (center-left panel), with
tanq n

12 = 1/j , the whole parameter space leads to physical prediction of cosd . For GRb (center-
right panel), with q n

12 = p/5 mixing, larger values sinq23 are excluded for small values of sin2 q12.
We finally notice that TBM and HEX are the only models predicting positive values of cosd and
HEX (bottom-right panel), with q n

12 = p/6 in particular the only predicting values of cosd & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1s

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosd | ⇡ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column U

n

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]
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q
2
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� 1p
6

� �
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6

� �

1

CCA , (5.1)

For TM1 where the first column of TB matrix is conserved we have

|Ue1|=
r

2
3
,
��Uµ1

��= |Ut1|=
1p
6
, (5.2)

and given the parametrisation in Equation (2.1) we have

|Ue1|= |c12c13|,
��Uµ1

��= |s12c23 � c12s13s23e
id |, |Ut1|= |s12s23 � c12s13c23e

id |. (5.3)
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of

the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
in terms of the other parameters. The corresponding equation for |Ut1| yields equivalent results.

The above atmospheric sum rules give powerful constraints on the mixing parameters which
may or may not be consistent with present data, and can be tested by future neutrino data. For
example, the first atmospheric sum rule for TM1 can be expressed as

c
2
12 =

2
3c

2
13
, s

2
12 =

(1�3s
2
13)

3(1� s
2
13)

(5.4)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is . 1
3 . The second atmospheric sum rule for TM1 [40] yields, after

eliminating q12,

cosd =� cot2q23(1�5s
2
13)

2
p

2s13

q
1�3s

2
13

. (5.5)

If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]
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For TM2 where the second column of TB matrix is conserved we have

|Ue2|=
��Uµ2

��= |Ut2|=
1p
3
, (5.7)

and given the parametrisation in Equation (2.1) we have

|Ue2|= |s12c13|,
��Uµ2

��= |c12c23 � s12s13s23e
id |, |Ut2|= |� c12s23 � s12s13c23e

id |. (5.8)

By comparing these last two equations we obtain two atmospheric sum rules for TM2 mixing, for
example, s12c13 =

q
1
3 and |c12c23 � s12s13s23e

id |= 1p
3
.

As before, the above atmospheric sum rules give powerful constraints on the mixing param-
eters which may or may not be consistent with present data, and can be tested by future neutrino
data. For example, the first atmospheric sum rule for TM2 can be expressed as

s
2
12 =

1
3c

2
13

=
1

3(1� s
2
13)

, (5.9)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is & 1
3 . The second atmospheric sum rule for TM2 [40] yields, after

eliminating q12,

cosd =
2c13 cot2q23 cot2q13q

2�3s
2
13

. (5.10)
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If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]
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For TM2 where the second column of TB matrix is conserved we have
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data. For example, the first atmospheric sum rule for TM2 can be expressed as

s
2
12 =

1
3c

2
13

=
1

3(1� s
2
13)

, (5.9)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is & 1
3 . The second atmospheric sum rule for TM2 [40] yields, after

eliminating q12,

cosd =
2c13 cot2q23 cot2q13q

2�3s
2
13

. (5.10)

7

Neutrino physics Stephen F. King

By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of

the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of

the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
in terms of the other parameters. The corresponding equation for |Ut1| yields equivalent results.

The above atmospheric sum rules give powerful constraints on the mixing parameters which
may or may not be consistent with present data, and can be tested by future neutrino data. For
example, the first atmospheric sum rule for TM1 can be expressed as
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If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]
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For TM2 where the second column of TB matrix is conserved we have
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sampled in the allowed sin2 q23 region. The width of the band is given by allowing sin2 q13 to vary
in its 3s range. The yellow and green bands are the 1s range respectively of sin2 q12 and cosd .

For TBM mixing (top-left panel), where sinq n
12 = 1/

p
3 in the neutrino sector, the charged

lepton corrections lead to consistent results in all parameter space, with the prediction for cosd
being consistent with the leading order prediction in Eq. 4.1 cosd ⇡ 0 for trimaximal mixing
sin2 q12 ⇡ 0.33. For BM mixing (top-right panel), where q n

12 = 45�, the sum rule predicts cosd
almost outside the physical range and so is close to being excluded at 3s and only low values of
sin2 q12 and high values of sin2 q12 are still viable. Similarly for GRc mixing (bottom-left panel),
with cosq n

12 = j/3, the viable parameter space is very tight, only for maximal values of sinq13 and
minimal values of sinq12 and sinq23 we can obtain physical results for the CP phase. The yellow
and green bands 1s ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosd are in the negative plane. For GRa (center-left panel), with
tanq n

12 = 1/j , the whole parameter space leads to physical prediction of cosd . For GRb (center-
right panel), with q n

12 = p/5 mixing, larger values sinq23 are excluded for small values of sin2 q12.
We finally notice that TBM and HEX are the only models predicting positive values of cosd and
HEX (bottom-right panel), with q n

12 = p/6 in particular the only predicting values of cosd & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1s

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosd | ⇡ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column U

n

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]
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For TM1 where the first column of TB matrix is conserved we have

|Ue1|=
r

2
3
,
��Uµ1

��= |Ut1|=
1p
6
, (5.2)

and given the parametrisation in Equation (2.1) we have

|Ue1|= |c12c13|,
��Uµ1

��= |s12c23 � c12s13s23e
id |, |Ut1|= |s12s23 � c12s13c23e

id |. (5.3)
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