

Binned angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ at LHCb Rencontres de Moriond 2024

Young Scientist Forum

Leon Carus, on behalf of the LHCb collaboration

Universität Heidelberg, Germany

March 27, 2024

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Hep Search for New Physics with $B^0 o K^{*0} \mu^+ \mu^-$

- B⁰ decays via $b \rightarrow s$ flavour changing neutral current (FCNC)
- High sensitivity to New Physics due to high suppression in SM
- Angular analysis gives access to optimized observables [JHEP01(2013)048]
 - Less dependent on hadronic form factors than $\mathcal B$ measurements

$\frac{LHCb}{LHCp}$ Results of previous analysis: Run 1 + 2016

- Run1+2016 result published in 2020
- Global tension increased: 3.0σ (Run 1) $\rightarrow 3.3 \sigma$ (Run 1 + 2016)
- This work: Improve analysis and include full Run2 dataset
- Integrated luminosities of 3.0 fb⁻¹ (Run1) + 1.6 fb⁻¹ (2016) 1.7 fb⁻¹ (2017) + 2.1 fb⁻¹ (2018)

LHCb Angular Analysis Angular description of the decay

S_i/A_i are CP-symmetries/asymmetries of angular observables
Observables measured integrated over bins of q²

L. Carus (Universität Heidelberg), March 27, 2024

Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$

LHCb Angular Analysis | 5D acceptance 5D Acceptance correction

- Angles, q^2 and $m_{K\pi}$ distorted by reconstruction and selection
- Parameterize acceptance effect using 5D Legendre polynomials

$$\epsilon = \sum_{k,l,m,n,o} c_{klmno} P(\cos(\theta_l), k) P(\cos(\theta_K), l) P(\phi, m) P(q^2, n) P(m_{K\pi}, o)$$

lacksquare calculated with method of moments using LHCb simulation

KCP L. Carus (Universität Heidelberg), March 27, 2024 Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$

HCD Angular Analysis | 5D maximum likelihood fit HCD 5D maximum likelihood fit

- 5D maximum likelihood fit performed to extract angular observables
- Signal and background separated by fit to m_{Kπµµ}
- Separation between Spin-1 and Spin-0 contribution through $m_{K\pi}$

Event selection

Selection retuned to improve signal efficiency / background rejection

CP-asymmetries

- Simultaneously extract angular CP-symmetries and asymmetries
- Preserve the correlations between them

S-wave observables and \mathcal{B}

- Extracting angular observables of Spin-0 $m_{K\pi}$ contributions
- Perform model independent measurement of B

Adding LHCb data from 2017/2018 roughly doubles the dataset

Assuming the same central values from [PRL 125 (2020) 011802]
Expected sensitivities using the full Run 1 + Run 2 dataset

- Binned angular analysis of $B^0 o K^{*0} \mu^+ \mu^-$ important test of the SM
- Previous analysis showed intriguing tensions with SM predictions
- Many improvements compared to previous analysis [PRL 125 (2020) 011802]
 - Added full Run 2 LHCb dataset
 - Retuned event selection to improve performance
 - Fit angular CP-asymmetries including A_{CP}
 - Will additionally publish Spin-0 observables and branching fraction

Stay tuned for an update very soon!

Backup

High L. Carus (Universität Heidelberg), March 27, 2024 Angular analysis of $B^0 o K^{*0} \mu^+ \mu^-$

LHCb Angular coefficients I'_i and corresponding $f_i(\vec{\Omega})$

i	I'_i	f_i
1s	$\left(\frac{(2+\beta_{\mu}^2)}{4} (A_{\perp}^L ^2 + A_{\parallel}^L ^2 + A_{\perp}^R ^2 + A_{\parallel}^R ^2) \right)$	$\sin^2\theta_K$
	$+\frac{4m_{\mu}^2}{q^2} \operatorname{Re}\left[A_{\perp}^L A_{\perp}^{R*} + A_{\parallel}^L A_{\parallel}^{R*}\right] \times \mathcal{BW}_P ^2$	
1c	$\left(\left(A_0^L ^2 + A_0^R ^2\right) + \frac{4m_{\mu}^2}{q^2}\left(A_t ^2 + 2 \operatorname{Re}[A_0^L A_0^{R*}]\right) + \beta_{\mu}^2 A_{\text{scalar}} ^2\right) \times \mathcal{BW}_{\mathbf{P}} ^2$	$\cos^2 \theta_K$
2s	$\frac{\dot{\beta}_{\mu}^{2}}{4} (A_{\perp}^{L} ^{2} + A_{\parallel}^{L} ^{2} + A_{\perp}^{R} ^{2} + A_{\parallel}^{R} ^{2}) \times \mathcal{BW}_{P} ^{2}$	$\sin^2\theta_K\cos2\theta_\ell$
2c	$-\beta_{\mu}^{2}(A_{0}^{L} ^{2}+ A_{0}^{R} ^{2}) \times \mathcal{BW}_{P} ^{2}$	$\cos^2\theta_K\cos2\theta_\ell$
3	$\frac{1}{2}\beta_{\mu}^{2}\left(A_{\perp}^{L} ^{2}- A_{\parallel}^{L} ^{2}+ A_{\perp}^{R} ^{2}- A_{\parallel}^{R} ^{2}\right)\times \mathcal{BW}_{P} ^{2}$	$\sin^2\theta_K \sin^2\theta_\ell \cos 2\phi$
4	$\frac{1}{\sqrt{2}}\beta_{\mu}^2 \operatorname{Re}\left[A_0^L A_{\parallel}^{L*} + A_0^R A_{\parallel}^{R*}\right] \times \mathcal{BW}_P ^2$	$\sin 2\theta_K \sin 2\theta_\ell \cos \phi$
5	$\sqrt{2}\beta_{\mu}\left(\operatorname{Re}\left[A_{0}^{L}A_{\perp}^{L*}-A_{0}^{R}A_{\perp}^{R*}\right]-\frac{m_{\mu}}{\sqrt{q^{2}}}\operatorname{Re}\left[A_{\parallel}^{L}A_{scalar}^{*}+A_{\parallel}^{R}A_{scalar}^{*}\right]\right)\times \mathcal{BW}_{P} ^{2}$	$\sin 2\theta_K \sin \theta_\ell \cos \phi$
6s	$2\beta_{\mu} \operatorname{Re}\left[A_{\parallel}^{L}A_{\perp}^{L*} - A_{\parallel}^{R}A_{\perp}^{R*}\right] \times \mathcal{BW}_{P} ^{2}$	$\sin^2\theta_K\cos\theta_\ell$
6c	$4\beta_{\mu}\frac{m_{\mu}}{\sqrt{q^2}} \operatorname{Re}\left[A_0^L A_{scalar}^* + A_0^R A_{scalar}^*\right] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\cos^2\theta_K\cos\theta_\ell$
7	$\sqrt{2}\beta_{\mu}\left(\mathrm{Im}\left[A_{0}^{L}A_{\parallel}^{L*}-A_{0}^{R}A_{\parallel}^{R*}\right]+\frac{m_{\mu}}{\sqrt{q^{2}}}\mathrm{Im}\left[A_{\perp}^{L}A_{scalar}^{*}+A_{\perp}^{R}A_{scalar}^{*}\right]\right)\times \mathcal{BW}_{\mathrm{P}} ^{2}$	$\sin 2\theta_K \sin \theta_\ell \sin \phi$
8	$\frac{1}{\sqrt{2}}\beta_{\mu}^2 \operatorname{Im}\left[A_0^L A_{\perp}^{L*} + A_0^R A_{\perp}^{R*}\right] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin 2\theta_K \sin 2\theta_\ell \sin \phi$
9	$\beta_{\mu}^{2} \operatorname{Im} \left[A_{\parallel}^{L} A_{\perp}^{L*} + A_{\parallel}^{R} A_{\perp}^{R*} \right] \times \mathcal{BW}_{P} ^{2}$	$\sin^2\theta_K \sin^2\theta_\ell \sin 2\phi$
10	$\frac{1}{2} \left(A_{\rm S}^L ^2 + A_{\rm S}^R ^2 + \frac{4m_{\mu}^2}{q^2} \left(A_t ^2 + 2 \text{Re} \left[A_{\rm S}^L A_{\rm S}^{R*} \right] \right) \right) \times \mathcal{BW}_{\rm S} ^2$	1
11	$\sqrt{3} \Big(\operatorname{Re} \Big[(A_{\mathrm{S}}^{L} A_{0}^{L*} + A_{\mathrm{S}}^{R} A_{0}^{R*} + \frac{4m_{\mu}^{2}}{q^{2}} (A_{\mathrm{S}}^{L} A_{0}^{R*} + A_{\operatorname{scalar},t} A_{t}^{*}) \Big) \times \mathcal{BW}_{\mathrm{S}} \mathcal{BW}_{\mathrm{P}}^{*} \Big]$	$\cos \theta_K$
	+ $\operatorname{Re}\left[\frac{4m_{\mu}^{2}}{q^{2}}A_{0}^{L}A_{\mathrm{S}}^{R*} \times \mathcal{BW}_{\mathrm{P}}\mathcal{BW}_{\mathrm{S}}^{*}\right]$	
12	$-\frac{1}{2}\beta_{\mu}^{2}\left(A_{S}^{L} ^{2}+ A_{S}^{R} ^{2}\right)\times \mathcal{BW}_{S} ^{2}$	$\cos 2\theta_{\ell}$
13	$-\sqrt{3}\beta_{\mu}^{2} \operatorname{Re}\left[\left(A_{S}^{L}A_{0}^{L*}+A_{S}^{R}A_{0}^{R*}\right) \times \mathcal{BW}_{S}\mathcal{BW}_{P}^{*}\right]$	$\cos\theta_K\cos2\theta_\ell$
14	$\sqrt{\frac{3}{2}}\beta_{\mu}^{2} \operatorname{Re}\left[\left(A_{S}^{L}A_{\parallel}^{L*} + A_{S}^{R}A_{\parallel}^{R*}\right) \times BW_{S}BW_{P}^{*}\right]$	$\sin\theta_K\sin2\theta_\ell\cos\phi$
15	$2\sqrt{\frac{3}{2}}\beta_{\mu} \operatorname{Re}\left[\left(A_{S}^{L}A_{\perp}^{L*}-A_{S}^{R}A_{\perp}^{R*}\right) \times \mathcal{BW}_{S}\mathcal{BW}_{P}^{*}\right]$	$\sin\theta_K\sin\theta_\ell\cos\phi$
16	$2\sqrt{\frac{3}{2}}\beta_{\mu} \operatorname{Im}\left[\left(A_{S}^{L}A_{\parallel}^{L*}-A_{S}^{R}A_{\parallel}^{R*}\right) \times \mathcal{BW}_{S}\mathcal{BW}_{P}^{*}\right]$	$\sin\theta_K\sin\theta_\ell\sin\phi$
17	$\sqrt{\frac{3}{2}}\beta_{\mu}^2 \operatorname{Im}\left[\left(A_{S}^{L}A_{\perp}^{L*} + A_{S}^{R}A_{\perp}^{R*}\right) \times BW_{S}BW_{P}^*\right]$	$\sin\theta_K\sin2\theta_\ell\sin\phi$

L. Carus (Universität Heidelberg), March 27, 2024

LHCb Angular coefficients I'_i and corresponding $f_i(\vec{\Omega})$

i	I'_i	f_i
1s	$\tfrac{3}{4}(A_{\parallel}^L ^2+ A_{\perp}^L ^2+ A_{\parallel}^R ^2+ A_{\perp}^R ^2)\times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin^2 \theta_K$
1c	$(A_0^L ^2 + A_0^R ^2) \times \mathcal{BW}_P ^2$	$\cos^2 \theta_K$
2s	$\tfrac{1}{4}(A^L_{\parallel} ^2+ A^L_{\perp} ^2+ A^R_{\parallel} ^2+ A^R_{\perp} ^2)\times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin^2\theta_K\cos2\theta_\ell$
2c	$(- A_0^L ^2 - A_0^R ^2) \times \mathcal{BW}_{\mathbf{P}} ^2$	$\cos^2\theta_K\cos2\theta_\ell$
3	$\frac{1}{2}(A_{\perp}^L ^2- A_{\parallel}^L ^2+ A_{\perp}^R ^2- A_{\parallel}^R ^2)\times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin^2\theta_K \sin^2\theta_\ell \cos 2\phi$
4	$\sqrt{\frac{1}{2}} \operatorname{Re} \left[A_0^L A_{\parallel}^{L*} + A_0^R A_{\parallel}^{R*} \right] \times \mathcal{BW}_P ^2$	$\sin 2\theta_K \sin 2\theta_\ell \cos \phi$
5	$\sqrt{2} \operatorname{Re} \left[A_0^L A_\perp^{L*} - A_0^R A_\perp^{R*} \right] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin 2\theta_K \sin \theta_\ell \cos \phi$
6s	$2 \operatorname{Re} \left[A_{\parallel}^{L} A_{\perp}^{L*} - A_{\parallel}^{R} A_{\perp}^{R*} \right] \times \mathcal{BW}_{P} ^{2}$	$\sin^2\theta_K\cos\theta_\ell$
6c	0	$\cos^2\theta_K\cos\theta_\ell$
7	$\sqrt{2} \operatorname{Im} \left[A_0^L A_{\parallel}^{L*} - A_0^R A_{\parallel}^{R*} \right] \times \mathcal{BW}_P ^2$	$\sin 2\theta_K \sin \theta_\ell \sin \phi$
8	$\sqrt{\frac{1}{2}} \operatorname{Re} \left[A_0^L A_{\perp}^{L*} + A_0^R A_{\perp}^{R*} \right] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin 2\theta_K \sin 2\theta_\ell \sin \phi$
9	$\mathrm{Im} \big[A_{\parallel}^L A_{\perp}^{L*} + A_{\parallel}^R A_{\perp}^{R*} \big] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin^2\theta_K \sin^2\theta_\ell \sin 2\phi$
10	$\frac{1}{2}(A_{\mathrm{S}}^L ^2 + A_{\mathrm{S}}^R ^2) \times \mathcal{BW}_{\mathrm{S}} ^2$	1
11	$\sqrt{3} \operatorname{Re} \bigl[(A_{\mathrm{S}}^{L} A_{0}^{L*} + A_{\mathrm{S}}^{R} A_{0}^{R*}) \times \mathcal{BW}_{\mathrm{S}} \mathcal{BW}_{\mathrm{P}}^{*} \bigr]$	$\cos \theta_K$
12	$-\frac{1}{2}(A_{\mathrm{S}}^{L} ^{2}+ A_{\mathrm{S}}^{R} ^{2})\times \mathcal{BW}_{\mathrm{S}} ^{2}$	$\cos 2\theta_{\ell}$
13	$-\sqrt{3} \operatorname{Re} \big[(A_{\mathrm{S}}^{L} A_{0}^{L*} + A_{\mathrm{S}}^{R} A_{0}^{R*}) \times \mathcal{BW}_{\mathrm{S}} \mathcal{BW}_{\mathrm{P}}^{*} \big]$	$\cos\theta_K\cos2\theta_\ell$
14	$\sqrt{\frac{3}{2}} \operatorname{Re}\left[\left(A_{\mathrm{S}}^{L}A_{\parallel}^{L*} + A_{\mathrm{S}}^{'R}A_{\parallel}^{'R*}\right) \times \mathcal{BW}_{\mathrm{S}}\mathcal{BW}_{\mathrm{P}}^{*}\right]$	$\sin\theta_K\sin2\theta_\ell\cos\phi$
15	$2\sqrt{\frac{3}{2}} \operatorname{Re}\left[\left(A_{S}^{L}A_{\perp}^{L*} - A_{S}^{R}A_{\perp}^{R*}\right) \times \mathcal{BW}_{S}\mathcal{BW}_{P}^{*}\right]$	$\sin\theta_K\sin\theta_\ell\cos\phi$
16	$2\sqrt{\frac{3}{2}} \operatorname{Im}\left[\left(A_{\mathrm{S}}^{L}A_{\parallel}^{L*} - A_{\mathrm{S}}^{R}A_{\parallel}^{R*}\right) \times \mathcal{BW}_{\mathrm{S}}\mathcal{BW}_{\mathrm{P}}^{*}\right]$	$\sin\theta_K\sin\theta_\ell\sin\phi$
17	$\sqrt{\frac{3}{2}} \operatorname{Im} \left[(A_{S}^{L} A_{\perp}^{L*} + A_{S}^{R} A_{\perp}^{R*}) \times BW_{S} BW_{P}^{*} \right]$	$\sin\theta_K\sin2\theta_\ell\sin\phi$

LICE

