Measuring CP asymmetry in $D^0 \rightarrow K^+K^-$ at LHCb

55th Recontres de Moriond EW Young Scientist Forum 27/03/2024

Nico Kleijne nico.kleijne@cern.ch on behalf of the LHCb collaboration

_

Why CP violation in Charm?

 D^0 is the only flavoured neutral meson containing up-type quarks

- In SM due to CKM suppression CP violation is predicted to be small $\,\sim\,10^{-3}$
- CP violation could be enhanced by BSM couplings which ignore down-type quarks

How can we measure this CP violation?

Experimentally, we can only measure the asymmetry of yields To assign the flavour of the neutral D^0 meson exploit $D^*(2010)$ decays

Experimentally, we can only measure the asymmetry of yields To assign the flavour of the neutral D^0 meson exploit $D^*(2010)$ decays

$$\frac{\bar{D}^{0} \to K^{+}K^{-}}{\bar{D}^{0} \to K^{+}K^{-}} = A_{CP}(K^{+}K^{-}) + A_{P}(D^{*}) + A_{D}(\pi_{tag})$$

$$\frac{duces}{1\%} A_{P}(D^{*}) = \frac{\sigma(D^{*+}) - \sigma(D^{*-})}{\sigma(D^{*+}) + \sigma(D^{*-})} \qquad A_{D}(\pi_{tag}) = \frac{\epsilon(\pi_{tag}^{+}) - \epsilon(\pi_{tag})}{\epsilon(\pi_{tag}^{+}) + \epsilon(\pi_{tag}^{+})}$$

The golden observable: ΔA_{CP}

The difference of observed asymmetries cancels the nuisance asymmetries

 $A_{obs}(K^+K^-) - A_{obs}(\pi^+\pi^-) = A_{CP}(K^+K^-)$

$$\bar{}) - A_{CP}(\pi^+\pi^-) = \Delta A_{CP}$$

The golden observable: ΔA_{CP}

The difference of observed asymmetries cancels the nuisance asymmetries

 $A_{obs}(K^+K^-) - A_{obs}(\pi^+\pi^-) = A_{CP}(K^+K^-)$

$$\overline{} - A_{CP}(\pi^+\pi^-) = \Delta A_{CP} = \Delta a_{CP}^d + \Delta Y$$

CP violation in the decay Time dependent CP violation

First observation of CP violation in Charm sector in 2019!

Theory uncertainties do not allow to claim if this observation is SM or not According to SU(3) flavour symmetry $a_{KK}^d = -a_{\pi\pi}^d$. How much is SU(3) violated? [PRD 75.036008, JHEP12(2019)104]

CP violation in a single decay channel: $A_{CP}(K^+K^-)$

To remove nuisance asymmetries use several Cabibbo-favoured decays as calibration channels (no CPV because no penguins)

LHCb Run 2 data $(5.9 \, \text{fb}^{-1})$:

 $A_{CP}(K^+K^-) = (6.8 \pm 5.4 \pm 1.6) \times 10^{-4}$

[PRL 131.091802]

CP violation in a single decay channel: $A_{CP}(K^+K^-)$

To remove nuisance asymmetries use several Cabibbo-favoured decays as calibration channels (no CPV because no penguins)

LHCb Run 2 data $(5.9 \, \text{fb}^{-1})$:

$$A_{CP}(K^+K^-) = (6.8 \pm 5.4 \pm 1.6) \times 10^{-4}$$

Combining with Run 1 [PLB 2017.01.061], ΔA_{CP} [PRL 122.211803], and ΔY [prd 104.072010]:

$$a_{KK}^d = (7.7 \pm 5.7) \times 10^{-4}$$

$$a^d_{\pi\pi} = (23.6 \pm 6.1)$$

First evidence of CP violation in a single decay channel at 3.8σ !

[PRL 131.091802]

CP violation in a single decay channel: $A_{CP}(K^+K^-)$

To remove nuisance asymmetries use several Cabibbo-favoured decays as calibration channels (no CPV because no penguins)

LHCb Run 2 data $(5.9 \, \text{fb}^{-1})$:

$$A_{CP}(K^+K^-) = (6.8 \pm 5.4 \pm 1.6) \times 10^{-4}$$

Combining with Run 1 [PLB 2017.01.061], ΔA_{CP} [PRL 122.211803], and ΔY [prd 104.072010]:

$$a_{KK}^d = (7.7 \pm 5.7) \times 10^{-4}$$

$$a^d_{\pi\pi} = (23.6 \pm 6.1)$$

First evidence of CP violation in a single decay channel at 3.8σ !

<u>The statistical uncertainty is dominated by the size of calibration samples</u>

[PRL 131.091802]

Usual cancellation of nuisance asymmetries

These physical effects are well understood and can be estimated as in previous analyses [PRL 131.091802]

In the end only the quantity of interest is left!

What we expect for the near future

- - Number of $D^0 \rightarrow K^+ K^-$ candidates ~ 40 M [PRL 131.091802]
 - Number of $D^0 \to \bar{K}^0 \pi^+ \pi^-$ candidates $\lesssim 10$ M (only \bar{K}^0 with short flight distance) [PRL 127.111801]

• The uncertainty on this Run 2 measurement should be dominated by the calibration sample:

What we expect for the near future

- The uncertainty on this Run 2 measurement should be dominated by the calibration sample:
 - Number of $D^0 \rightarrow K^+ K^-$ candidates ~ 40 M [PRL 131.091802]
 - Number of $D^0 \to \bar{K}^0 \pi^+ \pi^-$ candidates ≤ 10 M (only \bar{K}^0 with short flight distance) [PRL 127.111801]
- We expect an uncertainty <u>almost independent</u> and in the <u>same ballpark</u> of published methods: $a_{KK}^d = (7.7 \pm 5.7) \times 10^{-4}$ $a_{\pi\pi}^d = (23.6 \pm 6.1) \times 10^{-4}$ <u>Reminder of PRL 131.091802 :</u>

What we expect for the near future

- - Number of $D^0 \rightarrow K^+ K^-$ candidates ~ 40 M [PRL 131.091802]
 - Number of $D^0 \to \bar{K}^0 \pi^+ \pi^-$ candidates ≤ 10 M (only \bar{K}^0 with short flight distance) [PRL 127.111801]
- We expect an uncertainty <u>almost independent</u> and in the <u>same ballpark</u> of published methods:

 $a_{KK}^d =$ <u>Reminder of PRL 131.091802 :</u>

• The uncertainty on this Run 2 measurement should be dominated by the calibration sample:

$$(7.7 \pm 5.7) \times 10^{-4}$$

$$a_{\pi\pi}^d = (23.6 \pm 6.1) \times 10^{-4}$$

If we are lucky, we could get closer to first observation of CP violation in a single decay channel $3.8\sigma \xrightarrow{?} 5\sigma$

<u>Stay tuned!</u>

Published strategy for $A_{CP}(K^+K^-)$

Use $D^{*+} \rightarrow (D^0 \rightarrow K^- \pi^+) \pi^+_{tag}$ decays to cancel nuisance asymmetries

$$A_{CP}(K^+K^-) = A_{obs}(D^{*+} \to D^0(\to K^+K^-)\pi_{tag}^+) - A_{obs}(D^{*+} \to D^0(\to K^-\pi^+)\pi_{tag}^+) + A_D(K^-\pi^+)$$

$$\begin{array}{l} \text{Method 1:} A_D(K^-\pi^+) = A_{obs}(D^+ \to K^-\pi^+\pi^+) - [A_{obs}(D^+ \to \bar{K}^0\pi^+) - A(\bar{K}^0)] \\ \text{Method 2:} A_D(K^-\pi^+) = A_{obs}(D_s^+ \to \phi \pi^+) - [A_{obs}(D_s^+ \to \bar{K}^0K^+) - A(\bar{K}^0)] \end{array}$$

Kinematic distributions of particles with the same color are equalised for an exact cancellation After the kinematic equalisation, statistical uncertainties are dominated by calibration channels: the two methods are almost independent

[PRL 131.091802]

No CPV because they are Cabibbo-favoured (no penguins)

New asymmetry due to non symmetric final state

Two methods to estimate it with other Cabibbo-favoured decays:

CP violation in Charm

 D^0 decays in $f = K^+K^-, \pi^+\pi^-$ (singly Cabibbo-suppressed CP-even):

$$A_{CP}(f,t) = \frac{\Gamma(D^0 \to f,t) - \Gamma(\bar{D}^0 \to f,t)}{\Gamma(D^0 \to f,t) + \Gamma(\bar{D}^0 \to f,t)} \approx 0$$

 $\sigma(pp \to c\bar{c}) \simeq 20 \,\sigma(pp \to c\bar{c}) \simeq 2.4 \,\mathrm{mb}$

