Signals of boosted dark matter and neutrinos

Takashi Toma

Rencontres de Moriond 2024 @ La Thuile Electroweak Interactions & Unified Theories

Based on: Phys.Rev.D 105 (2022) 4, 043007, JCAP 02 (2024) 033 Collaborator: Mayumi Aoki

Thermal dark matter (WIMPs)

WIMP is thermalized with SM particles in early universe

- To get $\Omega_{\chi}h^2 = 0.12$, roughly $\sigma \sim 1 {\rm pb} \sim 10^{-26} {\rm cm}^3/{\rm s} \sim 10^{-36} {\rm cm}^2$
- Almost independent on DM mass
- Mass range: 10 MeV 100 TeV

Takashi Toma (Kanazawa U.)

Status of direct detection experiments

Wayout

• v_{χ} dependent cross section ($v_{\chi} \sim 10^{-3}$) Ex.1 pNG DM ($\sigma \propto v_{\chi}^4$)

C. Gross, O. Lebedev, TT, PRL (2017) [arXiv:1708.02253]

Ex.2 Fermionic DM with Pseudo-scalar int. $\mathcal{L} = a \overline{\chi} \gamma_5 \chi \quad (\sigma \propto v_{\chi}^2)$

T. Abe, M. Fujiwara, J. Hisano, JHEP (2019) [arXiv:1810.01039]

- Challenging to explore with standard way of direct detection experiments
- ⇒ Could be searched if it is accelerated. N ⇒ We consider DM accelerated by semi-annihilaton $\chi\chi \rightarrow \overline{\chi}\nu$ Exotic DM signals

Signals from the Sun

Signals from the Sun

- DM particles are accumulated in centre of the Sun.
- Semi-annihilation occurs, and boosted DM and neutrino are produced.
- These can be searched at large volume neutrino detectors (SK, HK, IceCube, DUNE etc).

Detection of boosted DM

- Boosted DM ($v_{\chi} = 0.6$) is difficult to produce Cherenkov radiation.
 - $v_p > 0.75$ is required to produce Cherenkov radiation.

Hyper-Kamiokande Collaboration

\Rightarrow We focus on DUNE.

DUNE (Deep Underground Neutrino Experiment)

Two detectors: near and far detectors.

- Massive liquid argon (fiducial volume: 40kt)
- Precise reconstruction of particle's trajectories with LArTPC

DUNE Coll., [arXiv:2002.03005]

7 / 18

DUNE (Deep Underground Neutrino Experiment)

Timeline of far detector modules \Rightarrow Delayed

DUNE Coll., [arXiv:2002.03005]

More cost is needed than initially expected. (2 billion \Rightarrow 3 billion dollars)

- 2029: slimmed version of DUNE will run
- 2035: DUNE full spec (40kt) \Leftrightarrow 2027: Hyper-K data taking
 - \Rightarrow DUNE has no advantage for ν mass ordering, CP violation etc.

But boosted DM could be detectable only by DUNE.

Setup for boosted dark matter

We parametrize the cross section as

$$\frac{d\sigma_{\chi N}}{dQ^2} = \frac{\sigma_0 s}{4m_N^2 |\mathbf{p}_{\chi}|^2} \left(\frac{Q^2}{Q_0^2}\right)^n |F(Q^2)|^2$$

• $F(Q^2) = \frac{1}{\left(1 + Q^2/M_A^2\right)^2}$ Q: transfer momentum

Parameters: $|\mathbf{p}_{\chi}| = \frac{5}{4}m_{\chi}$ and σ_0 (reference cross section)

1 n = 0 (constant $\sigma_{\chi N}$) 2 n = 1 (Q^2 dependent $\sigma_{\chi N}$) 3 n = 2 (Q^4 dependent $\sigma_{\chi N}$)

Energy reconstruction

- For boosted DM signal
 - Elastic scatering is dominant.

- $\cos \theta_N = \frac{E_{\chi} + m_N}{|\boldsymbol{p}_{\chi}|} \sqrt{\frac{E_N m_N}{E_N + m_N}}$
- \Rightarrow Energy and angle are kinematically fixed.
- DM energy can be reconstructed from observed values θ_N and E_N

Background (atmospheric neutrinos)

 $N_{\rm atm\,\nu} = N_N T \int \sigma_{\nu N} \frac{d^2 \Phi_{\nu}^{\rm atm}}{dE_{\nu} d\Omega} dE_{\nu} d\Omega$

Expected number of bkg events in 10 years with 40kton LAr

994 via NC int. for χ signal ($\nu_{\rm atm} + N \rightarrow \nu_{\rm atm} + N$)

2070 via CC int. for ν signal $(\nu_{\text{atm}} + N \rightarrow e/\mu + j)$

http://www-rccn.icrr.u-tokyo.ac.jp/mhonda/public/

• We use ν_{atm} HAKKM flux at Homestake (close to DUNE detector).

Takashi Toma (Kanazawa U.)

Moriond 2024 @ La Thuile

Results

Benchmark parameter sets

	model	$m_{\chi} \; [\text{GeV}]$	$\sigma_0 [\mathrm{cm}^2]$	# of ν events	# of χ events
BP1	SD $(n=1)$	6	1.2×10^{-42}	$N_{\rm atm\nu}^{\rm CC} = 54/2070$ $N_{\nu}^{\rm CC} = 18/47$	$N_{\text{atm }\nu}^{\text{NC}} = 98/994$ $N_{\chi} = 113/372$
BP2	SD (n = 2)	30	5.0×10^{-46}	$N_{\rm atm\nu}^{\rm CC} = 1/2070 \\ N_{\nu}^{\rm CC} = 0/0$	$N_{\text{atm}\nu}^{\text{NC}} = 18/994$ $N_{\chi} = 405/2117$

- Assumption: V = 40kton liquid argon, T = 10 years exposure
- We use GENIE (neutrino event generator).
- 4th and 5th columns: Expected events / Total events (detector threshold and resolutions)

• Large number of BDM signal events N_{γ} for BP2 (n = 2)

Boosted DM and neutrino signals R

Results

Energy reconstruction for BP1

• $E_{\chi} = 7.5 \text{ GeV} \text{ and } E_{\nu} = 4.5 \text{ GeV}$

Large number of atmospheric neutrino bkg at low energy

Boosted DM and neutrino signals

Energy reconstruction for BP2

• $E_{\chi} = 37.5 \text{ GeV} \text{ and } E_{\nu} = 22.5 \text{ GeV}$

- lacksquare Large number of BDM events (left) due to $d\sigma_{\chi N}/dQ^2 \propto Q^4$
- No neutrino signal due to small cross section (right)

Parameter space (n = 0)

Completely excluded by direct detection experiments as expected.

Parameter space (n = 1)

No substantial direct detection constraints.

Sensitivities can be comparable if DM mass is lower than 10 GeV.

Parameter space (n = 2)

- Much higher sensitivity for boosted DM (right)
 But large hierarchy with neutrino sensitivity
- Neutrinos cannot be observed at the same time at DUNE ⇒ combining with Hyper-Kamiokande?

Summary

- Direct detection experiments impose the strong bound on (minimal) thermal DM models.
- $\mathbf{2}$ v suppressed cross section naturally evades the bound.
- **3** Such kind of DM can be searched if it is boosted somehow.
- 4 $\chi\chi \rightarrow \nu\overline{\chi}$ induces two distinctive signals, which can be searched by DUNE, or combining DUNE and SK/HK/IceCube.

Backup

DM annihilation rate at the Sun

R. Garani et al., JCAP (2014) [arXiv:1702.02768]

Simulation tool

- GENIE (neutrino event generator) http://www.genie-mc.org/
 - Detailed experimental simulation (DUNE, SK etc) can be done.
 - · Boosted DM can also be implemented.

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

GENIE	GHEP Event Reco	rd [pri	int level:	3]									
Idx	Name	Ist	PDG	Mo	ther	Daugh	nter	Px	Py	Pz	E	m	
0	chi_dm	0	2000010000	-1	-1	4	4	0.000	0.000	37.500	62.500	**1.000	I M = 50.000
1	Ar40	0	1000180400	-1	-1	2	3	0.000	0.000	0.000	37.216	37.216	
2	neutron	11	2112	1	-1	5	5	0.156	-0.039	0.178	0.929	**0.940	M = 0.897
3	Ar39	2	1000180390	1	-1	7	7	-0.156	0.039	-0.178	36.287	36.286	
4	chi_dm	1	2000010000	0	-1	-1	-1	0.530	0.110	36.892	62.140	**1.000	M = 50.000 P = (0.014,0.003,1.000)
5	neutron	14	2112	2	-1	6	6	-0.374	-0.149	0.786	1.289	0.940	FSI = 3
б	neutron	1	2112	5	-1	-1	-1	-0.569	-0.091	0.611	1.261	0.940	
7	HadrBlob	15	2000000002	3	-1	-1	-1	0.069	-0.015	-0.035	36.286	**0.000	M = 36.286
8	NucBindE	1	2000000101	-1	-1	-1	-1	-0.030	-0.005	0.032	0.029	**0.000	M = -0.032
	Fin-Init:						 ا	-0.000	0.000	-0.000	0.000	I	
	Vertex:	chi_o	dm @ (x =	0.000	00 m,	y =	0.000)00 m, z =	0.0000	0 m, t =	0.00000	0e+00 s)	
Err f Err r	lag [bits:15->0 nask [bits:15->0] : 000] : 111	00000000000000000000000000000000000000	00 .1	1st Is u	set: unphysic	cal:	NO AG	cepted:	YES		none	
sig(I	Ev) = 4.88	517e-38	3 cm^2 dsi	.g(Q2;E)/dQ2	=	1.	73521e-39	cm^2/GeV^2	Weight	=	1.00000	

Setup for boosted dark matter

arXiv: 1912.05558, J. Berger et al.

There are 3 processes.

• (Quasi)-elastic scattering is dominant for our case $(\chi \chi \to \nu \overline{\chi})$ $0 \le Q^2 \lesssim \frac{9}{4} m_N^2 \approx (2 \text{ GeV})^2$

Setup for boosted dark matter

Number of expected signal events $(\overline{\chi} + N \to \overline{\chi} + N)$

$$N_{\chi} = N_N T \int \sigma_{\chi N} \frac{d^2 \Phi_{\chi}}{dE_{\chi} d\Omega} dE_{\chi} d\Omega$$

Number of nucleons: $N_N = 2.41 \times 10^{34}$ (40kt fiducial volume)

Exposure time:
$$T = 10$$
 yr

DM flux:
$$\frac{d^2 \Phi_{\chi}}{dE_{\chi} d\Omega} = \frac{\Gamma_{\text{ann}}}{4\pi d_{\odot}^2} \sigma_{\chi N} \bigg|_{E_{\chi} = 5m_{\chi}/4} = \frac{C_{\odot}}{8\pi d_{\odot}^2} \sigma_{\chi N} \bigg|_{E_{\chi} = 5m_{\chi}/4}$$

Distance between the Sun and Earth: $d_{\odot} = 1.5 \times 10^{13}$ cm

Threshold and resolution for DUNE

	Detector threshold	Energy/momentum resolution	Angular resolution
μ^{\pm}	$30 { m MeV}$	5 %	1°
π^{\pm}	100 MeV	5~%	1°
e^{\pm}/γ	$30 { m MeV}$	$2 + 15/\sqrt{E/\text{GeV}}$ %	1°
p	$50 { m MeV}$	p < 400 MeV: 10 % $p > 400 \text{ MeV: } 5 + 30/\sqrt{E/\text{GeV}} \%$	5°
n	$50 { m MeV}$	$40/\sqrt{E/{ m GeV}}$ %	5°

Precise angular resolution (DUNE) cf: 3° at SK and HK, 30° at IceCube

These are taken into account in event selection.

Example of model building

 $\blacksquare \text{ Semi-annihilation } \chi\chi \to \nu\overline{\chi}$

Ex. \mathbb{Z}_3 symmetric model with radiative neutrino masses

M. Aoki and TT, JCAP (2014) [arXiv:1405.5870]

	χ_L	χ_R	η	φ
SU(2)	1	1	2	1
$U(1)_Y$	0	0	1/2	0
\mathbb{Z}_3	1	1	1	1
L number	1/3	1/3	-2/3	-2/3

New particles

Example of model building

Velocity-dependent scattering $\chi N \to \chi N$

$\nu + \bar{\chi}$ flux if it is nicely reconstructed

Mechanisms to boost DM

- Semi-annihilations $\chi\chi \to \overline{\chi}\phi \ (v_{\chi} = \mathcal{O}(0.1-1))$
 - \Rightarrow Simple and small uncertainties
- Other processes to boost DM
 - SIMP: $\chi \chi \chi \to \chi \overline{\chi}$
 - Decay or annihilations of heavier particles (non-minimal dark sector) $\chi_2\chi_2 \rightarrow \chi_1\chi_1 \ (m_{\chi_2} \gg m_{\chi_1})$

Collision with high energy cosmic-rays Bringmann and Pospelov PRL (2019), arXiv:1810.10543

Vacuum decay

J. Cline, M. Puel, TT, Q. Wang arXiv:2308.01333, 2308.12989

https://phys.org

Moriond 2024 @ La Thuile

18 / 18

Future works

- Application to new annihilation processes such as SIMP
 - $\cdot \frac{dn}{dt} + 3Hn = -\langle \sigma_{3\to 2} v^2 \rangle \left(n^3 n^2 n_{\rm eq} \right)$
 - \cdot Typical mass scale: MeV \sim GeV
 - \cdot Boosted DM signals from $\chi\chi\chi\to\chi\overline{\chi}$
 - \cdot can be a smoking gun signature of SIMP $^{\textbf{X}}$

Dark star

Need to consider very dense compact objects (dark star)

B. Kamenetskaia, A. Brenner, A. Ibarra and C. Kouvaris, arXiv:2211.05845

 \Rightarrow enhancement of point source of boosted dark matter $M\sim 0.1 M_{\odot}$, $r\sim\!\!1{\rm km}$