Top quark properties and searches in ATLAS and CMS

CERN

Sebastian Wuchterl on behalf of the ATLAS and CMS collaborations

- 58th Rencontres de Moriond
- Electroweak Interactions & Unified Theories
 - 26 March 2024

The top quark in the standard model (SM)

- Top quark is the most massive elementary particle
- High relevance for EWK symmetry breaking (\rightarrow BSM)
- Short lifetime (~10⁻²⁵s) < t_{had.} (~10⁻²⁴s) < t_{spin} (~10⁻²¹s)
- Only quark that decays before forming bound states
 - → Unique way to study 'bare' quark properties
- High production rate at LHC
 - \rightarrow High precision SM measurements, e.g. for $\sigma_{t\bar{t}}$
 - → Study SM QCD + EWK parameters
 - Portal to beyond-the SM (BSM) physics

 \rightarrow Selection of property measurements and fundamental searches

ATLAS + CMS mass combination [arXiv:2402.08713]

- Legacy combination of Run-1 ATLAS+CMS mt measurements
 - 6 (ATLAS) + 9 (CMS) individual measurements
 - Wide range of final states and techniques: tt (dl, l+jets, all-jets), single-t, J/Psi, SV
 - Best Linear Unbiased Estimator (BLUE) combination ATLAS+CMS

$$m_{top} = \sum_{i} w' m'_{top}$$

26.03.24 | Sebastian Wuchterl

		I Incortainty catagory	0	Scan rango	$\Delta m_{\rm t}/2$	$\Delta \sigma_{m_t}/2$
		Uncertainty category	ρ	Scall lange	[MeV]	[MeV]
		JES 1	0			_
		JES 2	0	[-0.25, +0.25]	8	7
		JES 3	0.5	[+0.25, +0.75]	1	<1
		b-JES	0.85	[+0.5, +1]	26	5
		g-JES	0.85	[+0.5, +1]	2	<1
-he	"only correlation	1-JES	0	[-0.25, +0.25]	1	<1
TIC	that mattara"	CMS JES 1				_
that matters"		JER	0	[-0.25, +0.25]	5	1
		Leptons	0	[-0.25, +0.25]	2	2
		b tagging	0.5	[+0.25, +0.75]	1	1
		$p_{\rm T}^{\rm miss}$	0	[-0.25, +0.25]	<1	<1
V		Pileup	0.85	[+0.5, +1]	2	<1
V		Trigger	0	[-0.25, +0.25]	<1	<1
		ME generator	0.5	[+0.25, +0.75]	<1	4
GeV]		QCD radiation	0.5	[+0.25, +0.75]	7	1
.31) .04)		Hadronization	0.5	[+0.25, +0.75]	1	<1
.21)		CMS b hadron ${\cal B}$	-4	_		-
.74) .82)		Color reconnection	0.5	[+0.25, +0.75]	3	1
.02) 0 41)		Underlying event	0.5	[+0.25, +0.75]	1	<1
0.41)		PDF	0.85	[+0.5, +1]	1	<1
.52) .97)		CMS top quark $p_{\rm T}$	(+)	<u></u>	-	- +
.23)		Background (data)	0	[-0.25, +0.25]	8	2
.94) .45)		Background (MC)	0.85	[+0.5, +1]	2	<1
.57) .93)			0	[,		
.94)		Method	0			
.11) 0.39)		Otner	U		<u> (</u>	Va
.51)					\sim	
.32) .36)	• Ve	ry detailed st	udy	of system	natics	s, their

correlations, and impacts

3 / 14

ATLAS + CMS mass combination [arXiv:2402.08713]

Uncertainties	Best result [GeV]	Combination [GeV]	Best / combined
ATLAS	0.84	0.48	1.8
CMS	0.48	0.42	1.1
LHC	0.48	0.33	1.5

26.03.24 | Sebastian Wuchterl

	I la containter catagoner	Uncert	ainty impa	act [C
	Uncertainty category	LHC	ATLAS	CN
	b-JES	0.18	0.17	0.
In the LHC combination	b tagging	0.09	0.16	0.
	ME generator	0.08	0.13	0.
	JES 1	0.08	0.18	0.
individual combinations	JES 2	0.08	0.11	0.
i individual compinations	Method	0.07	0.06	0.
	CMS b hadron \mathcal{B}	0.07		0.
	QCD radiation	0.06	0.07	0.
	Leptons	0.05	0.08	0.
ations are worth the effort!	JER	0.05	0.09	0.0
	CMS top quark $p_{\rm T}$	0.05		0.0
recision alternative results	Background (data)	0.05	0.04	0.
	Color reconnection	0.04	0.08	0.
nt for combinations	Underlying event	0.04	0.03	0.
	g-JEJ Background (MC)	0.03	0.02	0.
orecise CMS	Other	0.03	0.07	0.
$\sim 1 \sim 1$	1-IFS	0.03	0.00	0.
$aev \rightarrow 0.42 \text{ Gev}$	CMS IES 1	0.03		0.
	Pileup	0.03	0.07	о. О.
	IES 3	0.02	0.07	0.
	Hadronization	0.02	0.01	0.
	p_{T}^{miss}	0.02	0.04	0.
	PDF	0.02	0.06	<0.
	Trigger	0.01	0.01	0.
	Total systematic	0.30	0.41	0.
	Statistical	0.14	0.25	0.
	Total	0.33	0.48	0.

4 / 14

Review of mt measurements [arXiv:2403.01313]

- **Comprehensive review** of CMS m_t measurements
 - Evolvement over time!

Single most precise result

. NEW!

Review of mt measurements [arXiv:2403.01313]

- **Comprehensive review** of CMS m_t measurements
 - Boosted jet mass, bridging between direct / indirect m_t measurements
 - Promising HL-LHC extrapolations!

. NEW!

[′] 14

Observation of quantum entanglement in tt [arXiv:2311.07288]

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{+} \mathrm{d}\Omega_{-}} = \frac{1 + \mathbf{B}^{+} \cdot \hat{\mathbf{q}}_{+} - \mathbf{B}^{-} \cdot \hat{\mathbf{q}}_{-} - \hat{\mathbf{q}}_{+} \cdot \mathbf{C} \cdot \hat{\mathbf{q}}_{-}}{(4\pi)^{2}} \operatorname{Sp}$$

$$D = \frac{\operatorname{tr}[\mathbf{C}]}{3} \quad D = -3 \cdot \langle \cos \varphi \rangle$$

Can be measured from $\frac{1}{\sigma} \frac{d\sigma}{d \cos \varphi}$

[1] [JHEP 03 (2017) 113] [2] [Phys. Rev. D 100, 072002]

26.03.24 | Sebastian Wuchterl

NEW

• NEW! Observation of quantum entanglement in tt [arXiv:2311.07288]

- 1M high-purity electron-muon events
- Calibrate from detector-level D to particle-level D

- Dominan systematics
- Calibrated for each region and systematic

Particle-level Invariant Mass Range [GeV]

$D = -0.547 \pm 0.002 \,(\text{stat.}) \pm 0.021 \,(\text{syst.})$ $D = -0.470 \pm 0.002$ (stat.) ± 0.018 (syst.)(expected)

Source of uncertainty	$\Delta D_{\text{observed}}(D = -0.547)$	ΔD [%]	$\Delta D_{\text{expected}}(D = -0.470)$	$\Delta D \ [\%]$
Signal modeling	0.017	3.2	0.015	3.2
Electrons	0.002	0.4	0.002	0.4
Muons	0.001	0.1	0.001	0.1
Jets	0.004	0.7	0.004	0.8
<i>b</i> -tagging	0.002	0.4	0.002	0.4
Pile-up	< 0.001	< 0.1	< 0.001	< 0.1
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.002	0.3	0.002	0.4
Backgrounds	0.010	1.8	0.009	1.8
Total statistical uncertainty	0.002	0.3	0.002	0.4
Total systematic uncertainty	0.021	3.8	0.018	3.9
Total uncertainty	0.021	3.8	0.018	3.9

Searches for FCNC with top + Higgs

- FCNC suppressed in SM, enhancement would be a direct sign of BSM physics
- Higgs mediated FCNC increased in 2HDM-like scenarios

top-associated production

tt decay

- - Charm ID as input
- Limited by signal modeling/ backgrounds

[CMS-PAS-TOP-22-002]

- flavour violation (cLFV)

LFV in production and decay in ATLAS .

26.03.24 | Sebastian Wuchterl

[arXiv:2403.06742] EFT interpretation

Search for baryon number violation (BNV) [arXiv:2402.18461]

- Needed to explain matter-antimatter asymmetry, included in many BSM extensions
- Model-independent search for high-energy BNV in dilepton final states

In single-top production, for the first time

- Combined BDT trained to enhance signal sensitivity
- Interpretation in EFT couplings for all lepton-quark combinations
- Limited by **background (tW/tt**) modelling

26.03.24 | Sebastian Wuchterl

In tt decay

Summary

- Top quark is a key instrument to study standard model and look for BSM effects
- ATLAS and CMS have a many SM measurements and BSM searches involving top quarks:
 - Top quark mass combination / review (ATLAS+CMS)
 - Observation of quantum entanglement in tt (ATLAS)
 - _epton flavour (ATLAS+CMS) and baryon number violation (CMS)
 - Updated results for FCNC searches involving Higgs bosons (ATLAS+CMS)
- Conclusions:
- Combination of individual results are useful!
 - Top quark mass and FCNC searches
- All results in good agreement with the SM & no new physics observed
- Available LHC Run 3 data will give rise to more opportunities

stat. tota MS combination m. ^{po}	al ^{le} = 173.4 ^{+1.8} GeV
TeV comb. $m_{\rm t}^{\rm MC} = 17$	72.52 ± 0.42 GeV
TeV comb. stat. unce	ertainty
(tot) GeV	[PLB 728 (2014) 496]
(tot) GeV	[JHEP 08 (2016) 029]
(tot) GeV	[JHEP 09 (2017) 051]
(tot) GeV	[EPJC 79 (2019) 368] [EPJC 80 (2020) 658]
(tot) GeV	[JHEP 07 (2023) 213]
3 (tot) GeV	[JHEP 07 (2023) 077]
⁸ (tot) GeV	[EPJC 79 (2019) 368]
(stat) ± 4.6 (sys) GeV	[JHEP 07 (2011) 04]
(stat) ± 1.5 (sys) GeV	[EPJC 72 (2012) 2202]
(stat) ± 0.96 (sys) GeV	[EPJC 74 (2014) 2758]
(stat) ± 0.48 (sys) GeV	[PRD 93 (2016) 072004]
(stat) ± 0.59 (sys) GeV	[PRD 93 (2016) 072004]
(stat) ± 1.22 (sys) GeV	ני טוז (2016) (2004] [EPJC 77 (2017) 3541
(stat) ^{-0.93} + ^{0.89} -0.93 (sys) GeV	[PRD 96 (2017) 032002]
(stat) ± 0.62 (sys) GeV	[EPJC 78 (2018) 891]
(stat) ± 0.70 (sys) GeV	[EPJC 79 (2019) 313]
(stat) (sys) GeV	[EPJC 79 (2019) 368]
(stat) ± 0.37 (svs) GeV	[JITEP 12 (2021) 161] [EPJC 83 (2023) 9631
(stat) ± 0.39 (sys) GeV	[arXiv:2402.08713]
(stat) - 6.7 (sus) CoV	IEP IC 77 (2017) 4671
(stat) ± 2.4 (sys) GeV	[PRL 124 (2020) 202001
(stat) ± 0.80 (sys) GeV	[EPJC 83 (2023) 560]
(stat) +1.7 (sys) GeV	[EPJC 73 (2013) 2494]
(stat) +1.58 -0.97 (sys) GeV	[PRD 93 (2016) 092006]
(stat) \pm 0.9 (sys) GeV	[JHEP 12 (2016) 123]
1	I
) 0	200
m	. [GeV]

14/14

Mass combination

ATL/		
ΑΤΙ		
ATL		
ATL/		
ΑΤΙ		
ATL		
CN		
C		
C		
CN		
C		
C		
(
CM		
CM		

			AT	LAS							CMS				
		2011 (77	TeV)	2	012 (8 Te	eV)		2011 (77	ſeV)		11	2012	(8 TeV)		1.1
	dil	lj	aj	dil	lj	aj	dil	lj	aj	dil	lj	aj	t	J/ψ	vt
Pull	+0.93	-0.15	+1.43	+0.61	-0.51	+1.09	-0.01	+0.96	+0.71	-0.33	-0.47	-0.37	+0.38	+0.31	+1.
Weight	-0.02	+0.07	+0.00	+0.16	+0.17	+0.03	-0.08	-0.01	+0.03	+0.12	+0.34	+0.12	-0.03	+0.01	+0.0

ATLAS+CMS

√ S =	7,8	Te
--------------	-----	----

LAS dil 7 TeV	1.00	-0.07	0.42	0.51	0.06	0.07	0.13	0.22	0.11	0.18	0.23	0.13	0.10	-0.06	-0.15
TLAS lj 7 TeV	-0.07	1.00	-0.01	0.00	-0.07	-0.02	0.09	0.08	0.03	0.08	0.04	0.01	0.10	0.02	-0.04
۲LAS aj 7 TeV	0.42	-0.01	1.00	0.29	-0.06	0.00	0.11	0.19	0.11	0.13	0.21	0.16	0.09	-0.01	-0.04
LAS dil 8 TeV	0.51	0.00	0.29	1.00	-0.18	0.31	0.09	0.16	0.08	0.12	0.16	0.10	0.07	-0.04	-0.10
TLAS lj 8 TeV	0.06	-0.07	-0.06	-0.18	1.00	-0.03	0.02	-0.00	-0.00	-0.04	0.05	-0.03	0.03	-0.01	0.00
۲LAS aj 8 TeV	0.07	-0.02	0.00	0.31	-0.03	1.00	0.10	0.11	0.06	-0.01	0.14	0.08	0.07	0.01	0.10
CMS dil 7 TeV	0.13	0.09	0.11	0.09	0.02	0.10	1.00	0.31	0.57	0.31	0.46	0.36	0.26	0.08	0.13
CMS lj 7 TeV	0.22	0.08	0.19	0.16	-0.00	0.11	0.31	1.00	0.53	0.10	0.41	0.45	0.29	-0.03	0.03
CMS aj 7 TeV	0.11	0.03	0.11	0.08	-0.00	0.06	0.57	0.53	1.00	0.12	0.34	0.35	0.21	-0.03	0.07
CMS dil 8 TeV	0.18	0.08	0.13	0.12	-0.04	-0.01	0.31	0.10	0.12	1.00	0.23	0.07	0.09	-0.04	-0.16
CMS lj 8 TeV	0.23	0.04	0.21	0.16	0.05	0.14	0.46	0.41	0.34	0.23	1.00	0.70	0.48	0.06	0.15
CMS aj 8 TeV	0.13	0.01	0.16	0.10	-0.03	0.08	0.36	0.45	0.35	0.07	0.70	1.00	0.47	0.05	0.22
CMS t 8 TeV	0.10	0.10	0.09	0.07	0.03	0.07	0.26	0.29	0.21	0.09	0.48	0.47	1.00	-0.01	0.08
MS J/Ψ 8 TeV	-0.06	0.02	-0.01	-0.04	-0.01	0.01	0.08	-0.03	-0.03	-0.04	0.06	0.05	-0.01	1.00	0.12
CMS vtx 8 TeV	-0.15	-0.04	-0.04	-0.10	0.00	0.10	0.13	0.03	0.07	-0.16	0.15	0.22	0.08	0.12	1.00
	AT	ATL AS di	AS IJ 7 Tev	ATL AS aj Tev	AS di 7 TeV	AS IJ 8 Tev	AS aj 7 TeV	S dil 7 8 TeV	S IJ 7 T TeV	s ^C M ev	S dil 8 Tev	S IJ 8 T TeV	S ^C M ev ev	St8T Tev	S J/W eV

Recoil for mass combination

- Improvement in understanding of modelling:
 - Off-shell effects
 - NNLO calculations
 - Top-quark radiation pattern and decay
 - Choice of recoiler in gluon radiation in top quark decay
 - Pythia specific setting
- Strongly correlated with b-JES
- Add. Uncertainty added on the order of 70% of b-JES
 - Change of 35 MeV in central value
 - 20 MeV in uncertainty

Measuring the top quark mass

Direct measurements

- Measuring mt^{MC} using reconstructed decay products and Monte-Carlo templates
 - Very high experimental precision of ~0.4 GeV
 - Relies on details of simulation

Indirect measurements

- Measuring observable with direct sensitivity to mt
 - e.g. either inclusive or differential cross section
- Compare measured observable to fixed-order predictions

Measuring the top quark mass

Direct measurements

- Measuring mt^{MC} using reconstructed decay products and Monte-Carlo templates
 - Very high experimental precision of ~0.4 GeV
 - Relies on details of simulation

26.03.24 | Sebastian Wuchterl

Indirect measurements

- Measuring observable with direct sensitivity to m_t
 - e.g. either inclusive or differential cross section
- Compare measured observable to fixed-order predictions

parameter with reasonable precision!

19/14

Mass review

Mass difference

Mass review

Entanglement

Systematic uncertainty source	Relative size (for SM <i>D</i> value)
Top-quark decay	1.6%
Parton distribution function	1.2%
Recoil scheme	1.1%
Final-state radiation	1.1%
Scale uncertainties	1.1%
NNLO reweighting	1.1%
pThard setting	0.8%
Top-quark mass	0.7%
Initial-state radiation	0.2%
Parton shower and hadronization	0.2%
h _{damp} setting	0.1%

Source of uncertainty	$\Delta D_{\rm observed} (D = -0.547)$	$\Delta D \ [\%]$	$\Delta D_{\text{expected}} (D = -0.470)$	ΔD [%
Signal modeling	0.017	3.2	0.015	3.2
Electrons	0.002	0.4	0.002	0.4
Muons	0.001	0.1	0.001	0.1
Jets	0.004	0.7	0.004	0.8
<i>b</i> -tagging	0.002	0.4	0.002	0.4
Pile-up	< 0.001	< 0.1	< 0.001	< 0.1
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.002	0.3	0.002	0.4
Backgrounds	0.010	1.8	0.009	1.8
Total statistical uncertainty	0.002	0.3	0.002	0.4
Total systematic uncertainty	0.021	3.8	0.018	3.9
Total uncertainty	0.021	3.8	0.018	3.9

FCNC - CMS

FCNC - ATLAS

Leptoquark model

$$\lambda_{ki} \in \begin{pmatrix} \lambda_{t\tau} & \lambda_{c\tau} & \lambda_{u\tau} \\ \lambda_{t\mu} & \lambda_{c\mu} & \lambda_{u\mu} \\ \lambda_{te} & \lambda_{ce} & \lambda_{ue} \end{pmatrix} \equiv \lambda^{LQ} \begin{pmatrix} 10 & 1 & 0.1 \\ 1 & 0.1 & 0.01 \\ 0.1 & 0.01 & 0.001 \end{pmatrix},$$

Source	relative impact (%)
Experimental	
Photon energy resolution	1.5
Photon identification	0.4
Luminosity, pile-up modelling	0.3
Jet energy scale and resolution, flavour tagging	< 0.2
Theoretical	ACCENT
Normalisation $(\sigma(pp \rightarrow t\bar{t}, tH), \mathcal{B}(H \rightarrow \gamma\gamma))$	1.1
Parton showering model	0.8
m_t value, NLO generator for $pp \rightarrow tH$	0.5
Resonant background	0.5
Non-resonant background	2.3

LFV - CMS

CLFV	Lorentz	$C_{e\mu tq} / \Lambda^2 (\text{TeV}^{-2})$		$\mathcal{B}(t ightarrow \mathrm{e}\mu\mathrm{q}) imes 10^{-6}$		
coupling	structure	Exp. (68% CL range)	Obs.	Exp. (68% CL range)	Obs.	
	Tensor	0.022 (0.018–0.026)	0.024	0.027 (0.018–0.040)	0.032	
eµtu	Vector	0.044 (0.036–0.054)	0.048	0.019 (0.013–0.028)	0.022	
	Scalar	0.093 (0.077–0.114)	0.101	0.010 (0.007–0.016)	0.012	
	Tensor	0.084 (0.069–0.102)	0.094	0.396 (0.272–0.585)	0.498	
eµtc	Vector	0.175 (0.145–0.214)	0.196	0.296 (0.203–0.440)	0.369	
	Scalar	0.385 (0.318–0.471)	0.424	0.178 (0.122–0.266)	0.216	

Systematic uncertainty

Pileup Lepton reconstruction Lepton identification and isolation High- p_T lepton Muon momentum scale and resolution L1 prefiring Jet energy scale and resolution b tagging Jet modeling Nonprompt PDF QCD scale Initial- and final-state radiation

$m(e\mu) < 15$	0 GeV	$m(e\mu) > 150 \text{GeV}$		
Background	Signal	Background	Signal	
<0.1%	0.4%	< 0.1%	0.3%	
$<\!0.1\%$	0.6%	< 0.1%	1.7%	
1.0%	1.4%	1.0%	1.3%	
$<\!0.1\%$	0.2%	< 0.1%	3.4%	
$<\!0.1\%$	0.3%	< 0.1%	0.1%	
$<\!0.1\%$	0.4%	< 0.1%	0.4%	
$<\!0.1\%$	1.0%	1.0%	0.4%	
$<\!0.1\%$	0.9%	1.0%	0.5%	
6.0%	—	7.0%	1-1	
11.0%		9.0%	1-4	
<0.1%	2.3%	<0.1%	1.3%	
4.0%	2.8%	5%	1.4%	
·	7.6%	1-1	1.0%	

LFV - ATLAS

	95% CL upper limits on $\mathcal{B}(t \rightarrow \mu \tau q)$				
	Stat. uncertainty	Stat.+syst. uncertainties			
ed	4.6×10^{-7}	5.0×10^{-7}			
ed	8.2×10^{-7}	8.7×10^{-7}			

	95% CL upper limits on $ c /\Lambda^2$ [TeV ⁻²]					
	$c_{lq}^{-(ijk3)}$	$c_{ m eq}^{(ijk3)}$	$c_{ m lu}^{(ijk3)}$	$c_{ m eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{3(ijk3)}$
(u)	12	12	12	12	18	2.4
(u)	0.33	0.31	0.3	0.32	0.33	0.08
(u)	0.43	0.41	0.4	0.42	0.44	0.10
(c)	14	14	14	14	21	2.6
(c)	1.3	1.2	1.2	1.2	1.4	0.28
(c)	1.6	1.6	1.6	1.6	1.8	0.36

- Uncertainties:
 - tW normalisation
 - Mouse energy scale
 - Top quark p_T spectrum modeling

Vertex C_x C		$C_{\rm x}/\Lambda^2$	$C_{\rm x}/\Lambda^2$	\mathcal{B}_{x}	\mathcal{B}_{x}
		$[\text{TeV}^{-2}]$	$[\text{TeV}^{-2}]$	$[10^{-6}]$	$[10^{-6}]$
		Exp.	Obs.	Exp.	Obs.
tend	S	0.055	0.048	0.015	0.011
ιευα	t	0.031	0.027	0.005	0.003
لم يور ما	S	0.046	0.036	0.010	0.006
tµua	t	0.025	0.020	0.003	0.002
r 1	S	0.207	0.184	0.208	0.164
teca	t	0.114	0.102	0.063	0.050
. 1	S	0.178	0.141	0.153	0.095
tµcd	t	0.100	0.080	0.048	0.030
teus	S	0.115	0.101	0.063	0.050
	t	0.064	0.056	0.019	0.015
tµus	S	0.102	0.079	0.050	0.030
	t	0.056	0.043	0.015	0.009
	S	0.448	0.403	0.973	0.786
tecs	t	0.243	0.218	0.286	0.229
	S	0.394	0.311	0.752	0.468
tµcs	t	0.217	0.169	0.228	0.138
. 1	S	0.199	0.178	0.191	0.154
teub	t	0.109	0.097	0.057	0.045
tµub	S	0.168	0.134	0.136	0.087
	t	0.095	0.076	0.044	0.028
_	S	0.718	0.657	2.503	2.090
tecb	t	0.405	0.367	0.795	0.652
. 1	S	0.703	0.564	2.393	1.521
tμcb	t	0.386	0.307	0.722	0.455

New physics via EFT

- Simplified description of the investigated system
- Robust within a limited region of validity
- Historical example: electroweak decay (Fermi)
- Standard Model effective field theory (SMEFT)
 - Dimension-6 operators parametrize new physics
 - 59 up to 2499 independent operators

