Search for time-dependent CP violation in $D^0 \rightarrow \pi^+ \pi^- \pi^0$ decays

Moriond EW YSF 2024

Niall McHugh for the LHCb collaboration

Time-dependent CP violation in D^0 **decays**

- Charm hadrons: only probe of CPV in up-type quarks
 - Time-dependent CPV elusive so far [Phys. Rev. D 104, 072010 (2021), Phys. Rev. D 101, 012005 (2020)]
- Time-dependent CP asymmetry given by [Phys. Rev. D 91, 094032 (2015)]:

$$\Delta Y_f^{eff} \approx (2F_f^+ - 1) \left\{ x \sin \phi - \left(\right) \right\}$$

• $D^0 \rightarrow \pi^+ \pi^- \pi^0$ almost entirely CP-even \Rightarrow almost optimal sensitivity in PHSP integrated measurement [Phys. Lett. B 747, 9 (2015)]:

$$F^+_{\pi^+\pi^-\pi^0} = 0.973$$

• World average of previous measurements [Phys. Rev. D107, 052008]:

$$\left(\frac{\Delta Y_f^{\text{eff}}}{|2F_f^+ - 1|} = \Delta Y \approx -A_{\Gamma}\right)$$

$$-\Delta Y \approx A_{\Gamma} = (0.9 \pm$$

Datasets and selections

- Dataset: 7.7 fb⁻¹ collected in 2012 and 2015-18 @ 8,13 TeV
- Studying prompt decays: $D^{*+} \rightarrow D^0(\rightarrow h^- \pi^+ \pi^0) \pi_{tag}^+$
- Merged and resolved $\pi^0(\to\gamma\gamma)$ decays analysed separately
 - Merged: photon clusters overlap
 - Resolved: two distinct photon clusters
- Physics backgrounds removed by cut-based selection
 - D^{*+} from displaced *b*-hadron decay
 - $D^0 \to K^- \pi^+ \pi^0$, $K^- \to \pi^-$ mis-ID

$$D^0 \to K^0_S (\to \pi^+ \pi^-) \pi^0$$

- Combinatorial backgrounds suppressed by BDT
- Final yields: 2.3M merged and 1.5M resolved, \sim 87% purity (±2 σ)

Correction of nuisance asymmetries

- Selection requirements induce correlations between kinematics/ decay time
 - Kinematic-dependent detection asymmetries ⇒ time-dependent nuisance asymmetry
 - Primarily affects π_{tag}^{\pm} : deflected in opposite directions, detector not perfectly symmetric
 - K^+/K^- (and π^+/π^-) asymmetries can produce D^0/\bar{D}^0 kinematic asymmetries
- Data-driven correction procedure
 - Weights calculated to equalise binned opposite-tag distributions:

$$\theta_{x/y}(\pi_{\text{tag}}^{\pm}) = \arctan\left(\frac{p_{x/y}}{p_z}\right), \quad k(\pi_{\text{tag}}^{\pm}) = \frac{1}{\sqrt{p_x^2 + p_y^2}}, \quad \eta(D^0), \quad \eta(p_x^0) = \frac{1}{\sqrt{p_x^2 + p_y^2}}$$
Track projection angles

Final results

[LHCb-PAPER-2024-003 (in preparation)]

Conclusions

- Full Run 1 + 2 search for time-dependent CP violation with $D^0 \rightarrow \pi^+ \pi^- \pi^0$ decays
 - $\Delta Y = (-1.3 \pm 6.3 \text{ (stat.)} \pm 2.4 \text{ (syst.)}) \times 10^{-4}$
 - Consistent with no CP violation and compatible with world average
- First measurement of time-dependent CPV in a D^0 decay with a neutral pion at a hadron collider^{*} Not competitive with world average: proof-of-principle for future universality tests lacksquare
- LHCb-PAPER-2024-003 coming soon!

*and at all except [Phys. Rev. Lett. 97, 221803 (2006)]

Backup

Kinematic weighting dilution

- Time-dependent asymmetry + decay time/kinematic correlations
 ⇒ kinematic asymmetry
 - Removed by kinematic
 weighting \Rightarrow slight dilution of
 measured ΔY
- Studied with pseudo-experiments
 - $\sim 5\%$ dilution observed
 - Correction factor applied to final result

Systematic uncertainties

Source	$\Delta Y^{\mathrm{eff}}_{\pi\pi\pi}$ (10 ⁻⁴)	$\Delta Y_{K\pi\pi}$ (10 ⁻⁴
tion asymmetries	1.6	3.4
$/ au_{D^0}$ binning	1.0	0.14
ary contamination	0.84	0.84
Δm fit model	0.75	0.08
matic weighting	0.22	0.22
Total	2.3	3.5

Kinematic-dependent $K^-\pi^+/\pi^+\pi^-$ detection asymmetries

- Largest systematic from kinematic-dependent kaon/pion detection asymmetries
 - Measured using a set of calibration decays:

$$\begin{aligned} A_{det}^{\pi\pi} &= A_{D_{(s)}^+ \to \pi^+ \pi^- \pi^+} - A_{D_{(s)}^+ \to \phi(\to K^+ K^-) \pi^+} \\ A_{det}^{K\pi} &= A_{D^+ \to K^- \pi^+ \pi^+} - A_{D^+ \to \phi(\to K^+ K^-) \pi^+} \end{aligned}$$

- Calibration decay kinematics weighted to agree with signal/control modes
- Measured (time-dependent) asymmetry maps used for a set of pseudo-experiments

All compatible with no CP asymmetry [PDG 2022] at typical size of detection asymmetries

