Freeze-out scenarios and LHC signatures

based on 2312.09274 in collaboration with H.Acaroğlu, M. Blanke, M. Krämer, L. Rathmann

Jan Heisig

- Framework to study their links
- Reconcile WIMP hypothesis
- Rich phenomenology

t-channel mediator Dark Matter

t-channel mediator Dark Matter

[early accounts on the subject: J. Kile, A. Soni 2011; B. Batell, J. Pradler, M. Spannowsky 2011; J. F. Kamenik, J. Zupan 2011; P. Agrawal, S. Blanchet, Z. Chacko, C. Kilic 2011; A. Kumar, S. Tulin 2013; B. Batell, T. Lin, L.-T. Wang 2013]

Jan Heisig

Standard Model fermions

 u_i, d_j, Q_j, e_j, L_j

 \rightarrow Total of 20 cases

Model Lagrangian

$$\mathcal{L} \supset -(\lambda_{ij}\bar{u}_{Ri}\chi_{j}\phi + \text{h.c.}) + |D_{\mu}\phi|^{2}$$
$$-\frac{M_{\chi}}{2}\bar{\chi}\chi - m_{\phi}^{2}|\phi|^{2} + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H$$

$$\mathcal{L} \supset -(\lambda_{ij}\bar{u}_{Ri}\chi_{j}\phi + \text{h.c.}) + |D_{\mu}\phi|^{2}$$

$$-\frac{M_{\chi}}{2}\bar{\chi}\chi - m_{\phi}^{2}|\phi|^{2} + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H$$

$$M_{\chi} = m_{\chi}\left[\mathbb{1} + \eta \operatorname{Re}(\lambda^{\dagger}\lambda) + \mathcal{O}(\lambda^{4})\right] = \operatorname{diag}(m_{\chi_{1}}, m_{\chi_{2}}, m_{\chi_{3}})$$

$$\mathcal{L} \supset -(\lambda_{ij}\bar{u}_{Ri}\chi_{j}\phi + \text{h.c.}) + |D_{\mu}\phi|^{2}$$
$$-\frac{M_{\chi}}{2}\bar{\chi}\chi - m_{\phi}^{2}|\phi|^{2} + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H$$

$$M_{\chi} = m_{\chi} \left[\mathbb{1} + \eta \operatorname{Re}(\lambda^{\dagger} \lambda) + \mathcal{O}(\lambda^{4}) \right] = \operatorname{diag}(m_{\chi_{1}}, m_{\chi_{2}}, m_{\chi_{3}})$$

$$\mathcal{L} \supset -(\lambda_{ij}\bar{u}_{Ri}\chi_{j}\phi + \text{h.c.}) + |D_{\mu}\phi|^{2}$$
$$-\frac{M_{\chi}}{2}\bar{\chi}\chi - m_{\phi}^{2}|\phi|^{2} + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H$$

$$M_{\chi} = m_{\chi} \left[\mathbb{1} + \eta \operatorname{Re}(\lambda^{\dagger} \lambda) + \mathcal{O}(\lambda^{4}) \right] = \operatorname{diag}(m_{\chi_{1}}, m_{\chi_{2}}, m_{\chi_{3}})$$

$$\mathcal{L} \supset -(\lambda_{ij}\bar{u}_{Ri}\chi_{j}\phi + \text{h.c.}) + |D_{\mu}\phi|^{2}$$
$$-\frac{M_{\chi}}{2}\bar{\chi}\chi - m_{\phi}^{2}|\phi|^{2} + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H$$

$$\begin{array}{c|c} - & m_{\chi_1} \\ - & m_{\chi_2} \\ - & m_{\chi_3} \end{array} \end{array} \begin{array}{c} \bullet & m_{\phi} > m_{\chi_3} \end{array}$$

Jan Heisig

Freeze-out scenarios

Thermal processes

WIMP freeze-out

Coannihilation

Coannihilation

Jan Heisig

Coannihilation

Conversion-driven freeze-out / coscattering

[Garny, JH, Lülf, Vogl 1705.09292; D'Agnolo, Pappadopulo, Ruderman 1705.08450]

Viable parameter space

Flavor constraints from D-meson mixing:

- Direct detection constraints from LZ [2207.03764]
- Indirect detection from AMS-02 cosmic-ray antiprotons [1711.05274]
- Relic density $\Omega h^2 = 0.12$ [1807.06209]

Canonical freeze-out

Canonical freeze-out

Canonical freeze-out

Conversion-driven freeze-out

Production:

 $uu \rightarrow \phi \phi$ large cross section [see also e.g. M. Garny, A. Ibarra, M. Pato, S. Vogl, 1306.6342]

 \overline{q}_i

 \overline{q}_k

Production:

 $uu \rightarrow \phi \phi$ large cross section [see also e.g. M. Garny, A. Ibarra, M. Pato, S. Vogl, 1306.6342]

 \overline{q}_i

 \overline{q}_k

Production:

 $uu \rightarrow \phi \phi$ large cross section [see also e.g. M. Garny, A. Ibarra, M. Pato, S. Vogl, 1306.6342]

 \overline{q}_i

 \overline{q}_k

Using SModelS 2

[G.Alguero, JH, C. K. Khosa, S. Kraml et al. 2112.00769]

search	\sqrt{s}	signatures
ATLAS-SUSY-2013-02 [49]	8 TeV	$jets + E_T$
ATLAS-SUSY-2016-07 $[50]$	$13{ m TeV}$	$jets + E_T$
ATLAS-SUSY-2016-15 $[51]$	$13{ m TeV}$	$\operatorname{tops} + \not\!\!\! E_T$
ATLAS-SUSY-2018-12 $[52]$	$13{ m TeV}$	$\operatorname{tops} + \not\!\!\!\! E_T$
ATLAS-SUSY-2018-22 $[53]$	$13{ m TeV}$	$jets + E_T$
CMS-SUS-16-033 $[54]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-16-036 $[55]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-19-006 $\left[45 ight]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-19-009 $[56]$	$13\mathrm{TeV}$	$ ext{tops} + ot\!$
CMS-SUS-20-002 $[57]$	$13\mathrm{TeV}$	$\operatorname{tops} + \not\!\!\!\! E_T$

Using SModelS 2

[G.Alguero, JH, C. K. Khosa, S. Kraml et al. 2112.00769]

search	\sqrt{s}	signatures
ATLAS-SUSY-2013-02 [49]	8 TeV	$jets + \not\!\! E_T$
ATLAS-SUSY-2016-07 $[50]$	$13{ m TeV}$	$jets + E_T$
ATLAS-SUSY-2016-15 $[51]$	$13{ m TeV}$	$\operatorname{tops} + \not\!\!\! E_T$
ATLAS-SUSY-2018-12 $[52]$	$13{ m TeV}$	$\operatorname{tops} + \not\!\!\! E_T$
ATLAS-SUSY-2018-22 $[53]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-16-033 $[54]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-16-036 $[55]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-19-006 $[45]$	$13\mathrm{TeV}$	$jets + E_T$
CMS-SUS-19-009 $[56]$	$13\mathrm{TeV}$	$\operatorname{tops} + \not\!\!\! E_T$
CMS-SUS-20-002 $[57]$	$13\mathrm{TeV}$	$\operatorname{tops} + \not\!\!\! E_T$

LHC exclusions canonic scenario

Using SModelS 2

[G. Alguero, JH, C. K. Khosa, S. Kraml et al. 21 12.00769]

Excluded points: enhanced *t*-channel mediator production

2000

LHC exclusions canonic scenario

Light shaded points.

Using SModelS 2

[G.Alguero, JH, C. K. Khosa, S. Kraml et al. 2112.00769]

LIGHT SHAUED POINTS.			
95% CL excluded	search	\sqrt{s}	signatures
	ATLAS-SUSY-2013-02 [49]	8 TeV	$jets + E_T$
	ATLAS-SUSY-2016-07 $[50]$	$13{ m TeV}$	$jets + ot\!\!\!/ E_T$
	ATLAS-SUSY-2016-15 [51]	$13{ m TeV}$	$\operatorname{tops} + E_T$
	ATLAS-SUSY-2018-12 [52]	$13{ m TeV}$	$\operatorname{tops} + \not\!\!\! E_T$
	ATLAS-SUSY-2018-22 [53]	$13{ m TeV}$	$jets + E_T$
	CMS-SUS-16-033 [54]	$13{ m TeV}$	$jets + E_T$
	CMS-SUS-16-036 [55]	$13{ m TeV}$	$jets + E_T$
	CMS-SUS-19-006 [45]	$13{ m TeV}$	$jets + E_T$
	CMS-SUS-19-009 [56]	$13{ m TeV}$	$ ext{tops} + ot\!$
	CMS-SUS-20-002 [57]	$13{ m TeV}$	$ ext{tops} + ot\!$
500 1000 1500 2000			
$m_{\phi} [ext{GeV}]$			

Allowed points: complex decay patterns/non-prompt decays

2000

1500

m_{X3} [GeV]

500

Small DM coupling: long-lived particles

Using SModelS 2

[G. Alguero, JH, C. K. Khosa, S. Kraml et al. 2112.00769]

search	\sqrt{s}	signatures
ATLAS-SUSY-2016-32 [62]	$13{ m TeV}$	stable R-hadron
CMS-PAS-EX0-16-036 [63]	$13{ m TeV}$	stable R-hadron
CMS-SUS-16-032 $[64]$	$13{ m TeV}$	$cc + E_T$
CMS-SUS-16-036 $[55]$	$13{ m TeV}$	$ ext{jets} + ot\!$
CMS-SUS-16-049 $[61]$	$13{ m TeV}$	$ ext{tops} + ot\!$

Small DM coupling: long-lived particles

Using SModelS 2

[G. Alguero, JH, C. K. Khosa, S. Kraml et al. 2112.00769]

search	\sqrt{s}	signatures
ATLAS-SUSY-2016-32 [62]	$13{ m TeV}$	stable R-hadron
CMS-PAS-EX0-16-036 [63]	$13{ m TeV}$	stable R-hadron
CMS-SUS-16-032 $[64]$	$13\mathrm{TeV}$	$cc + E_T$
CMS-SUS-16-036 $[55]$	$13\mathrm{TeV}$	$ ext{jets} + ot\!$
CMS-SUS-16-049 $[61]$	$13{ m TeV}$	$ ext{tops} + ot\!$

Small DM coupling: long-lived particles

Using SModelS 2

Small DM coupling: long-lived particles

[JH, Lessa, Magno Dantas Ramos]

Majorana-specific signatures

→ Same-sign quark searches promising

Majorana-specific signatures

Same-sign top searches in SUSY $ttjj + E_T$ and $\overline{tt}jj + E_T$ CMS-SUS-19-008 [2001.10086]

Single-top charge asymmetry

$$\sigma_{\text{Dirac}}(tj + \not\!\!\!E_T) = \sigma_{\text{Dirac}}(\bar{t}j + \not\!\!\!E_T)$$

For Majorana, $\phi\phi$ production present and enhanced compared to $\phi^{\dagger}\phi^{\dagger}$ (due to valence up-quark content in *p*)

$$\sigma_{\text{Majorana}}(tj + \not\!\!\!E_T) > \sigma_{\text{Majorana}}(\bar{t}j + \not\!\!\!E_T)$$

Consider charge asymmetry:

$$a_{tj} = \frac{\sigma(tj + \not\!\!\!E_T) - \sigma(\bar{t}j + \not\!\!\!E_T)}{\sigma(tj + \not\!\!\!E_T) + \sigma(\bar{t}j + \not\!\!\!E_T)} \qquad \text{Dirac DM} \Rightarrow a_{tj} \simeq 0$$

Majorana DM $\Rightarrow a_{tj} > 0$

Single-top charge asymmetry

Summary

- Flavored Majorana Dark Matter: Large regions of viable parameter space
- Canonical and conversion-driven freeze-out
- Current gaps in LHC searches:
 - Complex decay chains
 - Long-lived particles (intermediate lifetimes)
- Majorana-specific signatures
 - Same-sign tops suffer from extra jets required
 - Single-top charge asymmetry