

B Physics in ATLAS and CMS

Ondra Kovanda

University of Oregon ATLAS Experiment

On behalf of the ATLAS and CMS collaborations

Introduction and Outline

Heavy Flavour physics gives us precise predictions of experimentally accessible quantities (lifetimes, branching ratios, ...)

Predictions modified in **numerous New Physics scenarios** → great laboratory to look for BSM effects!

Many interesting recent results!

ATLAS

- Measurement of the $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime with the ATLAS detector
- Measurement of the production cross-section of J/ψ and $\psi(2S)$ mesons

JHEP09(2023)199 Eur. Phys. J. C 84 (2024) 169

CMS

- Measurement of the B_s^0 effective lifetime in the decay $B_s^0 \rightarrow J/\psi K_s^0$
- Observation of the $\mathcal{Z}_b^- o \psi(2S)\mathcal{Z}^-$ decay and studies of the \mathcal{Z}_b^{*0} baryon
- Search for *CP* violation in $D^0 \rightarrow K_S^0 K_S^0$
- Observation of the rare decay $J/\psi \rightarrow 4\mu$

CMS-PAS-BPH-22-001New!arXiv:2402.17738New!CMS-BPH-23-005New!arXiv:2403.11352New!

See also the CMS wildcard talk later in this session!

ATLAS and CMS Experiments

General purpose detectors probing the SM and beyond in 13 TeV (13.6 TeV from 2022) p-p collisions @ LHC Dedicated flavour physics programme including:

- CP/LFU violation
- Rare decays
- Quarkonium Spectroscopy

Many measurements **highly competitive** with dedicated B-physics experiments thanks to **excellent muon performance, statistics and kinematic coverage**

Measurement of the $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime with the ATLAS detector

Experiment: ATLAS Dataset: 2015 + 2016 pp data (26.3 fb⁻¹) Keywords: CP violation, rare decay Link: JHEP09(2023)199

 $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime

 $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime $(\tau_{\mu\mu})$ relates to the "heavy-light rate asymmetry" parameter $A_{\mu\mu}$

$$\tau_{\mu\mu} = \frac{\tau_{B_s^0}}{1 - y^2} \left[\frac{1 + 2yA_{\mu\mu} + y^2}{1 + yA_{\mu\mu}} \right], \qquad y = \frac{\Gamma_{s,L} - \Gamma_{s,H}}{2\Gamma_s}, \qquad A_{\mu\mu} = \frac{\Gamma(B_{s,H}^0 \to \mu^+\mu^-) - \Gamma(B_{s,L}^0 \to \mu^+\mu^-)}{\Gamma(B_{s,L}^0 \to \mu^+\mu^-) + \Gamma(B_{s,L}^0 \to \mu^+\mu^-)}$$

SM: Only the CP-odd heavy $(B_{s,H}^0)$ eigenstate contributes $(A_{\mu\mu} = +1)$

- CP-even $B_{s,L}^0$ contribution allowed in certain **BSM** scenarios ($A_{\mu\mu} \in [-1, +1]$)
- $B_{s,H}^0$ and $B_{s,L}^0$ have notably different lifetimes ($\tau_{B_{s,H}^0} \tau_{B_{s,L}^0} = [1.624 1.431]$ ps = **0**. **193 ps**)

$\rightarrow au_{\mu\mu}$ is sensitive to $B^0_{s,L}$ contribution!

- Complementary observable to the $B_s^0 \rightarrow \mu^+ \mu^-$ branching ratio
 - Different combination of effective operators
 - → Even if one is measured SM-consistent, the other can still be affected by New Physics

First $au_{\mu\mu}$ measurement in ATLAS

- Based on 2015-2016 dataset & the corresponding BR measurement
 - Well understood simulation, signal/background BDT classifier and modelling
- Using $B^+ \to J/\psi (\to \mu\mu)K^+$ reference channel for data/MC comparisons

$B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime: Strategy

- 1. ML fit to dimuon invariant mass distribution
 - 3 components: $B_s^0 \rightarrow \mu^+ \mu^-$, partially reconstructed B-meson decays, random μ combinations
- 2. sPlot Background subtraction in proper decay time
 - sPlot procedure based on the invariant mass fit
 - Isolation of different fit components in proper decay time

sPlot: statistical method allowing to project out the signal/background distributions of a variable (e. g. $\tau_{\mu\mu}$), based on a fit to another, uncorrelated variable (e. g. dimuon mass).

- 3. χ^2 fit of the proper decay time distribution with $\tau_{\mu\mu}$ MC templates
 - Each template represents different $au_{\mu\mu}$ value

Ondra Kovanda, ondrej.kovanda@cern.ch

6

$B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime: Uncertainties

Statistical

- Evaluated with Neyman construction
- based on fits toy-MC datasets generated at different $au_{\mu\mu}$

Systematic

- Estimated in fits to toy-MC & reference channel data
- Three categories: Fit-related, data/MC discrepancies, neglected backgrounds
- Each contribution symmetrized & combined in quadrature

Uncertainty source	$\Delta au^{\mathrm{Obs}}_{\mu\mu}$ [fs]
Data - MC discrepancies	134
SSSV lifetime model	60
Combinatorial lifetime model	56
B kinematic reweighting	55
B isolation reweighting	32
SSSV mass model	22
B_d background	16
Fit bias lifetime dependency and B_s^0 eigenstates admixture	15
Combinatorial mass model	14
Pileup reweighting	13
B_c background	10
Muon Δ_{η} correction	6
$B \rightarrow hh'$ background	3
Muon reconstruction SF reweighting	2
Semileptonic background	2
Trigger reweighting	1
Total	174

$B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime: Result

The first ATLAS $au_{\mu\mu}$ measurement is

$$\tau_{\mu\mu} = \left[0.99^{+0.42}_{-0.07} \text{ (stat)} \pm 0.17 \text{ (syst)}\right] ps$$

• In agreement with the **SM prediction** that only $B_{s,H}^0$ contributes:

 $au_{B^0_{s,H}} = (1.624 \pm 0.009) \ ps \ (or \ A_{\mu\mu} = +1)$

- Consistent with other experimental results
 - Similar precision to other measurements using datasets of comparable size
- Statistics-limited
 - Analysis of the Full-Run 2 (2015-2018) dataset underway

CMS $\tau_{\mu\mu}$ measurements: 2011-2016: **1**. **70**^{+0.61}_{-0.44} (stat + syst) ps 2016-2018: [**1**. **83**^{+0.23}_{-0.20} (stat) ± **0**. **04** (syst)] ps

Measurement of the production cross-section of J/ψ and $\psi(2S)$ mesons in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Experiment: ATLAS Dataset: 2015 - 2018 *pp* data (Full Run 2, 140 fb⁻¹) Keywords: Charmonium production, QCD model constraints Link: <u>Eur. Phys. J. C 84 (2024) 169</u>

J/ψ and $\psi(2S)$ production cross-section

An important measurement constraining QCD models

- Charmonium production modes:
 - **Prompt:** QCD sources
 - Non-prompt: decays of B-hadrons

Double-differential cross-section measured in bins of p^T and rapidity (y)

- Significantly improved reach in p^T wrt. existing measurements
 - Use of two trigger strategies:
 - Di-muon for low- p^T regime ($p_{\mu\mu}^T < 60$ GeV)
 - Single-muon for high-pT regime (60 GeV $< p_{\mu\mu}^T <$ $360 \text{ GeV} (I/\psi) / 140 \text{ GeV} \psi(2S))$
- Separate treatment of prompt (P) and non-prompt (NP) components
 - Signal yields extracted in a 2-D fit to the dimuon invariant mass and proper decay time

$$\frac{d\sigma^{P, NP}(pp \to \psi)}{dp^{T}dy} \times BR(\psi \to \mu\mu) = \frac{1}{A \times \epsilon} \times \frac{N_{\psi}^{P, NP}}{\Delta p^{T} \Delta y \int \mathcal{L} dt}$$

 $\psi = I/\psi$ or $\psi(2S)$ $\epsilon = efficiency$ A = acceptance

J/ψ and $\psi(2S)$: Results

Cross-sections show similar falling trend with $p_{\mu\mu}^T$ for both J/ψ and $\psi(2S)$, in both P and NP production modes

The NP fraction $(\sigma^{NP} / \sigma^{P+NP})$ shows a plateau at $p_{\mu\mu}^T \sim 100 \text{ GeV}$ \rightarrow similar σ^P and σ^{NP} behaviour at very high $p_{\mu\mu}^T$

Different theory models: large discrepancy at high $p_{\mu\mu}^T$

→ highlighting the importance of this measurement's high $p_{\mu\mu}^T$ reach for tuning these models (see backup for more!)

Measurement of the B_s^0 effective lifetime in the decay $B_s^0 \rightarrow J/\psi K_s^0$

Experiment: CMS Dataset: 2016 - 2018 *pp* data (140 fb⁻¹, Full Run 2) Keywords: CP violation Link: <u>CMS-PAS-BPH-22-001</u>

$B_s^0 \rightarrow J/\psi K_s^0$ effective lifetime

Effective lifetime $(\boldsymbol{\tau})$ can disentangle heavy and light eigenstate contributions

- If *CP* is conserved, only the heavy (*CP*-odd) eigenstate will contribute
- Precision B-meson lifetime measurements constrain other SM parameters (CKM elements, ...)

$au_{J/\psi K^0_S}$ measurement

- $\tau_{J/\psi K_S^0}$ extracted in a 2D fit to the B_S^0 invariant mass and proper decay time
- Effective lifetime of more abundant $B^0 \rightarrow J/\psi K_S^0$ decay measured in the same fit
 - ightarrow Used as a reference for systematic tests & validation
- Using BDT to improve signal/bkg ratio

Results

 $\tau_{J/\psi K_S^0} = [1.59 \pm 0.07(\text{stat}) \pm 0.03(\text{syst})] \text{ ps}$

- Consistent with $\tau_{B^0_{S,H}} = (1.624 \pm 0.009) \text{ ps}$
- Dominant systematic: invariant mass functional models
- Control channel lifetime also SM-consistent
- Improved precision wrt. earlier LHCb result: $\tau_{J/\psi K_S^0}^{LHCb} = [1.75 \pm 0.12(\text{stat}) \pm 0.07(\text{syst})] \text{ ps}$

Observation of the $\mathcal{Z}_b^- \to \psi(2S)\mathcal{Z}^-$ decay and studies of the \mathcal{Z}_b^{*0} baryon

Experiment: CMS Dataset: 2016 - 2018 pp data (Full Run 2, 140 fb⁻¹) Keywords: \mathcal{Z}_b^* spectroscopy, \mathcal{Z}_b^- properties Link: arXiv:2402.17738

$\Xi_b^- \rightarrow \psi(2S)\Xi^-$ observation and Ξ_b^{*0} studies

Increasing data statistics @LHC allows exploration of ground and excited Ξ_b states

- Weak ground Ξ_b decays: possible intermediate resonances or CP violation
- Measurements of both ground and excited (Ξ^{*}_b) state properties constrain heavy quark EFT → better understanding of quark dynamics and hadronization
- \mathcal{Z}_b^{*0} is the first particle discovered by CMS

First observation of ${\mathcal Z}_b^- o \psi(2S) {\mathcal Z}^-$

- Using $\psi(2S) \to \mu\mu, \overline{\Xi}^- \to \Lambda(\to p\pi^-)\pi^-$
- Branching ratio measured relative to reference channel with $\psi(2S) \leftrightarrow J/\psi$

 $R = \frac{B(\overline{z_b^-} \to \psi(2S)\overline{z^-})}{B(\overline{z_b^-} \to J/\psi \overline{z^-})} = 0.84^{+0.21}_{-0.19}(\text{stat}) \pm 0.10(\text{syst}) \pm 0.02(\text{ext. inputs})$

• Consistent with analogous $b \rightarrow (cc)$ decays of $B_{(s)}$ and Λ_b (with values of R between 0.5, -0.6)

Candidates / 10 MeV

 $\Xi_b^- \rightarrow \psi(2S)\Xi^-$ observation and Ξ_b^{*0} studies

Properties of \mathcal{Z}_b^{*0}

- Using $\Xi_b^{*0} \to \overline{\Xi}_b^- \pi^+$ with multiple $\overline{\Xi}_b^-$ decays $(\psi(2S)\Xi^-, J/\psi \Xi^-, J/\psi \Lambda K^-, J/\psi \Sigma^0 K^-)$
- \mathcal{Z}_{b}^{*0} mass and decay width extracted in a fit to $\Delta M = M(\mathcal{Z}_{b}^{-}\pi^{+}) M(\mathcal{Z}_{b}^{-}) m_{\pi^{+}}^{PDG}$
 - → Improved mass resolution wrt. $M(\Xi_b^-\pi^+)$

$$m_{\Xi_b^{*0}} = 5952.4 \pm 0.1(\text{stat} + \text{syst}) \pm 0.6(m_{\Xi_b^-}) \text{ MeV}$$

$$\Gamma_{\Xi_b^{*0}} = 0.87^{+0.22}_{-0.20}(\text{stat}) \pm 0.16(\text{syst}) \text{ MeV}$$

$$\frac{\sigma(pp \to \Xi_b^{*0}X)B(\Xi_b^{*0} \to \Xi_b^-\pi^+)}{\sigma(pp \to \Xi_b^-X)} = 0.23 \pm 0.04 \text{ (stat)} \pm 0.02 \text{ (syst)}$$

→ ~
$$^{1}/_{4}$$
 of Ξ_{b}^{-} are produced in $\Xi_{b}^{*0} \rightarrow \Xi_{b}^{-}\pi^{+}$
→ ~ $^{1}/_{3}$ of Ξ_{b}^{-} coming from Ξ_{b}^{*0} decays

Search for *CP* violation in $D^0 \rightarrow K_S^0 K_S^0$

Experiment: CMS Dataset: 2018 *pp* data (41.6 fb⁻¹) Keywords: CP violation Link: <u>CMS-BPH-23-005</u>

Novel trigger strategy employed: "B parking"

- b-hadrons mostly produced in pairs
 - \rightarrow One decay used for triggering ("tag")
 - → Second decay is unbiased ("probe")
- Unbiased sample of 10^{10} b-hadron decays obtained in 2018 data

CP violation in $D^0 \rightarrow K_S^0 K_S^0$

Study of CP violation in charm-mesons

- Complementary to and SM-suppressed wrt. b- and s- systems
 - Significant *CP* asymmetry $(A_{CP}) \rightarrow$ hint of BSM contribution

First CMS CP measurement in charm sector

- Using D^0 s from $D^{*\pm} \rightarrow D^0 \pi^{\pm} \rightarrow pion$ charge tags D^0 vs. \overline{D}^0
- D^{*+} vs. D^{*-} differences:
 - Production cross-section (\rightarrow different rate of D^0 vs. \overline{D}^0)
 - Detection efficiency of low-momentum π^+ vs. π^-

 $\rightarrow A_{CP}$ in signal (S) measured relative to $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ reference (R) channel

$$\Delta A_{CP} = A_{CP}^{S} - A_{CP}^{R} = \frac{N_{S}^{D^{0}} - N_{S}^{\overline{D}^{0}}}{N_{S}^{D^{0}} + N_{S}^{\overline{D}^{0}}} - \frac{N_{R}^{D^{0}} - N_{R}^{\overline{D}^{0}}}{N_{R}^{D^{0}} + N_{R}^{\overline{D}^{0}}}$$

 $\rightarrow D^{*+}$ vs. D^{*-} differences cancel out in ΔA_{CP}

Reference channel

- Similar kinematics and topology to signal
- More abundant & well established A_{CP}^{R}
- Yields $N_R^{D^0}$ and $N_R^{\overline{D}^0}$ obtained in a fit to the D^{*+} and D^{*-} inv. mass

CP violation in $D^0 \rightarrow K_S^0 K_S^0$

Signal channel

 Rare process – signal statistics dominates the analysis uncertainty

→ Yields $N_S^{D^0}$ and $N_S^{\overline{D}^0}$ obtained in a **2D fit** to the $D^{*\pm}$ and \overline{D}^0 inv. mass

Small overall systematics

- Signal & background parametrization
- Non-cancellation of terms in ΔA_{CP}

Result (\pm stat \pm syst $\pm A_{CP}^{R}$):

 $A_{CP}(K_S^0 K_S^0) = [6.2 \pm 3.0 \pm 0.2 \pm 0.8]\%$

- Consistent with no *CP* violation ($A_{CP} = 0$)
- Pilot result paving way to future measurements with more data
- Consistent with LHCb ($[3.1 \pm 1.2 \pm 0.4 \pm 0.2]$ %) and Belle ($[0.02 \pm 1.53 \pm 0.02 \pm 0.17]$ %)

Observation of the rare decay $J/\psi \rightarrow 4\mu$

Experiment: CMS Dataset: 2018 pp data (33.6 fb⁻¹) Keywords: rare decay Link: <u>arXiv:2403.11352</u>

Observation of $J/\psi \rightarrow 4\mu$

- SM: proceeds via virtual photon or Z with predicted $B(J/\psi \rightarrow 4\mu) = (9.74 \pm 0.05) \times 10^{-7}$ \rightarrow BSM particles can contribute & affect the rates
- Novel testing ground for QED predictions

• Previously: 90% CL upper limit on BR set by **BESIII** at 1.6×10^{-6}

First observation of $J/\psi ightarrow 4\mu$

- Using the "B-parking" trigger strategy (see slide 17)
- Branching ratio measured relative to abundant $J/\psi \rightarrow \mu\mu$ reference decay

$$B(J/\psi \to 4\mu) = B(J/\psi \to \mu\mu) \times \frac{N_{4\mu}}{N_{2\mu}} \times \frac{\epsilon_{2\mu}}{\epsilon_{4\mu}}$$

- Signal and reference yields extracted in a fit to the 4- (2-)μ invariant mass
- Efficiency ratio studied in MC

Result

 $B(J/\psi \to 4\mu) = [10.1^{+3.3}_{-2.7}(\text{stat}) \pm 0.4(\text{syst})] \times 10^{-7}$

• Consistent with SM prediction (9.74 \pm 0.05) imes 10⁻⁷

 μ^+

Summary

Summary

Many exciting new results probing the flavour sector:

• Covering a broad range of observables accessible to LHC's general purpose detectors

Measurement of the $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime with the ATLAS detector $\rightarrow \tau_{\mu\mu} = \left[0.99^{+0.42}_{-0.07} \text{ (stat)} \pm 0.17 \text{ (syst)}\right] \text{ps}$ – Consistent with SM prediction of exclusive $B_{s,H}^0$ contribution

Measurement of the B_s^0 effective lifetime in the decay $B_s^0 \rightarrow J/\psi K_s^0$ $\rightarrow \tau_{J/\psi K_s^0} = [1.59 \pm 0.07(\text{stat}) \pm 0.03(\text{syst})] \text{ ps}$ - consistent with SM and $B_{s,H}^0$ hypothesis

Measurement of the **production cross-section of Jpsi and psi2S mesons**

 \rightarrow New high- p^T constraints for QCD models

Observation of the $\mathcal{Z}_b^- \to \psi(2S)\mathcal{Z}^-$ decay and studies of the \mathcal{Z}_b^{*0} baryon \rightarrow Novel measurements of b-baryon properties

Search for *CP* violation in $D^0 \rightarrow K^0_S K^0_S$

→ No significant *CP* violation observed in the pilot CMS *CP* measurement in the charm sector

Observation of the rare decay $J/\psi \rightarrow 4\mu$ $\rightarrow B(J/\psi \rightarrow 4\mu) = [10.1^{+3.3}_{-2.7}(stat) \pm 0.4(syst)] \times 10^{-7}$ - in agreement with SM See backup for more results from 2023!

Backup

J/ψ and $\psi(2S)$: Results

All theory – data comparisons

The high $p_{\mu\mu}^T$ reach of this measurement is important for tuning different models

Ondra Kovanda, ondrej.kovanda@cern.ch

Search for the **lepton flavor violating** $\tau \rightarrow 3\mu$ **decay** in proton-proton collisions at $\sqrt{s} = 13$ TeV

Experiment: CMS Dataset: 2017 + 2018 pp data (97.7 fb⁻¹) Keywords: Lepton flavour violation, rare decay

Search for the $\tau \rightarrow 3\mu$ decay

LF-violating decay, can proceed in SM through neutrino oscillations in loops

- → **Extremely** suppressed: $BR(\tau \rightarrow 3\mu) \approx O(10^{-55})$
- → Significant contribution in NP scenarios (e. g. SUSY: $BR \approx O(10^{-10} 10^{-8}))$

Two strategies based on the τ source:

- Heavy flavour decays $(D^+ \to \tau^+ \nu_{\tau}, B^+ (B^0) \to \tau^+ + X)$
 - Vast majority of the sample
 - Lower muon p^T
 - BR normalized with $D_s^+ \to \varphi(\to \mu\mu)\pi^+$ yield
- $W^+ \rightarrow \tau^+ \nu_{\tau}$ decay
 - Typically high p^T , well-isolated muons
 - Large missing transverse momentum

 $BR(\tau \rightarrow 3\mu)$ extracted in a simultaneous fit to the tri-muon invariant mass in all data categories

Measurement combined with 2016 result:

 $BR(\tau \rightarrow 3\mu) < 2.9 \times 10^{-8}$ at 90% CL

Test of **lepton flavor universality in** $B^+ \rightarrow K^+ \mu^+ \mu^$ **and** $B^+ \rightarrow K^+ e^+ e^-$ **decays** in proton-proton collisions at $\sqrt{s} = 13$ TeV

Experiment: CMS Dataset: 2018 *pp* data (33.6 fb⁻¹) Keywords: Lepton flavour universality violation, branching ratio

Ondra Kovanda, ondrej.kovanda@cern.ch

R(K) and differential $B(B^+ \rightarrow K^+ \mu^+ \mu^-)$

SM: LFU violated only by lepton mass difference $\rightarrow R(K^+)$ very close to unity

Can be significantly affected in BSM (e. g. leptoquarks with non-universal couplings)

Experiment: measuring double ratio wrt. abundant reference channels:

$$R(K)|_{q^2} = \frac{B(B^+ \to K^+ \mu^- \mu^-)_{q^2}}{B(B^+ \to J/\psi (\to \mu^+ \mu^-)K^+)} \Big/ \frac{B(B^- \to K^- e^- e^-)_{q^2}}{B(B^+ \to J/\psi (\to e^+ e^-)K^+)} (\cong 1)$$

 $R(R^+ \rightarrow K^+ \mu^+ \mu^-)|_2 \qquad \mu R(R^+ \rightarrow K^+ \rho^+ \rho^-)|_2$

- Same final state, proceeding through J/ψ resonance
 - ightarrow Cancellation of systematics

R(K) measurement performed in dimuon invariant mass squared (q^2) region of $1.1 \text{ GeV}^2 < q^2 < 6 \text{ GeV}^2$

• Optimized to avoid contamination by ϕ and J/ψ decays

Measurement of $B(B^+ \rightarrow K^+ \mu^+ \mu^-)$

- Differential in q^2 : range extended to 0.1 GeV² < q^2 < 22.9 GeV², avoiding the ϕ , J/ψ and $\psi(2S)$ windows
- Integrated: in the $R(K) q^2$ range

Signal and reference yields extracted in an invariant mass fit:

R(K) and differential $B(B^+ \rightarrow K^+ \mu^+ \mu^-$

Novel trigger strategy employed: "B parking"

- b-hadrons mostly produced in pairs
 - → One decay used for triggering ("tag"), source of $B^+ \rightarrow K^+ \mu^+ \mu^-$
 - → Second decay is unbiased ("probe"), source of $B^+ \rightarrow K^+ e^+ e^-$
- Unbiased sample of 10^{10} b-hadron decays obtained in 2018 data

Results:

 $R(K) = 0.78^{+0.46}_{-0.23} (stat.)^{+0.09}_{-0.05} (syst.)$

- Consistent with unity
- Largely limited by the electron channel statistics

Differential $B(B^+ \rightarrow K^+ \mu^+ \mu^-)$

Generally lower than theory predictions

Integrated $B(B^+ \to K^+ \mu^+ \mu^-)|_{q^2 \in [1.1,6]} = (12.42 \pm 0.68) \times 10^{-8}$

In agreement with and of similar precision as the current world average

 a^2 [GeV²

Observation of the $\Lambda_b \rightarrow J/\psi \Xi^- K^+$ decay

Experiment: CMS Dataset: 2015 - 2018 *pp* data (Full Run 2, 140 fb⁻¹) Keywords: intermediate resonances, pentaquarks, rare decay

Observation of the $\Lambda_b \rightarrow J/\psi \Xi^- K^+$ decay

Multi-body decays of b-hadrons may proceed through exotic intermediate resonances

- E.g. pentaquark-like $J/\psi p$ structure in $\Lambda_b \to J/\psi pK^-$ observed by LHCb
- $J/\psi \Xi^- K^+$ final state can unveil yet-unobserved (e. g. doubly-strange) pentaquarks

This measurement:

- First-time observation of $\Lambda_b \to J/\psi \,\Xi^- K^+$
 - In final states with $J/\psi \rightarrow \mu\mu$, $\Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^ \rightarrow$ 5.8 σ significance
- $\Lambda_b \rightarrow J/\psi \Xi^- K^+$ branching fraction ratio measurement
 - Determined relative to the topologically similar $\Lambda_b \rightarrow \psi(2S)(\rightarrow J/\psi \pi^- \pi^+)\Lambda$ reference channel:

$$R = \frac{B(\Lambda_b \to J/\psi \Xi^- K^+)}{B(\Lambda_b \to \psi(2S)\Lambda)}$$

- Search for intermediate resonances
 - Looking for structures in the invariant mass of the decay product pairs

Signal extracted in a fit to the $(J/\psi \Xi^- K^+)$ invariant mass:

Observation of the $\Lambda_b \rightarrow J/\psi \Xi^- K^+$ decay

 $\Lambda_b \rightarrow J/\psi \, \Xi^- K^+$ branching fraction ratio measurement

• Large systematics cancellation in the measured ratio R

$$R = \frac{B(\Lambda_b \to J/\psi \Xi^- K^+)}{B(\Lambda_b \to \psi(2S)\Lambda)} = \frac{N_{signal}}{N_{ref.}} \times \frac{\epsilon_{signal}}{\epsilon_{ref.}} \times \frac{B(\psi(2S) \to J/\psi \pi^- \pi^+)}{B(\Xi^- \to \Lambda \pi^-)}$$

 $= [3.38 \pm 1.02 (stat.) \pm 0.61 (syst.) \pm 0.03 (B)] \%$

• Result dominated by low signal statistics, last uncertainty is due to the external BRs

Search for intermediate resonances

• Invariant mass distributions of the signal decay product pairs isolated with the sPlot procedure:

 $m(\psi(2S)\Lambda)$ [GeV]

Test of lepton flavor universality in semileptonic B_c^+ meson decays at CMS

Experiment: CMS Dataset: 2018 pp data (59.7 fb⁻¹) Keywords: Lepton flavour universality violation

$R(J/\psi)$ measurement

Test of LFU in B_c^+ decays:

• SM predicts $R(J/\psi) \approx 0.26$

Experiment: $R(J/\psi)$ ratio measured directly

- Using only $J/\psi \rightarrow \mu^+\mu^-$ and $\tau^+ \rightarrow \mu^+\nu_\mu$ decay channels \rightarrow Always 3 muons in the final state
- Signals best separated in kinematical variables utilizing the large $m_{\tau} m_{\mu}$ difference:
 - $q^2 = (p_{B_c^+} p_{J/\psi})^2$, transverse decay length significance $(\frac{L_{xy}}{\sigma_{L_{xy}}})$

• Dominant background: hadrons misidentified as muons

Signal and background yields obtained in binned template fits to q^2 and $\frac{L_{xy}}{\sigma_{L_{xy}}}$ in several data categories

Result: $R(J/\psi) = 0.17 \pm 0.33$ (stat. + syst. + theory)

CMS

$$R(J/\psi) = \frac{B(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{B(B_c^+ \to J/\psi \mu^+ \nu_\mu)}$$

