Investigating Beyond Standard Model Physics with IceCube: Oscillations and Upgrades

John Hardin, MIT On behalf of the IceCube Collaboration 3/29/24 Moriond EW

John Hardin/NSF IceCube

Outline

- What are Sterile Neutrinos, and why are we looking for them
- How does IceCube look for new physics
- Recent results on Sterile Neutrinos
- Other Beyond the Standard Model Results
- The IceCube Upgrade

Sterile Neutrinos (3+1)

Something is Peculiar in the State Of Neutrinos

- Over the past 25 years we have developed a strong 3 neutrino model
- But anomalies remain
- Adding BSM physics could improve the global fit by $\sim 7\sigma$
 - https://arxiv.org/abs/2211.02610

Which BSM: Sterile Neutrino(s)

- Proposed BSM particle
- Neutrino that does not interact weakly
- It can have a large mass splitting
- 2 Parameters: splitting and mixing (frequency and amplitude)
- IceCube detects this signal differently than other sterile searches

3**v** SM

3**v**+1 Sterile

Phys. Rep. 884, arxiv:1906.00045

Sterile Neutrinos and the Earth in IceCube

- IceCube doesn't look for standard oscillations
- The sterile portion (if any) does not interact in the earth
- Different matter potential for sterile and non-sterile neutrinos
- Produces a resonant (!) term

How does IceCube look for this deficit?

- Extremely pure sample of upgoing (Northern) tracks (Muon Charged Current)
- Primarily looking at atmospheric neutrinos
- Energy Range of 500 GeV -100 TeV
- Improved from previous analyses stopping at 10 TeV

Improvements:

- BDT based selection
- Starting vs Throughgoing separation
- DNN Based Energy Reconstruction:

Results

First: The Systematics

Result

- $\Delta m^2 = 3.5 eV^2$
- $\sin^2(2\theta_{24}) = 0.16$
- p_{null} = 3.1%

Sensitivity (99% CL): Median

This result (10.7y):

★ Best Fit (p-value=3.1%) 90% CL

- - - 95% CL

99% CL

Previous results (90% C.L.): IceCube-2016 (1y) - - - DeepCore 2017 (2y)

DeepCore-2017 (3y)
IceCube-2020 (8y)

— DeepCore-2023 (8y)

Ц Ш **Dimension:**

Conclusions

- The p-value for the null hypothesis of sterile neutrinos in the muon disappearance channel is 3.1%
- Does not rise to evidence
- Contributes to our understanding of the neutrino landscape

Beyond Sterile Neutrinos

Sterile

IceCube is Improving

The IceCube Upgrade

- IceCube is divided into the large regular grid of strings and a denser core
 - Higher acceptance vs lower energy threshold

Credit: IceCube

The IceCube Upgrade

- IceCube is divided into the large regular grid of strings and a denser core
 - Higher acceptance vs lower energy threshold
- Upgrade is expected to go into operation in early 2026
- Even denser lower energy thresholds

Upgrade Expectations

22

Conclusions

- IceCube observes a 3.1% statistical agreement with a no-sterile neutrino model in the muon disappearance channel
- IceCube has access to a wide variety of BSM Physics
- The IceCube upgrade will push us past current statistical limitations
- Stay Tuned

John Hardin/NSF IceCube

Thank You

1

1.11/11

John Hardin/NSF IceCube

Improvements to the Sterile Search

- For the sterile analysis, the systematic treatment was improved
- Updated (conventional) atmospheric flux modeling
 - Arxiv:2205.14766
 - Updated Cosmic Ray Modeling
 - Updated Hadronic Modeling
- Updated astrophysical modeling
 - Specifically, a broken power law

Systematic	Central	Prior (1σ)	Range	Implementation
Detector Parameters			22 118A 11 80 1 4	A
Normalization	1.0	±0.2	0.1,3	
DOM efficiency	1.27	±10%	[1.234, 1.346]	6 support points
Ice Amplitude 0	0.0	±1.0	[-3,3]	Correlation (see Fig. 19)
Ice Amplitude 1	0.0	± 1.0	[-3,3]	
Ice Amplitude 2	0.0	±1.0	[-3,3]	
Ice Amplitude 3	0.0	±1.0	[-3,3]	
Ice Phase 1	0.0	± 1.0	-3,3	
Ice Phase 2	0.0	±1.0	-3,3	
Ice Phase 3	0.0	±1.0	[-3,3]	
Ice Phase 4	0.0	±1.0	[-3,3]	
Forward Hole Ice	-1.0	±10	-5.35, 1.85	5 support points
Conventional Flux Par	ameters			
Atm. Density	0	±1.0	-3,3	Spline
Kaon energy loss	0.0	± 1.0	-3,3	Spline
K ⁺	0.0	± 1.0	[-2, 2]	Correlation (see Fig. 24)
KISSC	0.0	± 1.0	[-2, 2]	"
π ⁺	0.0	± 1.0	[-2, 2]	
#207	0.0	±1.0	[-2, 2]	
K ⁺ _{ap}	0.0	± 1.0	[-1, 2]	
K_P	0.0	±1.0	[-1.5, 2]	
π_{2P}^{+}	0.0	± 1.0	[-2, 2]	
T 2P	0.0	±1.0	[-2, 2]	
P2P	0.0	±1.0	[-2, 2]	
n ₂ P	0.0	±1.0	[-2, 2]	
GSF1	0.0	± 1.0	[-4, 4]	
GSF ₂	0.0	± 1.0	[-4, 4]	
GSF ₃	0.0	± 1.0	[-4, 4]	
GSF4	0.0	±1.0	[-4, 4]	
GSF5	0.0	± 1.0	[-4, 4]	
GSF6	0.0	±1.0	[-4, 4]	(m.)
High-energy Flux Para	meters		1 1 7 1	
Normalization	0.787	±0.36	[0.3]	
$\Delta \gamma_1$, tilt from -2.5	0.0	±0.36	[-2,2]	
$\Delta \gamma_2$, tilt from -2.5	0.0	± 0.36	[-2,2]	
Pivot energy in log10	-	-	[4,6]	Uniform prior
Cross-section Paramet	ers		1-1-1-1	
v cross section	1.0	±0.1	[0.824, 1.176]	30 support points
₽ cross section	1.0	± 0.1	0.824 1.176	

Sterile Neutrinos: Global picture

- We know that something is happening in the global data
 - Either a systematic or new physics
- But tension tells us that simple 3+1 doesn't appear to be the answer
- IceCube's analysis is a unique contribution to this picture

	Fit type:	3+1	3+2	3+3	3+1+WP	3+1+dk
The data are anomalous:	(Null vs Sterile) $N\sigma$	6.2	6.2	6.1	7.1	7.0
	(3+1 vs Other) $N\sigma$	5 	2.1	2.4	3.8	3.8
But there is tension in 3+1:	(PG Test) $N\sigma$	4.9	5.3	4.1	3.4	3.7

World results

World tension

Fit type:	3+1	3+2	3+3	3+1+WP	3+1+dk
(Null vs Sterile)					
$\Delta \chi^2$	46.5	56.9	67.4	61.1	60.6
Δdof	3	7	12	4	4
p-value	4.4E-10	6.3E-10	9.8E-10	1.7E-12	2.2E-12
$N\sigma$	6.2	6.2	6.1	7.1	7.0
(3+1 vs Other)					
$\Delta \chi^2$	61	10.1*	20.6*	14.6	14.1
Δdof		4	9	1	1
<i>p</i> -value		3.9E-2	1.5E-2	1.3E-4	1.7E-4
Νσ		2.1	2.4	3.8	3.8
(PG Test)					
χ^2_{app}	148.2	131.8	131.1	148.2	146.8
Napp	2	5	9	2	3
χ^2_{dis}	639.8	626.1	625.2	638.4	641.4
N _{dis}	3	6	9	4	4
χ^2_{glob}	816.1	796.2	785.7	801.5	807.5
Nglob	3	7	12	4	4
χ^2_{PG}	28.1	38.4	29.5	14.9	19.3
N _{PG}	2	4	6	2	3
p-value	7.9E-07	9.3E-08	4.9E-05	5.8E-04	2.4E-4
Νσ	4.9	5.3	4.1	3.4	3.7

