The CKM mechanism and CP violation in beauty and charm decays

Rencontres de Moriond 2024 Electroweak interactions and unified theories 27th March 2024

> Mark Williams On behalf of LHCb Collaboration

Introduction & Outline

- LHCb original detector now retired \Rightarrow huge success \Rightarrow unprecedented b and c sample
- Still many key measurements coming out
- Run 3 analyses ongoing
- Today focus on Run 1+2:
 - CKM angle y
 - \succ CPV in B⁰_(s) systems (time-dependent, time-integrated)
 - CPV in charm mesons

CKM and CPV in beauty and charm

Mark Williams

- Study of CP violation in $B^0_{(s)} \rightarrow DK^*(892)^0$ decays with $D \rightarrow K\pi(\pi\pi)$, $\pi\pi(\pi\pi)$, and KK final states (arXiv:2401.17934, submitted to JHEP Fresh)
- A model-independent measurement of the CKM angle γ in partially reconstructed B[±]→D^{*}h[±] decays with D→K⁰_Sh⁺h⁻ (h=π,K) (arXiv: 2311.10434, JHEP 02 (2024) 118)
- Measurement of the CKM angle γ using the B[±]→D^{*}h[±] channels (arXiv: 2310.04277, JHEP 12 (2023) 013)
- Measurement of the CKM angle γ in the B⁰→DK^{*0} channel using self-conjugate D→K⁰_sh⁺h⁻ decays (arXiv:2309.05514, Eur. Phys. J. C 84 (2024) 206)

Part 1: CKM angle y

CKM angle y

1.5

Wide programme:

- B⁰, B⁰_s, B⁺
- Different B decays
- Different D decays

$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

No top quarks – can measure at tree-level via interference of $b \rightarrow \overline{c}$ us (\overline{u} cs) decays Measure in tree-level processes

 $\gamma = (66.2 \pm 3.5)^{\circ} \Rightarrow \text{precise SM benchmark}$ (HFLAV)

Compare to indirect constraints (unitarity)

 $\gamma = (65.5 \pm 1.3)^{\circ} \Rightarrow \text{sensitive to NP}$ (CKMFitter)

CKM and CPV in beauty and charm

Mark Williams

CPV in $B^0_{(s)} \rightarrow D^0 K^*(892)^0$ decays

arXiv:2401.17934 (Submitted to JHEP)

Use D decays to CP-eigenstate ($\pi^+\pi^-$, K^+K^- , $4\pi^\pm$) and via CF/DCS paths ($K^{\mp}\pi^{\pm}$, $K^-\pi^+\pi^+\pi^-$)

Interference \Rightarrow CP asymmetries \Rightarrow sensitive to **y**

Full Run 1+2 sample (9fb⁻¹)

Example fit for $\overline{B}{}^0 \rightarrow \overline{K}^*(D \rightarrow K^- 3\pi)$ channel \Rightarrow 7 channels x 2 B flavours = **14 samples** fitted

5

CPV in $B^0_{(s)} \rightarrow D^0 K^*(892)^0$ decays

arXiv:2401.17934 (Submitted to JHEP)

			1			
Parameter	Value		Q	4-fold	LHC	Cb
$\mathcal{A}_{K\pi}$	$0.031 \pm 0.017 \pm 0.015$		-10.8	- - amhiguity	9 fb ⁻¹	
$\mathcal{R}^+_{\pi K}$	$0.069 \pm 0.013 \pm 0.005$					
${\cal R}^{\pi K}$	$0.093 \pm 0.013 \pm 0.005$		0.6	-		
$\mathcal{A}_{K\pi\pi\pi}$	$-0.012\pm0.018\pm0.016$	\rightarrow	0.0	-		
${\cal R}^+_{\pi K\pi\pi}$	$0.060 \pm 0.014 \pm 0.006$			-	$\gamma \approx (62 \pm 8)^{\circ}$	
${\cal R}^{\pi K\pi\pi}$	$0.038 \pm 0.014 \pm 0.006$		0.4	68.3%	/	
\mathcal{R}_{CP}^{KK}	$0.811 \pm 0.057 \pm 0.017$	60% more precise	-	¥		
\mathcal{A}_{CP}^{KK}	$-0.047\pm0.063\pm0.015$	than previous best	0.2	-		-
$\mathcal{R}_{CP}^{\pi\pi}$	$1.104 \pm 0.111 \pm 0.026$		-	95.5%		
$\mathcal{A}_{CP}^{\pi\pi}$	$-0.034 \pm 0.094 \pm 0.016$	for CPV parameters	0			
${\cal R}^{4\pi}_{CP}$	$0.882 \pm 0.086 \pm 0.033$	(still stat. limited)	0	50	100 150	., го
${\cal A}^{4\pi}_{CP}$	$0.021 \pm 0.087 \pm 0.016$					γĽ

- A: asymmetries
- R: ratios of rates

6

CKM and CPV in beauty and charm

CPV in $B^0_{(s)} \rightarrow D^0 K^*(892)^0$ decays

arXiv:2401.17934 (Submitted to JHEP

$B^{\pm} \rightarrow D^{*}h^{\pm}, D \rightarrow K^{0}_{s}h^{+}h^{-}$

Multibody final state with rich resonant structure \Rightarrow strong phases depend on Dalitz coordinates

Model-agnostic: use binned input from BESIII & CLEO arXiv:2003.00091 arXiv:2007.07959 arXiv:1010.2817

Approach 1: Reconstruct $D^* \rightarrow D\pi^0$ and $D\gamma$ \Rightarrow Better control of backgrounds \Rightarrow first time in LHCb & first with model-agnostic approach (<u>Run 1+2</u>)

JHEP 12 (2023) 013 (arXiv:2310.04277)

Approach 2: no π^0/γ reconstruction \Rightarrow Higher signal efficiency \Rightarrow update with full <u>Run 1+2</u>

JHEP 02 (2024) 118 (arXiv:2311.10434)

$B^{\pm} \rightarrow D^{*}h^{\pm}, D \rightarrow K^{0}_{s}h^{+}h^{-}$

Single clear maximum Statistically limited

<u>Outlook for γ</u>

- Most benchmark channels completed with Run 1+2
- More data

 \Rightarrow more precision

• Investigating new channels for full exploitation in Run 3

 $\frac{\text{arXiv:}2310.04277}{(\text{JHEP 12 (2023) 013})}$ $\gamma = (69^{+13}_{-14})^{\circ},$ $r_B^{D^*K} = 0.15 \pm 0.03,$ $r_B^{D^*\pi} = 0.01 \pm 0.01,$ $\delta_B^{D^*K} = (311 \pm 14)^{\circ},$ $\delta_B^{D^*\pi} = (37 \pm 37)^{\circ}.$

 $\begin{aligned} & \frac{\operatorname{arXiv:2311.10434}}{(\mathrm{JHEP~02~(2024)~118})} \\ & \gamma = (92^{+21}_{-17})^{\circ}, \\ & r_B^{D^*K} = 0.080^{+0.022}_{-0.023}, \\ & \delta_B^{D^*K} = (310^{+15}_{-20})^{\circ}, \\ & r_B^{D^*\pi} = 0.009^{+0.005}_{-0.007}, \\ & \delta_B^{D^*\pi} = (304^{+37}_{-38})^{\circ}. \end{aligned}$

Mark Williams

- A measurement of ΔΓ_s (arXiv:2310.12649, Submitted to JHEP)
- Measurement of CP violation in B⁰→ψ(→ℓ⁺ℓ⁻)K⁰_S(→π⁺π⁻) decays (arXiv:2309.09278, PRL 132 (2024) 021801)
- Improved measurement of CP violation parameters in B⁰_S→J/ψK⁺K⁻ decays in the vicinity of the φ(1020) resonance (arXiv:2308.01468, PRL 132 (2024) 051802)
- Measurement of CP asymmetries and branching fraction ratios of B⁻ decays to two charm mesons (<u>arXiv:2306.09945</u>, JHEP 09 (2023) 202)
- Precision Measurement of CP Violation in the Penguin-Mediated Decay B⁰_s→φφ (arXiv:2304.06198, PRL 131 (2023) 171802)

Part 2: CPV in B^o_(s) decays

Time-dependent CPV in B⁰ decays: β

PRL 132 (2024) 021801 (arXiv:2309.09728)

CKM and CPV in beauty and charm Mark Williams Moriond EV

Time-dependent CPV in B⁰ decays: β

PRL 132 (2024) 021801 (arXiv:2309.09728)

Time-dep. CPV in B_s^0 decays: ϕ_s

<u>PRL 132 (2024) 051802</u> (arXiv:2308.01468)

B⁰_s analogue of sin(2β) ⇒ suppressed from CKM ⇒ precisely constrained in SM

For b \rightarrow ccs measure phase $\phi_s \approx -2\beta_s = -0.0368(9)$ rad (SM)

Mark Williams

Time-dep. CPV in B_s^0 decays: ϕ_s

PRL 132 (2024) 051802 (arXiv:2308.01468)

B⁰_s analogue of sin(2β) ⇒ suppressed from CKM ⇒ precisely constrained in SM

For b \rightarrow ccs measure phase $\phi_s \approx -2\beta_s = -0.0368(9)$ rad (SM)

- Full Run 2 analysis of benchmark channel $J/\psi(\phi \rightarrow)K^+K^-$
- No evidence for CP asymmetry
- Most precise ϕ_s measurement, still stat. limited

• Angular analysis

Time-dep. CPV in B_s^0 decays: ϕ_s

PRL 132 (2024) 051802 (arXiv:2308.01468)

15

Mark Williams Mor

ΔΓ_s measurement

arXiv:2310.12649 (submitted to JHEP)

16

Disagreement between different (Γ_s , $\Delta\Gamma_s$) measurements in J/ ψ K⁺K⁻ channel \Rightarrow Motivates independent checks

 $B_s^0 \rightarrow J/\psi \pi^+\pi^-$ CP-odd ⇒ measure τ_H f₀(980) region

```
\begin{array}{cc} B_{s}^{0} \rightarrow J/\psi \eta' & CP\text{-even} \Rightarrow \text{measure } \tau_{L} \\ \eta' \rightarrow \rho^{0} \gamma \end{array}
```


- Measurement of D⁰ mixing and search for CP violation with D⁰→K⁺π⁻ decays (New for Moriond EW)
- Search for time-dependent CP violation in $D^0 \rightarrow \pi^+\pi^-\pi^0$ decays (New for Moriond EW)
- Search for CP violation in the phase space of $D^0 \rightarrow K^0{}_SK^{\pm}\pi^{\mp}$ decays with the energy test (arXiv:2310.19397, accepted by JHEP)
- Search for CP violation in the phase space of $D^0 \rightarrow \pi^- \pi^+ \pi^0$ decays with the energy test (arXiv:2306.12746, JHEP 09 (2023) 129)

Part 3: Charm

Mixing and CPV in charm

Short-distance mixing highly suppressed (CKM and GIM)

- $\Rightarrow \text{Mixing \& CPV} \qquad x = \Delta m/\Gamma \ll 1$ very small $y = \Delta \Gamma/2\Gamma \ll 1$
- \Rightarrow Calculations challenging

18

CKM and CPV in beauty and charm Mark Williams

Mixing and CPV in charm: $D^0 \rightarrow \langle \pi^- \rangle$

Discovery channel for charm mixing

Fit time-dependent ratio R(t):

$$\begin{split} R^+_{K\pi}(t) &\equiv \frac{\Gamma(D^0(t) \to K^+\pi^-)}{\Gamma(\overline{D}{}^0(t) \to K^+\pi^-)} \\ R^-_{K\pi}(t) &\equiv \frac{\Gamma(\overline{D}{}^0(t) \to K^-\pi^+)}{\Gamma(D^0(t) \to K^-\pi^+)} \end{split}$$

CKM and CPV in beauty and charm Mark Williams Mor

Mixing and CPV in charm: $D^0 \rightarrow K^+\pi^-$

20

CKM and CPV in beauty and charm Mark Williams Moriond EW, March 2024

CKM and CPV in beauty and charm

2

4

Mark Williams

 D^0 decay time / τ_{D^0}

Data

Baseline

No CP violation

Moriond EW, March 2024

Mixing and CPV in charm: $D^0 \rightarrow K^+\pi^-$

Full Run 2 data sample. Production flavor tagged via $D^{*+} \rightarrow D^0\pi^+$ decays.

Experimental challenges:

• Backgrounds

 $6 \, {\rm fb}^{-1}$

550F

500

450

400

350

-10

-20

0

 $(R^+ + R^-) / 2 \times 10^5$

 $(R^+\!\!-R^-)\,/\,2\times 10^5$

Nuisance asymmetries

LHCb preliminary

 \Rightarrow determined with D⁰ \rightarrow K⁺K⁻ control mode

Parameters

60% improvement in precision compared to previous best. Still statistically limited.

LHCb-PAPER-2024-008

21

Mixing and CPV in charm: $D^{(1)} \rightarrow T^{(1)} P^{(2)}$

Measure time-dependent CP asymmetry:

Related to mixing and CPV parameters:

$$\begin{split} A_{CP}(f_{CP},t) &\equiv \frac{\Gamma_{D^0 \to f_{CP}}(t) - \Gamma_{\overline{D}^0 \to f_{CP}}(t)}{\Gamma_{D^0 \to f_{CP}}(t) + \Gamma_{\overline{D}^0 \to f_{CP}}(t)} \\ &\approx a_{f_{CP}}^{\text{dir}} + \Delta Y_{f_{CP}} \frac{t}{\tau_{D^0}}, \end{split}$$

$$\Delta Y_{f_{CP}} \approx \frac{\eta_{f_{CP}}}{2} \left[\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin(\phi) - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos(\phi) \right]$$

• mixing-induced CPV \Rightarrow universal

CKM and CPV in beauty and charm Mark Williams Moriond EW, March 2024

Mixing and CPV in charm: $D^{0}(t) \rightarrow \pi^{+}\pi^{-}\pi^{0}$

Measure time-dependent CP asymmetry:

Related to mixing and CPV parameters:

$$A_{CP}(f_{CP}, t) \equiv \frac{\Gamma_{D^0 \to f_{CP}}(t) - \Gamma_{\overline{D}^0 \to f_{CP}}(t)}{\Gamma_{D^0 \to f_{CP}}(t) + \Gamma_{\overline{D}^0 \to f_{CP}}(t)}$$
$$\approx a_{f_{CP}}^{\text{dir}} + \Delta Y_{f_{CP}} \frac{t}{\tau_{D^0}},$$
mixing-in

$$\Delta Y_{f_{CP}} \approx \frac{\eta_{f_{CP}}}{2} \left[\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin(\phi) - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos(\phi) \right]$$

duced CPV \Rightarrow universal

No evidence of CP violation:

 $\Delta Y = (-1.3 \pm 6.3 \pm 2.4) \times 10^{-4}$

Validated with $K\pi\pi$ channel:

 $\Delta Y_{K\pi\pi} = (-1.7 \pm 1.8 \pm 3.5) \times 10^{-4}$

CKM and CPV in beauty and charm

CPV in charm decay

CPV in charm decay

Next steps:

- Add new channels
- Search for local CPV in phase-space of multibody decays ⇒ Exploit different methods

CKM and CPV in beauty and charm

25

Summary and Outlook

We've come a long way since the LHC started

(2010 Moriond EW CPV talk)

Many notable achievements with Run 1+2 data

+ we're not done yet

The future is bright!

(2030 Moriond: ???)

(2019 Moriond: discovery of charm CPV)

CKM and CPV in beauty and charm

Mark Williams

Extra slides

$B_s^0 \rightarrow \varphi \varphi$

PRL 131 (2023) 171802 arXiv:2304.06198

$\mathbf{B}^{-} \rightarrow \mathbf{D}_{(s)}^{(*)} \mathbf{D}^{(*)} \mathbf{0}$

Measure time-integrated charge asymmetry of decay rates

$$\mathcal{A}^{CP} \equiv \frac{\Gamma(B^- \to D_{(s)}^{(*)-} D^{(*)0}) - \Gamma(B^+ \to D_{(s)}^{(*)+} \overline{D}^{(*)0})}{\Gamma(B^- \to D_{(s)}^{(*)-} D^{(*)0}) + \Gamma(B^+ \to D_{(s)}^{(*)+} \overline{D}^{(*)0})}$$

── SM predictions ── PDG

Decay	Ref. [3]	Ref. [4]	Ref. [5]	Ref. [6]	Measured [8]			
$B^- \rightarrow D_s^- D^0$	-0.28 ± 0.06	-	$-0.26\substack{+0.05\\-0.04}$	-0.14 ± 0.25	-0.4 ± 0.7			
$B^- \rightarrow D_s^{*-} D^0$	-0.065 ± 0.005	-	$-0.07\substack{+0.03\\-0.02}$	-0.01 ± 0.10	-			
$B^- \rightarrow D_s^- D^{*0}$	0.045 ± 0.015	-	$0.03\substack{+0.02\\-0.02}$	0.08 ± 0.03	-			
$B^- \rightarrow D^- D^0$	4.95 ± 1.08	$0.6\substack{+0.6\\-0.1}$	$4.4^{+1.1}_{-0.4}$	-	1.6 ± 2.5			
$B^- \rightarrow D^- D^{*0}$	-0.80 ± 0.35	$-0.5\substack{+0.1\\-0.4}$	$-0.6\substack{+0.4\\-0.2}$	-	13 ± 18			
$B^- \! ightarrow D^{*-} D^0$	1.19 ± 0.16	$0.1\substack{+0.6 \\ -0.1}$	$1.2\substack{+0.4\\-0.3}$	-	-6 ± 13			
$B^- \rightarrow D^{*-}D^{*0}$	1.19 ± 0.16	$0.2\substack{+0.0\-0.1}$	$1.2\substack{+0.4\\-0.3}$	-	-15 ± 11			
(Kim, Wang, Yang) (Lu, Xiao, Wang, Li)								
	(<u>Xu, Wang</u>)							

Experimental input essential:

- \Rightarrow more precision
- \Rightarrow more channels
- ⇒ CP asymmetries & BR ratios

CKM and CPV in beauty and charm

Mark Williams

$\mathbf{B}^{-} \rightarrow \mathbf{D}_{(s)}^{(*)} \mathbf{D}^{(*)} \mathbf{0}$

JHEP 09 (2023) 202 arXiv:2306.09945

Full Run 1+2 sample

- Raw yields from mass fits
- Correct for nuisance asymmetries

$$\begin{array}{ccc} D^0 \to K^- \pi^+ & D^{*-} \to \overline{D}{}^0 \pi^- \\ D^0 \to K^- \pi^+ \pi^- \pi^+ & D_s^- \to K^- K^+ \pi^- \\ D^- \to K^+ \pi^- \pi^- \\ & \text{Missing neutrals from} \\ D_s^{*-} / D^{*0} \text{ decay} \end{array}$$

Results:

$$\begin{split} \mathcal{A}^{CP}(B^- \to D_s^- D^0) &= (+0.5 \pm 0.2 \pm 0.5 \pm 0.3)\% \\ \mathcal{A}^{CP}(B^- \to D_s^{*-} D^0) &= (-0.5 \pm 1.1 \pm 1.0 \pm 0.3)\% \\ \mathcal{A}^{CP}(B^- \to D_s^- D^{*0}) &= (+1.1 \pm 0.8 \pm 0.6 \pm 0.3)\% \\ \mathcal{A}^{CP}(B^- \to D^- D^0) &= (+2.5 \pm 1.0 \pm 0.4 \pm 0.3)\% \\ \mathcal{A}^{CP}(B^- \to D^- D^{*0}) &= (-0.2 \pm 2.0 \pm 1.4 \pm 0.3)\% \\ \mathcal{A}^{CP}(B^- \to D^{*-} D^0) &= (+3.3 \pm 1.6 \pm 0.6 \pm 0.3)\% \\ \mathcal{A}^{CP}(B^- \to D^{*-} D^{*0}) &= (+2.3 \pm 2.1 \pm 1.7 \pm 0.3)\% \\ (\text{stat.}) \text{ (syst.) (ext.)} \end{split}$$

\Rightarrow No evidence of CP violation \Rightarrow Most precise measurements for all 7 channels (still stat. limited)

Extra: Wrong sign $D^0 \rightarrow K\pi$: formalism

$$R_{K\pi}^{\pm}(t) \approx R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) \frac{t}{\tau_{D^0}} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \left(\frac{t}{\tau_{D^0}}\right)^2$$

$$\begin{split} \phi_f^M - \Delta_f &\equiv \arg(-M_{12} A_f / \bar{A}_f), \qquad \phi_f^M + \Delta_f \equiv \arg(-M_{12} A_{\bar{f}} / \bar{A}_{\bar{f}}), \\ \phi_f^\Gamma - \Delta_f &\equiv \arg(-\Gamma_{12} A_f / \bar{A}_f), \qquad \phi_f^\Gamma + \Delta_f \equiv \arg(-\Gamma_{12} A_{\bar{f}} / \bar{A}_{\bar{f}}). \end{split}$$

Extra: Wrong sign $D^0 \rightarrow K\pi$: selection

LHCb-PAPER-2024-008 (in preparation)

'Fiducial selection' removes candidates from detector regions with large instrumental charge asymmetries (plots for RS candidates)

m(D^oπ) distribution for WS and RS samples after all selections.

Fits to this variable used to subtract BG from R(t)

72

Extra: Wrong sign $D^0 \rightarrow K\pi$: backgrounds

'Ghost' tracks from random hits give problematic BG.

Suppressed with fidicial and track-quality cuts.

Modelled with data-driven approach.

- Left: misID backgrounds in WS sample
- ³ Right: WS-RS cross-talk

LHCb-PAPER-2024-008 (in preparation)

Extra: Wrong sign $D^0 \rightarrow K\pi$: example fits

Extra: Wrong sign $D^0 \rightarrow K\pi$: corrections

Instrumental asymmetries determined from $D^0 \rightarrow K^+K^-$ control mode

Fits to IP used to statistically disentangle prompt and secondary charm – mitigates and accounts for residual decay time bias.

CKM and CPV in beauty and charm

Mark Williams

Extra: Wrong sign $D^0 \rightarrow K\pi$: decay-time bias

LHCb-PAPER-2024-008 (in preparation) 76

Extra: Wrong sign $D^0 \rightarrow K\pi$: results

	Parameters			Correl	ations		
		$R_{K\pi}$	$c_{K\pi}$	$c'_{K\pi}$	$A_{K\pi}$	$\Delta c_{K\pi}$	$\Delta c'_{K\pi}$
$R_{K\pi}$	$(343.1 \pm 2.0) \times 10^{-5}$	100.0	-92.4	80.0	0.9	-0.8	0.1
$c_{K\pi}$	$(51.4 \pm 3.5) \times 10^{-4}$		100.0	-94.1	-1.4	1.4	-0.7
$c'_{K\pi}$	$(13.1 \pm 3.7) \times 10^{-6}$			100.0	0.7	-0.7	0.1
$A_{K\pi}$	$(-7.1 \pm 6.0) \times 10^{-3}$				100.0	-91.5	79.4
$\Delta c_{K\pi}$	$(3.0 \pm 3.6) imes 10^{-4}$					100.0	-94.1
$\Delta c'_{K\pi}$	$(-1.9 \pm 3.8) \times 10^{-6}$						100.0

Run 2 measurement and correlations

Source	$R_{K\pi} \ [10^{-5}]$	$c_{K\pi}$ [10 ⁻⁴]	$c'_{K\pi}$ [10 ⁻⁶]	$A_{K\pi}$ [10 ⁻³]	$\frac{\Delta c_{K\pi}}{[10^{-4}]}$	$\begin{array}{c} \Delta c'_{K\pi} \\ [10^{-6}] \end{array}$
Mass mismodeling	0.5	0.8	0.9	1.4	0.8	0.8
Ghost soft pions	0.4	0.8	0.8	1.1	0.8	1.1
Instrumental asymmetry	_	_	_	1.2	0.7	0.7
a_{KK}^d external input	_	_	_	1.1	_	—
ΔY external input	_	_	_	_	0.1	0.1
Doubly misidentified background	0.1	0.1	0.1	_	_	_
Common removal	0.2	_	_	_	_	—
Decay-time bias	0.1	0.2	0.1	0.1	_	—
$m_{D^0}/ au_{D^0}~{ m external~input}$	_	0.1	0.1	_	_	_
Total systematic uncertainty	0.7	1.1	1.2	2.4	1.3	1.4
Statistical uncertainty	1.9	3.3	3.5	5.5	3.3	3.5
Total uncertainty	2.0	$\overline{3.5}$	3.7	6.0	3.6	3.8

Breakdown of uncertainties: Statistically limited for all parameters

LHCb-PAPER-2024-008 (in preparation)

CKM and CPV in beauty and charm

Mark Williams

Moriond EW, March 2024

Extra: Wrong sign $D^0 \rightarrow K\pi$: impact

Impact of measurement on charm mixing and CPV parameters

CKM and CPV in beauty and charm

Mark Williams

Moriond EW, March 2024

LHCb-PAPER-2024-008 (in preparation) 78

Measure time-dependent CP asymmetry:

Related to mixing and CPV parameters:

$$A_{CP}(f_{CP},t) \equiv \frac{\Gamma_{D^0 \to f_{CP}}(t) - \Gamma_{\overline{D}^0 \to f_{CP}}(t)}{\Gamma_{D^0 \to f_{CP}}(t) + \Gamma_{\overline{D}^0 \to f_{CP}}(t)} \qquad \Delta Y_{f_{CP}} \approx \frac{\eta_{f_{CP}}}{2} \left[\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin(\phi) - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) x \sin(\phi) - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos(\phi) \right] \right]$$

(ignore)
(ignore)
$$\underset{(up to CP eigenvalue sign \eta_{f_{CP}})}{\text{Mixing-induced sign } \eta_{f_{CP}}}$$

For multibody decay, different intermediate resonances can have different CP eigenvalues ⇒ Integrating over phase-space can dilute sensitivity:

For This decay mode, dominant resonances are CP-even ($\rho\pi$) so dilution is very small effect:

$$\Delta Y_f^{\text{eff}} = |2F_+^f - 1|\Delta Y,$$

$$F_{+}^{\pi\pi\pi}=0.973\pm0.017$$

 $\Delta m \equiv m(D^*) - m(D^0)$ distributions for signal channel, for merged and resolved $\gamma\gamma$

LHCb-PAPER-2024-003 (in preparation)

Measurements of $\Delta Y_{\pi\pi\pi}$ in different subsamples of the data, and average, before and after applying kinematic weighting correction for nuisance asymmetries.

Shown for both signal (left) and control (right) channels.

LHCb-PAPER-2024-003 (in preparation)

Time-dependent CP asymmetry for all subsamples combined \Rightarrow slope gives ΔY^{eff}

Shown for both signal (left) and control (right) channels.

Extra: CPV in B⁰ $\rightarrow D^{\circ} K^*(892)^{\circ}$ decays

arXiv:2401.17934 (Submitted to JHEP)

Experimental observables:

$$\mathcal{CF}/\mathsf{DCS} \text{ (ADS):} \qquad \qquad \mathcal{R}^+_{\pi K(\pi\pi)} \equiv \frac{\Gamma\left(B^0 \to D\left[\pi K(\pi\pi)\right] K^{*0}\right)}{\Gamma\left(B^0 \to D\left[K\pi(\pi\pi)\right] K^{*0}\right)} \quad \text{and} \quad \mathcal{R}^-_{\pi K(\pi\pi)} \equiv \frac{\Gamma\left(\overline{B}^0 \to D\left[\pi K(\pi\pi)\right] \overline{K}^{*0}\right)}{\Gamma\left(\overline{B}^0 \to D\left[K\pi(\pi\pi)\right] \overline{K}^{*0}\right)} \\ \mathcal{A}_{K\pi} \equiv \frac{\Gamma\left(\overline{B}^0 \to D[K\pi(\pi\pi)] \overline{K}^{*0}\right) - \Gamma\left(B^0 \to D[K\pi(\pi\pi)] K^{*0}\right)}{\Gamma\left(\overline{B}^0 \to D[K\pi(\pi\pi)] \overline{K}^{*0}\right) + \Gamma\left(B^0 \to D[K\pi(\pi\pi)] K^{*0}\right)}$$

$$\mathcal{R}_{CP}^{hh(\pi\pi)} \equiv \frac{\Gamma(\overline{B}{}^0 \to D[hh(\pi\pi)]\overline{K}{}^{*0}) + \Gamma(B^0 \to D[hh(\pi\pi)]K{}^{*0})}{\Gamma(\overline{B}{}^0 \to D[K\pi(\pi\pi)]\overline{K}{}^{*0}) + \Gamma(B^0 \to D[K\pi(\pi\pi)]K{}^{*0})} \times \frac{\mathcal{B}(D^0 \to K\pi(\pi\pi))}{\mathcal{B}(D^0 \to hh(\pi\pi))}$$

CP-eigenstates (GLW):

$$\mathcal{A}_{CP}^{hh(\pi\pi)} \equiv \frac{\Gamma\left(\overline{B}{}^{0} \to D[hh(\pi\pi)]\overline{K}{}^{*0}\right) - \Gamma\left(B^{0} \to D[hh(\pi\pi)]K{}^{*0}\right)}{\Gamma\left(\overline{B}{}^{0} \to D[hh(\pi\pi)]\overline{K}{}^{*0}\right) + \Gamma\left(B^{0} \to D[hh(\pi\pi)]K{}^{*0}\right)}$$

31

CKM and CPV in beauty and charm Mark Williams Moriond

Moriond EW, March 2024

arXiv:2401.17934 (Submitted to JHEP)

Interpret measurements in terms of (γ , r^{DK*}, δ ^{DK*}) with external inputs:

- Coherence factor κ_{B0} (dilution of interference effects from non-K* decays
- Hadronic D decay parameters r_D^X , δ_D^X , κ_D (for ADS)
- CP-even fractions F₊ (for GLW)

$$\begin{aligned} \mathcal{A}_{CP}^{hh(\pi\pi)} &= \frac{2\kappa_{B^0} r_{B^0}^{DK^*} \left(2F_{+}^{hh(\pi\pi)} - 1\right) \sin\left(\delta_{B^0}^{DK^*}\right) \sin(\gamma)}{1 + \left(r_{B^0}^{DK^*}\right)^2 + 2\kappa_{B^0} \cos\left(\delta_{B^0}^{DK^*}\right) \cos(\gamma)}, \\ \mathcal{R}_{CP}^{hh(\pi\pi)} &= \frac{1 + \left(r_{B^0}^{DK^*}\right)^2 + 2\kappa_{B^0} r_{B^0}^{DK^*} \left(2F_{+}^{hh(\pi\pi)} - 1\right) \cos\left(\delta_{B^0}^{DK^*}\right) \cos(\gamma)}{1 + \left(r_{B^0}^{DK^*}\right)^2 \left(r_{D}^{K\pi\pi\pi}\right)^2 + 2\kappa_{B^0} r_{B^0}^{DK^*} r_{D}^{K\pi\pi\pi\pi} \cos\left(\delta_{B^0}^{DK^*} - \delta_{D}^{K\pi\pi\pi}\right) \cos(\gamma)} \\ \mathcal{R}_{\pi K(\pi\pi)}^{\pm} &= \frac{\left(r_{B^0}^{DK^*}\right)^2 + \left(r_{D}^{K\pi(\pi\pi)}\right)^2 + 2\kappa_{B^0} r_{B^0}^{DK^*} r_{D}^{K\pi\pi(\pi\pi)} \cos\left(\delta_{B^0}^{DK^*} + \delta_{D}^{K\pi(\pi\pi)}\right) \pm 2\kappa_{B^0} \kappa_{D}^{K\pi(\pi\pi)} r_{D}^{K\pi(\pi\pi)} \sin\left(\delta_{B^0}^{DK^*} - \delta_{D}^{K\pi(\pi\pi)}\right) \sin(\gamma) \end{aligned}$$

$$\mathcal{A}_{K\pi(\pi\pi)} = \frac{1}{1 + \left(r_{B^0}^{DK^*}\right)^2 \left(r_D^{K\pi(\pi\pi)}\right)^2 + 2\kappa_{B^0}\kappa_D^{K\pi(\pi\pi)}r_D^{K\pi(\pi\pi)}\cos\left(\delta_{B^0}^{DK^*} - \delta_D^{K\pi(\pi\pi)}\right)\cos(\gamma)}$$

Extra: CPV in B⁰ $\rightarrow D^{0} K^{*}(892)^{0}$ decays

arXiv:2401.17934 (Submitted to JHEP)

Mass fits: $D \rightarrow K\pi$ for CF and CDS modes, for \overline{B}^0 (left) and B^0 (right) decays

33

CKM and CPV in beauty and charm Mark Williams

Moriond EW, March 2024

Extra: CPV in B⁰ $\rightarrow D^{\circ} K^*(892)^{\circ}$ decays

arXiv:2401.17934 (Submitted to JHEP)

Mass fits: $D \rightarrow K3\pi$ for CF and DCS modes, for \overline{B}^0 (left) and B^0 (right) decays

CKM and CPV in beauty and charm

Mark Williams

Moriond EW, March 2024

34

Extra: CPV in B⁰ $\rightarrow D^{\bullet} K^* (892)^{\circ}$ decays

arXiv:2401.17934 (Submitted to JHEP)

35

CKM and CPV in beauty and charm

Mark Williams

Moriond EW, March 2024

Extra: CPV in B⁰ $\rightarrow D^{0} K^{*}(892)^{0}$ decays

arXiv:2401.17934 (Submitted to JHEP)

Measured observables in B⁰ (left) and B^g (right) channels

Parameter	Value
$\mathcal{A}_{K\pi}$	$0.031 \pm 0.017 \pm 0.015$
$\mathcal{R}^+_{\pi K}$	$0.069 \pm 0.013 \pm 0.005$
$\mathcal{R}^{\pi K}$	$0.093 \pm 0.013 \pm 0.005$
$\mathcal{A}_{K\pi\pi\pi}$	$-0.012\pm0.018\pm0.016$
${\cal R}^+_{\pi K\pi\pi}$	$0.060 \pm 0.014 \pm 0.006$
${\cal R}^{\pi K\pi\pi}$	$0.038 \pm 0.014 \pm 0.006$
\mathcal{R}_{CP}^{KK}	$0.811 \pm 0.057 \pm 0.017$
\mathcal{A}_{CP}^{KK}	$-0.047 \pm 0.063 \pm 0.015$
$\mathcal{R}_{CP}^{\pi\pi}$	$1.104 \pm 0.111 \pm 0.026$
${\cal A}^{\pi\pi}_{CP}$	$-0.034 \pm 0.094 \pm 0.016$
$\mathcal{R}^{4\pi}_{CP}$	$0.882 \pm 0.086 \pm 0.033$
${\cal A}^{4\pi}_{CP}$	$0.021 \pm 0.087 \pm 0.016$

 3σ evidence for interference in KK mode (R < 1)

Parameter	Value
$\mathcal{A}_{s,\pi K}$	$-0.009\pm 0.011\pm 0.020$
$\mathcal{R}^+_{s,K\pi}$	$0.004 \pm 0.002 \pm 0.006$
$\mathcal{R}^{-}_{s,K\pi}$	$0.004 \pm 0.002 \pm 0.006$
$\mathcal{A}_{s,\pi K\pi\pi}$	$-0.029 \pm 0.012 \pm 0.021$
$\mathcal{R}^+_{s,K\pi\pi\pi}$	$0.019 \pm 0.004 \pm 0.007$
$\mathcal{R}^{-}_{s,K\pi\pi\pi}$	$0.015 \pm 0.004 \pm 0.007$
$\mathcal{R}_{CP}^{s,KK}$	$1.000 \pm 0.034 \pm 0.016$
$\mathcal{A}_{CP}^{s,KK}$	$0.062 \pm 0.032 \pm 0.021$
$\mathcal{R}^{s,\pi\pi}_{CP}$	$0.996 \pm 0.057 \pm 0.023$
$\mathcal{A}_{CP}^{s,\pi\pi}$	$-0.001\pm0.056\pm0.021$
$\mathcal{R}^{s,4\pi}_{CP}$	$1.010 \pm 0.048 \pm 0.033$
$\mathcal{A}_{CP}^{s,4\pi}$	$0.017 \pm 0.044 \pm 0.022$

No evidence for interference $(R \approx 1)$

36

CKM and CPV in beauty and charm

Extra: CPV in $B^0 \rightarrow D^0 K^*(892)^0$ decays

	$\mathcal{A}_{K\pi}$	$\mathcal{R}^+_{\pi K}$	$\mathcal{R}^{\pi K}$	$\mathcal{R}_{CP}^{\pi\pi}$	$\mathcal{A}_{CP}^{\pi\pi}$	\mathcal{R}_{CP}^{KK}	\mathcal{A}_{CP}^{KK}	$\mathcal{A}_{K\pi\pi\pi}$	$R^+_{\pi K\pi\pi}$	$\mathcal{R}^{\pi K\pi\pi}$	$\mathcal{R}^{4\pi}_{CP}$	${\cal A}^{4\pi}_{CP}$
$A_{ m prod}$	0.009	0.001	0.001	0.002	0.009	_	0.009	0.009	0.001	0.001	_	0.009
$A_{K\pi}$	0.009	0.001	0.001	0.001	0.006	0.001	0.006	0.009	0.001	0.001	0.001	0.006
PID	0.008	0.004	0.004	0.012	0.010	0.010	0.010	0.010	0.004	0.004	0.017	0.011
Fit PDFs	_	0.003	0.003	_	_	_	_	_	0.003	0.003	_	_
Charmless Asymmetries	_	_	_	0.011	0.005	_	_	_	0.001	0.001	_	_
Combinatorial Asymmetries	_	0.002	0.002	_	0.002	_	0.001	_	0.004	0.004	_	0.001
Input Branching Fractions	_	_	_	0.020	_	0.013	_	_	_	_	0.028	_
Total systematic	0.015	0.005	0.005	0.026	0.016	0.017	0.015	0.016	0.006	0.006	0.033	0.016
Statistical	0.017	0.013	0.013	0.110	0.103	0.057	0.064	0.018	0.014	0.014	0.084	0.088

Measurements generally limited by sample size Largest systematic uncertainties from nuisance asymmetries and PID efficiency

37

CKM and CPV in beauty and charm Mark Williams Moriond EW, March 2024

Extra: CPV in B⁰ $\rightarrow D^{\circ} K^*(892)^{\circ}$ decays

arXiv:2401.17934 (Submitted to JHEP)

Extra: CPV in $B^0 \rightarrow D^0 K^*(892)^0$ decays

Yields in bin *i* of Dalitz plot:

<u>Eur.Phys.J.C 84 (2024) 2, 206</u> (<u>arXiv:2309.05514</u>)

$$\begin{split} N_{i}(B^{0}) &= h^{B^{0}} \left[F_{-i} + (x_{+}^{2} + y_{+}^{2})F_{i} + 2\kappa\sqrt{F_{i}F_{-i}}(x_{+}c_{i} - y_{+}s_{i}) \right] \\ N_{i}(\bar{B}^{0}) &= h^{\bar{B}^{0}} \left[F_{i} + (x_{-}^{2} + y_{-}^{2})F_{-i} + 2\kappa\sqrt{F_{i}F_{-i}}(x_{-}c_{i} + y_{-}s_{i}) \right] \\ \Rightarrow \text{ sensitive to } \gamma: \qquad x_{\pm} \equiv r_{B^{0}}\cos(\delta_{B^{0}} \pm \gamma) \\ y_{\pm} \equiv r_{B^{0}}\sin(\delta_{B^{0}} \pm \gamma) \qquad \text{ Efficiency} \\ Where: \qquad F_{i} \equiv \frac{\int_{i} dm_{-}^{2}dm_{+}^{2} |A_{D}(m_{-}^{2}, m_{+}^{2})|^{2}\eta(m_{-}^{2}, m_{+}^{2})}{\sum_{j} \int_{j} dm_{-}^{2}dm_{+}^{2} |A_{D}(m_{-}^{2}, m_{+}^{2})|^{2}\eta(m_{-}^{2}, m_{+}^{2})} \\ \text{ Integrated yields} \end{split}$$

$$\begin{split} K_i &= \int_i \mathrm{d} m_-^2 \mathrm{d} m_+^2 \, |A_D(m_-^2, m_+^2)|^2, \\ c_i &= \frac{1}{\sqrt{K_i K_{-i}}} \int_i \mathrm{d} m_-^2 \mathrm{d} m_+^2 \, |A_D(m_-^2, m_+^2)| |A_{\overline{D}}(m_-^2, m_+^2)| \cos \delta_D(m_-^2, m_+^2), \\ s_i &= \frac{1}{\sqrt{K_i K_{-i}}} \int_i \mathrm{d} m_-^2 \mathrm{d} m_+^2 \, |A_D(m_-^2, m_+^2)| |A_{\overline{D}}(m_-^2, m_+^2)| \sin \delta_D(m_-^2, m_+^2). \end{split}$$

CKM and CPV in beauty and charm Mark Williams Moriond EW, March 2024

Extra: CPV in B⁰ $\rightarrow D^{0} K^{*}(892)^{0}$ decays

Eur.Phys.J.C 84 (2024) 2, 206 (arXiv:2309.05514)

Model-independent approach: strong phases take from binned measurements by BESIII and CLEO

Extra: CPV in B⁰ $\rightarrow D^{\circ} K^*(892)^{\circ}$ decays

Eur.Phys.J.C 84 (2024) 2, 206 (arXiv:2309.05514)

Dalitz plots for selected events

Left: \overline{B}^0 Right: B^0

CKM and CPV in beauty and charm

Mark Williams

Moriond EW, March 2024

Extra: CPV in B⁰ $\rightarrow D^{\bullet} D^{\circ} K^{*}(892)^{\circ}$ decays

Eur.Phys.J.C 84 (2024) 2, 206 (arXiv:2309.05514)

Fits used to obtain yields (global fits)

Left: *long* K_S⁰ Right: *downstream* K_S⁰

Extra: CPV in B⁰ $\rightarrow D^{(-)} D^0 K^* (892)^0$ decays

Eur.Phys.J.C 84 (2024) 2, 206 (arXiv:2309.05514)

Yields for signal and non-negligible backgrounds:

Component	$D ightarrow K_{ m S}^0 \pi^+ \pi^- \ long$	$D ightarrow K_{ m S}^0 \pi^+ \pi^- \ downstream$	$\begin{array}{c} D \rightarrow K^0_{\rm S} K^+ K^- \\ long \end{array}$	$D ightarrow K_{ m S}^0 K^+ K^- \ downstream$
$B^0 ightarrow DK^{*0}$	102 ± 17	288 ± 25	12 ± 6	32 ± 8
$\overline{B}{}^0_s ightarrow D^0 K^{*0}$	2.4 ± 0.4	7.1 ± 0.6	0.32 ± 0.08	1.2 ± 0.2
Combinatorial	84 ± 8	133 ± 11	16 ± 3	11 ± 4
$\overline{B}{}^0_s \to D^{*0} K^{*0}$	17.1 ± 1.4	44 ± 2	2.3 ± 0.5	7.1 ± 0.8
$B^0 \to D^* K^{*0}$	≤ 1	≤ 1	≤ 1	≤ 1
$B^0 ightarrow D \pi^+ \pi^-$	≤ 1	1.8 ± 0.5	≤ 1	≤ 1
$B^{\pm} \rightarrow DK^{\pm}$	≤ 1	2.0 ± 0.4	≤ 1	≤ 1

Extra: CPV in B⁰ $\rightarrow D^{0} K^{*}(892)^{0}$ decays

Eur.Phys.J.C 84 (2024) 2, 206 (arXiv:2309.05514)

2D confidence regions for CP asymmetry measurement

Raw asymmetry per Dalitz bin pair

 $r_{B^0} = 0.271^{+0.065}_{-0.066}$

 $\delta_{B^0} = (236^{+19}_{-21})^{\circ}$

$$\begin{array}{rcl} x_{+} = & 0.074 \pm 0.086 \pm 0.005 \pm 0.011 \\ x_{-} = -0.215 \pm 0.086 \pm 0.004 \pm 0.013 \\ y_{+} = -0.336 \pm 0.105 \pm 0.017 \pm 0.009 \\ y_{-} = -0.012 \pm 0.128 \pm 0.024 \pm 0.011 \end{array}$$

Extra: CPV in $B^0 \rightarrow D^0 K^*(892)^0$ decays

Eur.Phys.J.C 84 (2024) 2, 206 (arXiv:2309.05514)

Systematic uncertainties. Statistical precision dominates.

Source	$\sigma(x_+)$	$\sigma(x_{-})$	$\sigma(y_+)$	$\sigma(y_{-})$
Efficiency correction of (c_i, s_i)	0.001	0.001	0.002	0.001
F_i inputs	0.006	0.007	0.001	0.000
Mass Fit	0.002	0.006	0.005	0.004
$B^0 \to D^* K^{*0} \ CP$ violation	0.001	0.001	0.001	0.001
Value of κ	0.000	0.001	0.003	0.002
Charmless background	0.009	0.008	0.000	0.005
Bin migration	0.001	0.001	0.000	0.002
Fitter bias	0.003	0.003	0.006	0.004
Total of above systematics	0.011	0.013	0.009	0.011
Strong-phase measurements	0.005	0.004	0.017	0.024
Statistical uncertainty	0.086	0.086	0.105	0.128

Decay amplitude:

CKM and CPV in beauty and charm

Mark Williams

Moriond EW, March 2024

47

 $D^* \rightarrow D\gamma / D\pi^0$ separated via m(Dh[±]) exploiting spin-parity structure.

Much larger yields than fully-reco mode: ~113k $B^{\pm} \rightarrow [(K_S \pi^+ \pi^-)X]\pi^{\pm}$

Precision suppressed by larger backgrounds and more complicated fit

<u>Outlook for γ</u>

- Most benchmark channels completed with Run 1+2
- A few remain (e.g. $B_s \rightarrow D_s K$)
- Statistically limited
- Investigating new channels for full exploitation in Run 3
- Adding + Improving triggers

1-CL

0.8

0.6

0.4

0.2

0<u></u>

arXiv:2311.10434

JHEP 02 (2)

CKM and CPV in beauty and charm

Moriond EW, March 2024

49

arXiv:2310.04277

(JHEP 12 (2023) 013)

50

arXiv:2310.04277

(JHEP 12 (2023) 013)

 $D^0 \rightarrow K_S K^+ K^-$ (top) $D^0 \rightarrow K_S \pi^+ \pi^-$ (bottom)

 $B^{\pm} \rightarrow D^{*}K^{\pm}$ channels

51

D*→Dγ mode

- Model $B^{\pm} \rightarrow D^{*}(D\pi^{0})K^{\pm}, D + random \gamma$ $B^{\pm} \rightarrow D^{*}(D\pi^{0})K^{\pm}, D + \text{correct } \gamma$ $B^{\pm} \rightarrow D^{*}(D\gamma)K^{\pm}, D + \text{correct } \gamma$ $B^{\pm} \rightarrow D^{*}(D\gamma)K^{\pm}, D + \text{random } \gamma$ $B^{\pm} \rightarrow D^{*}(D\pi^{0}/\gamma)K^{\pm}\pi^{\mp}, D + \text{correct } \gamma$ $ZZZ B^{\pm} \rightarrow D^*(D\pi^0/\gamma)K^{\pm}\pi^{\mp}, D + random \gamma$ $B^0 \rightarrow D^*(D\pi^{\mp})K^{\pm}, D + random \gamma$ $B^0_s \rightarrow D^*(D\gamma)K^{\pm}, D + \text{correct } \gamma$ $B_s^0 \rightarrow D^*(D\pi^0/\gamma)K^{\pm}, D + random \gamma$ $B^0_* \rightarrow D^*(D\pi^0)K^{\pm}, D + \text{correct } \gamma$ $B^0_* \rightarrow DK^{\pm}\pi^{\mp}, D + random \gamma$ $B^{\pm} \rightarrow DK^{\pm}\pi^{\mp}, D + random \gamma$ $\square B^{\pm} \rightarrow D^{*}(D\gamma)\pi^{\pm}, D + \text{correct } \gamma$ $B^{\pm} \rightarrow D^{*}(D\pi^{0})\pi^{\pm}, D + \text{correct } \gamma$ $B^{\pm} \rightarrow D^{*}(D\pi^{0}/\gamma)\pi^{\pm}, D + random \gamma$ NND Combinatorial $B^{\pm} \rightarrow DK^{\pm}, D + random \gamma$ $B^{\pm} \rightarrow D\pi^{\pm}, D + random \gamma$ + Data

Mark Williams

Moriond EW, March 2024

m(Dh[±]) (left) $m(D\pi^0)$ (right)

arXiv:2310.04277

LHCb

 $9 \, {\rm fb}^{-1}$

2000

2025

2050

(JHEP 12 (2023) 013)

```
D^0 \rightarrow K_S K^+ K^- (top)
D^0 \rightarrow K_S \pi^+ \pi^-
(bottom)
```

 $B^{\pm} \rightarrow D^{*}\pi^{\pm}$

channels

52

D*→Dy mode

 Model $B^{\pm} \rightarrow D^*(D\pi^0)\pi^{\pm}, D + \text{random } \gamma$ $B^{\pm} \rightarrow D^{*}(D\gamma)\pi^{\pm}, D + \text{correct } \gamma$ $B^{\pm} \rightarrow D^*(D\pi^0)\pi^{\pm}, D + \text{correct } \gamma$ $B^{\pm} \rightarrow D^*(D\gamma)\pi^{\pm}, D + \text{random } \gamma$ $\blacksquare B^0 \to D^*(D\pi^{\mp})\pi^{\pm}, D + \text{random } \gamma$ $B^{\pm} \rightarrow D^* (D\pi^0/\gamma)\pi^{\pm}\pi^{\mp}, D + \text{correct } \gamma$ $ZZZ B^{\pm} \rightarrow D^* (D\pi^0/\gamma) \pi^{\pm} \pi^{\mp}, D + \text{random } \gamma$ $B^{\pm} \rightarrow D\pi^{\pm}\pi^{\mp}, D + random \gamma$ $\square B^{\pm} \to D^*(D\gamma)K^{\pm}, D + \text{correct } \gamma$ $B^{\pm} \rightarrow D^*(D\pi^0)K^{\pm}, D + \text{correct } \gamma$ $B^{\pm} \to D^* (D\pi^0 / \gamma) K^{\pm}, D + random \gamma$ Combinatorial $B^{\pm} \rightarrow D\pi^{\pm}, D + random \gamma$ $- B^{\pm} \rightarrow DK^{\pm}, D + random \gamma$ + Data

CKM and CPV in beauty and charm

Yields for datasets with $D^0 \rightarrow K_S \pi^+ \pi^-$:

Component	Yield
$B^+ \rightarrow D^* \pi^+, D^* \rightarrow D \pi^0$	1273 ± 32
$B^+ \to D^* \pi^+, D^* \to D \gamma$	3692 ± 158
$B^- \to D^*\pi^-, D^* \to D\pi^0$	1290 ± 33
$B^- \to D^*\pi^-, D^* \to D\gamma$	3683 ± 160
$B^+ \to D^*K^+, D^* \to D\pi^0$	112 ± 7
$B^+ \to D^*K^+, D^* \to D\gamma$	358 ± 33
$B^- \to D^*K^-, D^* \to D\pi^0$	109 ± 6
$B^- \to D^*K^-, D^* \to D\gamma$	419 ± 35

Yields for datasets with $D^0 \rightarrow K_S K^+ K^-$:

Component	Yield
$B^+ ightarrow D^* \pi^+, D^* ightarrow D \pi^0$	199 ± 13
$B^+ \to D^*\pi^+, D^* \to D\gamma$	782 ± 49
$B^- \to D^*\pi^-, D^* \to D\pi^0$	197 ± 13
$B^- \to D^*\pi^-, D^* \to D\gamma$	740 ± 48
$B^+ \to D^*K^+, D^* \to D\pi^0$	13 ± 2
$B^+ \to D^*K^+, D^* \to D\gamma$	69 ± 11
$B^- \to D^*K^-, D^* \to D\pi^0$	13 ± 2
$B^- \to D^*K^-, D^* \to D\gamma$	57 ± 11

53

arXiv:2310.04277

(JHEP 12 (2023) 0

CKM and CPV in beauty and charm

CP asymmetries per bin for $B^{\pm} \rightarrow D^{*}K^{\pm}$

CP asymmetries per bin for $B^{\pm} \rightarrow D^{*}\pi^{\pm}$

$$\begin{array}{rcl} x^{D^*K}_+ = & (& 11.42 \pm 3.16 \pm 1.26 \pm 0.41) \times 10^{-2}, \\ x^{D^*K}_- = & (& -8.91 \pm 3.55 \pm 2.04 \pm 0.23) \times 10^{-2}, \\ y^{D^*K}_+ = & (& 3.60 \pm 4.41 \pm 2.12 \pm 0.30) \times 10^{-2}, \\ y^{D^*K}_- = & (& -16.75 \pm 3.98 \pm 1.48 \pm 0.64) \times 10^{-2}, \\ x^{D^*\pi}_\xi = & (& 0.51 \pm 5.00 \pm 2.66 \pm 0.93) \times 10^{-2}, \\ y^{D^*\pi}_\xi = & (& 7.92 \pm 5.04 \pm 3.78 \pm 0.83) \times 10^{-2}, \end{array}$$

$$\begin{split} \gamma &= (69^{+13}_{-14})^{\circ}, \\ r_B^{D^*K} &= 0.15 \pm 0.03, \\ r_B^{D^*\pi} &= 0.01 \pm 0.01, \\ \delta_B^{D^*K} &= (311 \pm 14)^{\circ}, \\ \delta_B^{D^*\pi} &= (37 \pm 37)^{\circ}. \end{split}$$

Source	$\sigma(x_+^{D^*K})$	$\sigma(x_{-}^{D^{*}K})$	$\sigma(y_+^{D^*K})$	$\sigma(y_{-}^{D^{*}K})$	$\sigma(x_{\xi}^{D^*\pi})$	$\sigma(y^{D^*\pi}_{m{\xi}})$
Neglecting correlations	0.05	0.03	0.19	0.04	0.70	1.48
Efficiency correction of (c_i, s_i)	0.53	0.18	0.18	0.20	0.64	1.73
Invariant mass shape parameter	0.09	0.16	0.20	0.05	0.39	0.06
Fixed yield ratios	0.09	0.03	0.03	0.01	0.33	0.15
Bin dependence of the invariant-mass shape	0.40	0.38	0.41	0.33	1.78	1.57
DP bin migration	0.32	0.70	0.03	0.17	1.2	2.0
Λ_b^0 background	0.97	1.34	0.55	0.77	1.13	1.43
Semileptonic B backgrounds	0.27	1.29	0.02	0.67	0.03	0.04
Merging data subsamples	0.06	0.02	0.12	0.03	0.06	0.34
$C\!P$ -violation in $B^{\pm,0} \to DK^{\pm}\pi^{0,\mp}$	0.03	0.13	1.97	0.99	0.13	0.68
Total systematic	1.26	2.04	2.12	1.48	2.66	3.78
Strong-phase inputs (external)	0.41	0.23	0.30	0.64	0.93	0.83
Statistical	3.16	3.55	4.41	3.98	5.00	5.04

CKM and CPV in beauty and charm Mark Williams

CKM and CPV in beauty and charm Mark Williams Moriond EW, March 2024

Extra: $B^{\pm} \rightarrow D^{*}h^{\pm}$, $D \rightarrow K_{s}^{0}h^{+}h^{-}$ (part reco) (1459 02 (2024) 118

 $K_{s}\pi\pi$ channels. DK (left); D π (right).

top/bottom are different KS categories

58

Extra: $B^{\pm} \rightarrow D^{*}h^{\pm}$, $D \rightarrow K_{s}^{0}h^{+}h^{-}$ (part reco) $\frac{arXiv:2311.10434}{(HEP 02.(2024).118)}$

 K_SKK channels. DK (left); D π (right).

top/bottom are different KS categories

59

CKM and CPV in beauty and charm

Signal and BG yields:

		Reconstructed	d as:
D decay	Component	$B^{\pm} \rightarrow DK^{\pm}$	$B^\pm \to D\pi^\pm$
$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	$B^{\pm} \rightarrow D^*[D\pi^0]K^{\pm}$	6244 ± 12	2716 ± 5
	$B^{\pm} ightarrow D^{*}[D\pi^{0}]\pi^{\pm}$	340 ± 1	113170 ± 229
	$B^{\pm} ightarrow D^{*}[D\gamma]K^{\pm}$	3144 ± 6	1247 ± 2
	$B^{\pm} ightarrow D^{*}[D\gamma]\pi^{\pm}$	166 ± 1	60285 ± 121
	$B^{\pm} \rightarrow DK^{\pm}$	10398 ± 21	4726 ± 9
	$B^{\pm} \rightarrow D\pi^{\pm}$	590 ± 1	196804 ± 398
	Other backgrounds	10402 ± 105	206664 ± 592
	Combinatorial background	1343 ± 147	15177 ± 706
$D \rightarrow K^0_{\rm S} K^+ K^-$	$B^{\pm} \rightarrow D^*[D\pi^0]K^{\pm}$	790 ± 3	344 ± 1
	$B^{\pm} ightarrow D^{*}[D\pi^{0}]\pi^{\pm}$	43 ± 1	14327 ± 65
	$B^{\pm} ightarrow D^{*}[D\gamma]K^{\pm}$	397 ± 1	157 ± 1
	$B^{\pm} ightarrow D^{*}[D\gamma]\pi^{\pm}$	21 ± 1	7636 ± 34
	$B^{\pm} \rightarrow DK^{\pm}$	1527 ± 6	694 ± 2
	$B^{\pm} ightarrow D\pi^{\pm}$	88 ± 1	29786 ± 135
	Other backgrounds	1573 ± 15	31278 ± 115
	Combinatorial background	263 ± 46	4413 ± 261

Moriond EW, March 2024

Extra: $B^{\pm} \rightarrow D^{*}h^{\pm}$, $D \rightarrow K_{s}^{0}h^{+}h^{-}$ (part reco)

Results:

$$\begin{split} x^{D^*K}_- &= (-6.3 \pm 2.9 \pm 1.1 \pm 0.6) \times 10^{-2}, \\ y^{D^*K}_- &= (-4.8 \pm 5.7 \pm 1.4 \pm 1.5) \times 10^{-2}, \\ x^{D^*K}_+ &= (-6.0 \pm 2.6 \pm 0.9 \pm 0.2) \times 10^{-2}, \\ y^{D^*K}_+ &= (-5.4 \pm 2.9 \pm 0.9 \pm 0.4) \times 10^{-2}, \\ \Re(\xi^{D^*\pi}) &= (-11.5 \pm 9.4 \pm 3.3 \pm 2.3) \times 10^{-2}, \\ \Im(\xi^{D^*\pi}) &= (-0.9 \pm 9.7 \pm 2.5 \pm 2.1) \times 10^{-2}, \end{split}$$

$$\begin{split} \gamma &= (92^{+21}_{-17})^{\circ}, \\ r_B^{D^*K} &= 0.080^{+0.022}_{-0.023}, \\ \delta_B^{D^*K} &= (310^{+15}_{-20})^{\circ}, \\ r_B^{D^*\pi} &= 0.009^{+0.005}_{-0.007}, \\ \delta_B^{D^*\pi} &= (304^{+37}_{-38})^{\circ}. \end{split}$$

CKM and CPV in beauty and charm Mark Williams Moriond EW, March 2024

Systematic uncertainties:

Source	$x_{-}^{D^{*}K}$	$y_{-}^{D^{\ast}K}$	$x_+^{D^*K}$	$y_+^{D^*K}$	$\Re(\xi^{D^*\pi})$	$\Im(\xi^{D^*\pi})$
Efficiency correction of (c_i, s_i)	0.23	0.29	0.21	0.20	0.47	0.31
Mass shape parameterisation	0.35	0.58	0.38	0.33	1.17	0.90
Fixed $\xi_{D\gamma}$ parameter	0.14	0.19	0.15	0.08	0.22	0.32
Fixed branching ratios	0.58	0.44	0.33	0.50	1.09	0.54
Fixed efficiencies	0.23	0.48	0.18	0.27	0.70	0.38
Fixed yield ratios	0.66	0.85	0.46	0.43	1.45	0.77
Bias Correction	0.29	0.35	0.12	0.16	0.62	0.51
Dalitz-bin migration	0.00	0.02	0.04	0.10	0.03	0.11
Inputs for CPV backgrounds	0.35	0.33	0.38	0.21	2.22	1.93
Total of above uncertainties	1.11	1.36	0.85	0.87	3.28	2.46
Strong-phase inputs	0.57	1.54	0.18	0.41	2.33	2.13
Total systematic uncertainty	1.25	2.05	0.87	0.95	4.02	3.26
Statistical uncertainty	2.93	5.69	2.58	2.87	9.37	9.67

Systematic uncertainties:

64

Mark Williams

Extra: Time-dependent CPV in B⁰ decays: β

Flavour tagging efficiency and dilution

Channel	$\epsilon_{ m tag}[\%]$	$\mathcal{D}^2\left[\% ight]$
$\begin{array}{l} B^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K^0_{\rm S} \\ B^0 \rightarrow J/\psi(\rightarrow e^+e^-)K^0_{\rm S} \\ B^0 \rightarrow \psi(2S)(\rightarrow \mu^+\mu^-)K^0_{\rm S} \end{array}$	$\begin{array}{c} 85.34 \pm 0.05 \\ 92.20 \pm 0.08 \\ 84.81 \pm 0.15 \end{array}$	$\begin{array}{l} 4.661 \pm 0.013 \\ 6.462 \pm 0.032 \\ 4.59 \ \pm 0.04 \end{array}$

Systematic uncertainties:

Source	$\sigma(S)$	$\sigma(C)$
Fitter validation	0.0004	0.0006
Decay-time bias model	0.0007	0.0013
FT $\Delta \epsilon_{\text{tag}}$ portability	0.0014	0.0017
FT calibration portability	0.0053	0.0001
$\Delta\Gamma_d$ uncertainty	0.0055	0.0017

Mark Williams

Extra: Time-dep. CPV in B_s^0 decays: ϕ_s

PRL 132 (2024) 051802 (arXiv:2308.01468)

Projections of background-subtracted signal distributions on four fit variables

Extra: Time-dep. CPV in B_s^0 decays: ϕ_s

<u>PRL 132 (2024) 051802</u> (<u>arXiv:2308.01468</u>)

Fit results with CPV parameters floating separately for each polarization mode:

LHCb constraints and combination from different channels and data samples:

combination:

Extra: $\Delta\Gamma_s$ measurement

Mark Williams

68

Extra: $\Delta\Gamma_s$ measurement

Mark Williams

Moriond EW, March 2024

demc

Extra: $\Delta\Gamma_s$ measurement

arXiv:2310.12649 (submitted to JHEP)

Time-dependent ratios of yields:

Systematic uncertainties:

Source	Value $[ns^{-1}]$
Simulation sample size	4.6
Acceptance model	3.0
Bin centre method	0.3
$C\!P$ violation	0.1
Γ_s	0.1
$J/\psi\eta'$ background model	6.9
$J/\psi \pi^+\pi^-$ background model	0.8
Total	8.9

CKM and CPV in beauty and charm

Mark Williams

70