

EW results in two-photon collisions at CMS and ATLAS

Cécile Caillol, CERN, on behalf of the CMS and ATLAS Collaborations

Moriond EW 2024

Photon-induced processes

 As two charged particles (e.g. protons or ions) pass each other at relativistic velocities, they generate intense electromagnetic fields ->
 photon-photon collisions can happen

• Cross section proportional to $Z^4 \rightarrow$ huge enhancement in Pb-Pb runs (Z = 82) compared to pp runs (Z = 1)

 $v \approx c$

 $v \approx c$

The LHC is (also) a photon collider

The low-energy regime

PbPb ultraperipheral collisions

Phys. Rev. Lett. 131 (2023) 151803 $\gamma \gamma \rightarrow \tau \tau$ in PbPb collisions

arXiv:2206.05192

Phys. Rev. Lett. 131 (2023) 151802 arXiv:2204.13478

- Clear observation by both ATLAS and CMS, compatible with predictions
- CMS:
 - 0.4 nb⁻¹ collected in 2015
 - $\mu + \tau_h(3 \text{ prong})$ final state
- ATLAS:
 - 1.4 nb⁻¹ collected in 2018
 - $e+\mu$, $\mu + \tau_h$ (1prong), $\mu + \tau_h$ (3prong)

Extracting τ g-2 from $\gamma\gamma \rightarrow \tau\tau$ observation

- Modifying the τ g-2 modifies the $\gamma\gamma \rightarrow \tau\tau$ cross section and modifies the p_{τ} and mass distributions of the signal
- CMS uses cross section information only, ATLAS also uses

shape variations (BSM effects enhanced at high mass and p_T)

The intermediate-energy regime

pp collisions with track counting

Elastic process, protons do not dissociate

Phys. Lett. B 816 (2021) 136190 arxiv:2010.04019

W

Y

 \mathbf{D}^+

NEW

Counting tracks

- Define z position of interaction vertex:
 - average z position of selected tau leptons
 - Weighted average for leptons from W:

 $z_{\rm vtx}^{\ell\ell} = \frac{z_{\ell_1} \sin^2 \theta_{\ell_1} + z_{\ell_2} \sin^2 \theta_{\ell_2}}{\sin^2 \theta_{\ell_1} + \sin^2 \theta_{\ell_2}}$ Extraordinary tracking capabilities of the ATLAS and CMS detectors! Β́S $z \, [\mathrm{cm}]$ -7 -6 -5 -4 -3 -2 $5\times$ 6 $z_{\rm BS}$ Cécile Caillol, CERN

- Define N_{tracks} as the number of tracks
 - with $p_T > 0.5$ GeV and $|\eta| < 2.5$
 - within a window of 0.2/0.1 cm around the
 - interaction vertex
 - Excluding tracks from W/τ

 About 30% of the 1mm windows at the center of the beamspot do not contain any pileup track

- Pileup tracks:
 - Compare N_{tracks} distribution in $Z \rightarrow \mu \mu$ data and
 - $Z \rightarrow \mu \mu$ MC in windows far from the $\mu \mu$ vertex

- Hard scattering tracks:
 - Compare N_{tracks} distribution in Z→μμ data and
 Z→μμ MC inside window centered at the μμ vertex

Including (semi-)dissociative contributions

- Inclusive backgrounds:
 - Shape from data with 2 < N_{tracks}
 < 8 → Negligible exclusive contributions
 - Normalized to Z peak in events with N_{tracks} = 0 or 1
- Elastic $\gamma\gamma \rightarrow \mu\mu/WW$:
 - Estimated from gammaUPC
 - Rescaled with linear $m_{\mu\mu}$ function to match data

Elastic simulation to be scaled by a factor of ~3

Differences between ATLAS and CMS related to $|\Delta \phi(\mu \mu)|$ selection (acoplanarity)

ATLAS Observation of $\gamma\gamma \rightarrow WW$ in pp collisions

Phys. Lett. B 816 (2021) 136190 arxiv:2010.04019

- eµ final state
- Signal visible at high $p_T(e\mu)$ (MET proxy) and $N_{tracks} = 0$
- Significance well above 5σ
- Fiducial xs: = 3.13 ± 0.31 (stat.) ± 0.28 (syst.) fb, in agreement with theoretical predictions

Observation of $\gamma\gamma \rightarrow \tau\tau$

• 5.3 σ observed, 6.5 σ expected

• First observation of $\gamma\gamma \rightarrow \tau\tau$ in

pp collisions

Systematic and statistical

uncertainties comparable in size

14

SMEFT-sim_general alphaScheme_UFO

dipole moment (d_{τ}) at tree-level in SMEFT: $C_{\tau B} = C_{\tau W} = c_{\tau W}$

• Two dimension-6 operators modify tau g-2 (a_{τ}) and electric

- $\mathcal{L}_{\text{BSM}} = \frac{C_{\tau B}}{\Lambda^2} \bar{L}_L \sigma^{\mu\nu} \tau_R H B_{\mu\nu} + \frac{C_{\tau W}}{\Lambda^2} \bar{L}_L \sigma^{\mu\nu} \tau_R \sigma^i H W^i_{\mu\nu} + \text{h.c.}$
- BSM contributions to a_{τ} and d_{τ} :

NEW

SMP-23-005

$$\delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Re}\left[C_{\tau\gamma}\right] \qquad \delta d_{\tau} = \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Im}\left[C_{\tau\gamma}\right]$$

• where $C_{\tau\gamma} = \left(cos\theta_W C_{\tau B} - \sin\theta_W C_{\tau W} \right)$

• Matrix element reweighting to model signal for BSM values of a_{τ} and d_{τ} , setting $C_{\tau W}$ to 0 and scanning over $C_{\tau B}$ without loss of generality

Signal regions with N_{tracks} = 0

m_{vis} distributions in the different
 final states after the maximum
 likelihood fit, assuming SM a_τ and d_τ

• Signal visible in high m_{vis} bins

• Effects of BSM a_{τ} increase with m_{vis}

NEW CMS-PAS-SMP-23-005

Cécile Caillol, CERN

NEW CMS-PAS-SMP-23-005

CMS Preliminary 138 fb⁻¹ (13 TeV)

The high-energy regime

pp collisions with proton tagging with dedicated spectrometers

JHEP 07 (2023) 234 arXiv:2304.10953

- Forward proton scattering in association with light-by-light scattering mediated by ALP
- Diphoton events selected if kinematic matching with a proton in at least one side of AFP
- Unbinned maximum likelihood fit, no significant excess (largest local significance = 2.5σ)

20

 $(m_{pp}-m_{\gamma\gamma})/\sigma(m_{pp}-m_{\gamma\gamma})$

Submitted to PRD arXiv:2311.02725

Exclusive diphoton at high mass

- Matching the mass and rapidity of pp and $\gamma\gamma$
 - systems within 2 standard deviations:

- Constraints on aQGC coupling parameters from
 - high mass exclusive diphoton production

Also interpreted as constraints on ALPs with mass between 0.5 and 2 TeV – no significant excess

Conclusion

- The LHC is also a high-energy photon collider
- Both SM measurements and BSM searches can be performed in different energy regimes
- Only a small fraction of results shown in these slides

- $\gamma\gamma \rightarrow \tau\tau$ observed for the first time in proton-proton ultraperipheral collisions at CMS
- Used to set limits on anomalous magnetic moment of the τ lepton ~5 times better than at LEP
- Beginning of a precision chapter in measuring the τ g-2 at the LHC

Submitted to JHEP arXiv:2310.11231

- Dilepton and I+jets final states
- 2 diffracted protons reconstructed in PPS →
 used to estimate mass and rapidity of central system
- Results extracted from fit to BDT output
- Limits set on fiducial cross section
- ~4 orders of magnitude away from SM sensitivity

No neutron in both ZDCs

• Ultraperipheral PbPb collisions to study $\gamma\gamma \rightarrow ee$ production

JHEP 06 (2023) 182 arXiv:2207.12781 Pb

Pb

- Zero Degree Calorimeter (ZDC) used to count neutrons to make categories, with different acoplanarity tails
- Measured fiducial cross section:

 $215 \pm 1(\text{stat.})^{+23} - 20(\text{syst.}) \pm 4(\text{lumi.})\mu b$

Generally good agreement with QED predictions from

Starlight and SuperChic

- Discrepancies grow with |y_{ee}|
 - Similar studies with $\gamma\gamma \rightarrow \mu\mu$