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® Iree |level, theoretically clean processes with large

Introduction to b — ¢ anomalies

® Sensitive to NP via LFUYV tests
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Experimental average (HFLAV):

R(D) = 0.357 £ 0.029
R(D*) = 0.284 + 0.012

SM predictions:

R(D) = 0.298 + 0.004
R(D*) = 0.254 + 0.005

Comb. discrepancy at ~3.3c¢ level hinting at 7 over-abundance



What if it’s a FF issue?
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The SM prediction for R(D*) might not
be as stable as originally thought!

Different Form Factors approaches have
different predictions, with noticeable
increase on the prediction for the latest
determinations (and strongly correlated

to \Vfgd\ determination)

Could the discrepancy actually arise
from issues on the FF estimates?



The lgVVa approach

Expand the FF ay(w) = EW)hy(w), with &(w) the leading Isgur-Wise function, in @, and 1/my,

A— A A A A - A
hix = hXO . (ShX o ———6hx gy + ——hxm, + ( 5hx |
s T~ 2my S 2me A7 . A

n X M, o sub-lead. I-W functs. ¢3(W), y 3(W) o sub-lead. I-W functs. £ _¢(w)

Expand each of the 10 [-W functs. as a power of z, and fit to theory (LCSR and QCDSR) and
experiment data up to a different order for each of the functions, selected by goodness-of-fit

fw) = f(O) 4 8f(1)z 416 (f(l) 4 2f(2)) 22 4 g (gf(l) 4 48f(2) 4 32f(3)) s 0(24)
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The BGJS approach

Expand the FF as a series inz = (\/w + 1 — \/5)/(\/w + 1 + \/5), where w = (mg + m3. — q*)/ (2mgmp.)

( Different expansion order for each FF
; (selected by goodness-of-fit)
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The Lattice approach
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The Dispersive Matrix approach

Goal: determine a form tactor f(t) starting from known values of f(t), e.g. from Lattice

The starting point is the introduction of 2 ingredients: inner product and auxiliary function:

. 7 (pflef)  (oflage)  (@flgty) -+ (@flgty)
(glh) = —% —Zg(z)h(z) (gt | f) (9tlgt) (gtlgty) -+ (g9tlgtpn)
2T Ji51=1
: M = (gt 1@f)  (gtqlgt)  (gtyl9t1) - (9t 19tp)
(2) = = )
) =
It 1 — 2(t)2
(gt |DF) (gt l9t) (gtprl9ty) - (gtp |9ty )

Matrix built out of inner products, hence its determinant is by construction positive semidefinite
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The Dispersive Matrix approach

M, obeys to the dispersion relation L \qﬁ( )f(2)]? < x » 0 <(oflof) < x
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remaining terms, and the semidefinite positiveness :} M, = $1/1 1_1zlz 1_123  1—_z12pn
is not spoiled by replacing M, by its upper limit
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Not all that glitters is gold...
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Where is this coming from!?

In order to understand the origin of the FF behaviours, it's instrumental to take a look at the helicity amp.

Ho(w) = ———— H (w) = f(w) F mpmp-Vw? — 1g(w)

1 dI”
Ho(w)|? + |H 2 4 |H_(w)|? e
Vo du * 100 +|\H+((w)) e Fi(w) | e | Vel | R(D®) | Afg | FE
, B o(w ch w
O PP = | 2 [N [N
AL, |H_(w)]? — |Hy(w)]? . . e e A W

) = [Ho(w)2 + | Hy (@) + |H-(w)]

A change in the shape of F;(w) has a direct proportional impact on R(D*), | V., |, AI’;fB and Ff
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What if we try to perform a fit to this data?

Goal: perform a fit to AI’?B and Ff
using DM results for the FF as priors

R(D*)g; = 0.265 % 0.005
F; 4 = 0.515+0.005
B a = 0.227 £0.007

0.222 + 0.007

U
AFB, fit

Re-emergence of R(D™*) anomaly,
disappearance of Ff and AF”fB ones,
change of F(w) slope

2305.15457
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values, lattice results not even
reproduced anymore!
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Can we reproduce everything introducing NP in light leptons?

The DM FF offer the unigue possibility to employ NP in light leptons to
address anomalies (forbidden in other scenarios due to CKM [imits)

Could this fix the issue”?

Only evidence found for 8y, however Ff and v, = — 0.054 £ 0.015
Al are ratios, hence insensitive to it! gv. € |—0.04,0.01
The absence of an hint for scalar/tensor WCs gs. € ._0°07a O°02_
'S due to more precise measurements in light gg, € '_0.05, 0.03]
lepton channel, together with m, suppression H - -
in interference terms with SM gr € [—O-OL 0-02]

= |f the FF prediction for Ff and AlfB does not reproduce data, this cannot be
fixed by introducing NP effects in light leptons as could be done for R(D*)!

2305.15457
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Conclusions

® Recent determination of AIfB and Ff have become available from Belle and Belle I,
already with great precision!

® Theory prediction of AI’;fB and Ff strongly correlated to the one of R(D™); while the latter
can be modified by NP effects, the former are strongly NP-insensitive...

® Theory determinations of FF should therefore take in great attention their implications of the
predictions forAI’;fB and F?, and the consequent impact on the extraction of | V(fgd\ |
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The Dispersive Matrix approach
B(2) — V1(2) < f(2) < B(2) + V(2)

N 2
1 1 — 2%
/B(Z) = ¢f d ’ 9
$(2)d(2) ; T 2=z Unitarity requires y(z) > 0, which
1 1 . .
v(2) = 1= 22 32(2)d(7) (x — XDM) implies ¥y 2 ypmvm. Therefore, the FF
N (1 — 22)(1 — 22) at any given z is given by the
xom = ) 9ifid;fidid, L ze = convolution of ¥( d ith th
i,j=1 %] 4 Z) an ﬁ(Z) with the
Nz distribution of input (lattice) data with
az) = T 5= . .
m—1 m X > XpwMm: Input data is therefore
g = ﬁ 1 —zjzm filtered by unitarity!
j = .
mti—=1 £j — Zm

Martinelli et al. employ only lattice as input data (and no exp.) because they want to have a

fully theoretical prediction of FFs, without having to assume data to be SM-like
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VWVhat about the DM results applied to other FFs?

Lattice FF's R(D™) P-(D™) Fr ;
FNAL/MILC [15] 0.275(8) -0.529(7) 0.418(9)
HPQCD [16] 0.266(12) -0.543(18) 0.399(23)
JLQCD [17] 0.247(8) -0.509(11) 0.448(16)
Average [15]-[17] 0.262(9) -0.525(7) 0.422(10)

(PDG scale factor) (1.8) (1.3) (1.4)

Combined [15]-[17] 0.259(5) -0.521(6) 0.425(7) 0.473(14) 0.252(10)
Experimental value ||0.284(12)[36])| -0.38 & 0.51+%-21 [38] | 0.49(8)[39, 40] [10.520(6) [13, 14]) [\0.232(10) [13, 14,

We have an analogous pattern: either we reproduce R(D*) but observe a tension with
new Ff and AlfB data (HPQCD) or viceversa (JLQCD)!
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