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The Strong CP Problem
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The absence of P and CP violation in the
strong interactions requires
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6 < 1 O_ on the neutron electric
dipole moment



Upo ()

* |s a symmetry of the classical action
* |s spontaneously broken

* has a color anomaly

Peccei and Quinn, 1977



Ifa U,,(1) symmetry is assumed,
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and a light neutral pseudoscalar
particle is predicted: the axion.

Weinberg, Wilczek 1978



= 0.97 in KSVZ model
0.36 in DFSZ model



Axions are constrained by

beam dump experiments
rare particle decays (e.g. K™ — 7" a)

radiative corrections
(e.g. the =~ anomalous magnetic moment)

the evolution of stars



Axion constraints
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Axion production by vacuum realignment
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J. Preskill, M. Wise & F. Wilczek, L. Abbott & PS, M. Dine & W. Fischler, 1983



Axion constraints
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Axion dark matter is detectable

PS, 83
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ADMX 2" generation
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SQUIDs from Leslie Rosenberg and
J. Clarke’s group Gray Rybka at U. Wash.



HAYSTAC at Yale




CAPP

Center for
Axion and Precision
Physics Research




Axion photon constraints
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from https://cajohare.github.io/AxionLimits/ by Ciaran O’Hare



Axion to photon conversion in a magnetic field

By
conversion probability
o 2
g;/ 2
pla<=—y)= B,
7T a
2 2
) ma _a)pl
with q. =
2F

Theory

«P.S.’83
* L. Maiani, R. Petronzio
and E. Zavattini ‘86
» K. van Bibber et al. ’87
* G. Raffelt and
L. Stodolsky, ‘88
» K. van Bibber et al. ’89

Experiment
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Shining light through walls
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Resonantly Enhanced Axion-Photon Regeneration
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Hoogeveen (1996); P.S., Tanner and van Bibber (2007) & G. Mueller (2009)



ALPS Il at DESY

A. Ringwald, A. Lindner et al.

Bg=53T L=2x120m inHERAtunnel



“Invisible” axion detection methods

the cavity haloscope

solar axion searches

shining light through walls
dielectric haloscopes

NMR methods

axion mediated long-range forces
LC circuit

axion echo
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Axions today
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Ax Ap 2 h/2

1
Az, ~ —— ~0.7-10' ¢m ~ 0.02 pc

Apq
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Axion dark matter is an extremely degenerate
Bose gas.

Does it behave the same way as WIMP dark
matter in astrophysical contexts?



WIMPs today

PDM = DM Perit

Qpn >~ 0.23 Perit = 102" gr/cc
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temperature at which WIMPs kinetically decouple
TWkin ~ MeV






In the axion case, fluctuations in density
are generically large on the length
scale !
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emphasized by
6p — p Hyungjin Kim

yesterday

Generically the fluctuations in the density

are of order the density, and the fluctuations

are correlated over distances  p — 1

Ap



simulation by Yuxin Zhao
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In the axion case, the fluctuations in the
gravitational fields are necessarily large

0g ~ 4dnGp (

regardless of their average value.

For example in a homogeneous universe

in the WIMP case
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typical gravitational field is 5 g
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Thermalization occurs due to
gravitational interactions
PS + Q. Yang, PRL 103 (2009) 111301
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Gravitational interactions thermalize the
axions and cause them to form a BEC
when the photon temperature
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Bose-Einstein Condensation

if

then

identical bosonic particles

are highly condensed in phase space
and their total number is conserved
and they thermalize

most of them go to the lowest energy
state available by the thermalizing
interactions



Generation of vorticity is expected in

the axion fluid
N. Banik & PS, 2013

because the axions can move between
states of different vorticity

1= 3R 4|1, =5k — |l =2k + |, = 6h)

and the state of lowest energy for given total
angular momentum (the state the axions
condense into when they thermalize and
rethermalize) is one of rigid rotation



Generation of vorticity is impossible in the
case of WIMP dark matter.

(A. Natarajan + PS, 2006)

For WIMP dark matter

Newtonian gravitational potential

f YV xo—0 initally

then V x 7= (0 forever after



Tidal torque theory
with ordinary CDM

<
neighboring
protogalaxy

the velocity field remains irrotational



Tidal torque theory
with axion BEC
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net overall rotation is obtained because, in the lowest energy state,
all axions fall with the same angular momentum



simulations by Arvind Natarajan

In case of net overall rotation
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The caustic ring cross-section

an elliptic umbilic catastrophe
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Conclusions

Axions solve the strong CP problem

A population of cold axions is naturally produced
In the early universe which  may be the dark
matter today

Axion dark matter is detectable

Axion dark matter has distinctive properties in
large scale structure formation



