# Destabilizing Matter through a Long-Range Force

Hooman Davoudiasl

HET Group, Brookhaven National Laboratory



Based on: H.D., Phys.Rev.D 108 (2023) 1, 015023; 2304.06071 [hep-ph]

Talk at Rencontres de Moriond 2024 La Thuile, Italy, March 24-31, 2024



## Introduction

- Ordinary matter ( $\sim$  5%) made of nucleons (p, n) is very stable:
  - Over far longer than cosmological time scales ( $\sim 10^{10}$  years)
  - Searches have only yielded strong bounds, e.g.

 $au(p 
ightarrow \pi^0 \ell^+) > 1.6 \,(0.77) imes 10^{34}$  yr, for  $\ell = e \,(\mu)$ , at 90% CL

- Dark matter ( $\sim 27\%$ ): requires new physics
  - Perhaps a new sector with its own forces
- This talk: a new long-range force
  - Ultralight scalar  $\phi$
  - Can be sourced by astronomical objects
- Long range force: local background effects
  - Like an electric or gravitational field

1



Super-Kamiokande Collaboration; PDG



## Baryon Number Violation (BNV)

• In the SM, proton decay naturally suppressed, *e.g.*:

 $O_6 = \frac{(uud\ell)_R}{M^2}$ 

- M could be large, maybe near  $M_{\rm P} \approx 1.2 \times 10^{19} {\rm ~GeV}$
- A consequence of gauge invariance
- Baryon number: accidental symmetry
- Current bounds  $M \gtrsim 10^{16} \text{ GeV}$ 
  - Consistent with a GUT interpretation
  - SM (dashed) ; MSSM (solid)







### New Physics and Nucleon Decay

• New light physics can affect nucleon decay *E.g.*, HD 2013; Heeck 2020; Fajfer and Susic 2020

- Consider a light new scalar  $\phi$  from a different sector
- One can write down, for example, a dim-7 operator

$$O_7 = \frac{\phi \, (uud \,\ell)_R}{\Lambda^3}$$

- For  $m_{\phi} < m_p m_e$  one can have  $p \rightarrow \phi e^+$
- However, if  $\langle \phi \rangle \neq 0$ , dim-7  $\rightarrow$  dim-6:  $\frac{\phi (uud \ell)_R}{\Lambda^3} \rightarrow \left(\frac{\langle \phi \rangle}{\Lambda}\right) \frac{(uud \ell)_R}{\Lambda^2}$ 
  - Effectively, the coefficient of a dim-6 operator becomes a background field

# A New Scalar Force

- Assume an ultralight scalar  $\phi$  of mass  $m_{\phi} = 10^{-16} \text{ eV}$ 
  - Can arise in a variety of contexts (CPV axions, string moduli,...)
  - Sun's radius  $R_\odot pprox 7 imes 10^5$  km  $\sim (10^{-16} \text{ eV})^{-1}$
- Possible coupling to nucleons N:  $g_N \phi \bar{N} N$ 
  - $g_N \lesssim 8.0 imes 10^{-25}$  (2 $\sigma$ ) Microscope Collaboration 2022; Fayet 2017
- We will use reference value  $g_N = 10^{-25}$
- Astronomical objects can *coherently* source significant  $\langle \phi \rangle$  values

$$\langle \phi_* 
angle pprox - rac{g_N(M_*/m_N)}{4\pi \, R_*}$$

( $m_N$ : nucleon mass)

We will focus on

$$O_7 = \frac{\phi \, (uud \,\ell)_R}{\Lambda^3}$$

- As an example, other choices possible
- Can lead to environment-dependent nucleon decay rates  $\propto \langle \phi_* 
  angle^2$

#### **Formalism**

• Using chiral perturbation theory Claudson, Wise, Hall, 1982

$$\mathcal{L}_{(\Delta B=0)} = \left[\frac{(3F-D)}{2\sqrt{3}f_{\pi}}\partial_{\mu}\eta + \frac{(D+F)}{2f_{\pi}}\partial_{\mu}\pi^{0}\right]\bar{p}\gamma^{\mu}\gamma_{5}p + \frac{(D+F)}{\sqrt{2}f_{\pi}}\partial_{\mu}\pi^{+}\bar{p}\gamma^{\mu}\gamma_{5}n + \dots$$
$$\mathcal{L}_{(\Delta B=1)} = \frac{\beta}{\Lambda^{3}}\phi\left[\overline{e_{R}^{c}}p_{R} - \frac{i}{2f_{\pi}}(\sqrt{3}\eta + \pi^{0})\overline{e_{R}^{c}}p_{R}\right] - \frac{\beta}{\Lambda^{3}}\phi\left[\frac{i}{\sqrt{2}f_{\pi}}\pi^{+}\overline{e_{R}^{c}}n_{R}\right] + \text{H.C.}$$

 $D = 0.80, F = 0.47, \beta = 0.01269(107) \text{ GeV}^3$ , Aoki et al., RBC-UKQCD, 2008 ;  $f_{\pi} \approx 92 \text{ MeV}$ 

• Focus on 2-body decays; ignore  $m_e$   $\mathcal{M} = \pi^0, \eta$ 

Proton decays: 
$$\left[ \Gamma(p \to \phi e^+) = \frac{\kappa^2}{32\pi} m_p \right]$$
 and  $\left[ \Gamma(p \to \mathcal{M}e^+) = \frac{\lambda_{\mathcal{M}}^2}{32\pi} m_p \left( 1 - \frac{m_{\mathcal{M}}^2}{m_p^2} \right)^2 \right]$ 

- Implies  $p \to \phi e^+$  dominant when  $f_{\pi} \gg \langle \phi \rangle$  (empty space or  $g_N \to 0$ )

Neutron decay: 
$$\Gamma(n \to \pi^- e^+) = \frac{\lambda_\pi^2}{16\pi} m_n \left(1 - \frac{m_{\pi^-}^2}{m_n^2}\right)^2$$

$$\kappa \equiv \beta / \Lambda^3$$
;  $\mu = \kappa \langle \phi \rangle$ ;  $\lambda_\pi \equiv \frac{(D+F+1)\mu}{2f_\pi}$ ;  $\lambda_\eta \equiv \frac{(3F-D+3)\mu}{2\sqrt{3}f_\pi}$ 

## "Local" Constraints

- Laboratory searches \*
  - $\tau(p \to e^+ \pi^0) > 1.6 \times 10^{34}$  yr (90% CL) PDG 2022

$$\Rightarrow \Lambda \gtrsim 2 \times 10^{11} \left(\frac{g_N}{10^{-25}}\right)^{1/3} \text{ GeV}$$



\* PDG 2022 also cites an updated bound, stronger by 3/2, which constrains  $\Lambda$  at the same level.

- Search for anomalous flux of  $\mathcal{O}(10 \text{ MeV})$  solar neutrinos
  - Super-Kamiokande (SK) search for BNV Ueno et al., (SK Collab.), 2012
  - Monopole (GUT) mediated Rubakov 1981; Callan 1982
  - SK: 176 kton-yr of data, focused on  $\pi^+$  from p decays
  - We consider  $p \to e^+ \eta$  with  $Br(\eta \to \pi^+ X) \approx 27\%$  PDG 2022

$$\phi(r_0) = -\frac{g_N}{2m_N} \int_0^{R_0} dr \, r^2 \, \rho(r) \int_{-1}^{+1} dx \, \frac{e^{-m_\phi |\vec{r} - \vec{r_0}|}}{|\vec{r} - \vec{r_0}|} y$$



Bahcall and Pinsonneault, 2004

• Rate of  $p \rightarrow e^+ \eta$  in the Sun:

$$\mathcal{R}_{\eta e} = \frac{4\pi}{m_N} \int_0^{R_{\odot}} dr \, r^2 \rho(r) \, \Gamma(r)_{(p \to \eta \, e^+)} \Rightarrow \left[ \Lambda \gtrsim 2 \times 10^{10} \left( \frac{g_N}{10^{-25}} \right)^{1/3} \, \text{GeV} \right]$$

#### Neutron Star Heating via Nucleon Decay

- Neutron star (NS) mass  $M_{\rm NS} pprox 1.5 M_{\odot}$  and radius  $R_{\rm NS} pprox 10$  km
  - $n_N \sim 4 imes 10^{38} \ \mathrm{cm^{-3}}$
- Focus on neutron decay  $n \to \pi^- e^+$ , depositing  $E \approx m_n$  in the NS
  - $\sigma_{\nu N} \sim 10^{-42} \text{ cm}^2$  for  $E_{\nu} \sim 10 \text{ MeV} \Rightarrow \lambda_{\nu} \sim \mathcal{O}(10 \text{ m}) \ll R_{\rm NS}$
  - All decay products scatter many times in the NS
- Constant density approximation

$$\rho_{\rm NS} = \frac{M_{\rm NS}}{(4\pi/3)R_{\rm NS}^3} \approx 7 \times 10^{14} \ {\rm gcm^{-3}}$$

• For  $r < R_{NS}$ 

$$\phi_{\rm NS}(r) \approx -\frac{g_N \rho_{\rm NS}}{6 m_n} R_{\rm NS}^2 \left(3 - \frac{r^2}{R_{\rm NS}^2}\right)$$

Neutron decay rate in NS

$$\Gamma_n^{\rm NS} = 4\pi \frac{\rho_{\rm NS}}{m_n} \int_0^{R_{\rm NS}} dr \, r^2 \, \Gamma(r)_{(n \to \pi^- e^+)}$$

## **Observational Bound**

- Steady state:  $m_n \Gamma_n^{NS} = 4\pi R_{NS}^2 \sigma_{SB} T_{NS}^4$ 
  - Stefan-Boltzmann constant  $\sigma_{\rm SB}=\pi^2/60$
  - Surface temperature:  $T_{\rm NS}$



Credit: NASA

- Coldest known NS: pulsar PSR J2144-3933
  - Hubble Space Telescope (HST) data:  $T_{\rm NS} < 42000$  K Guillot *et al.*, 2019
  - Distance from Earth  $\approx$  180 pc, estimated to be  $3\times10^8$  yr old
  - $T_{\rm NS} \sim \mathcal{O}(100 \text{ K})$  expected without heating Yakovlev, Pethick, 2004
- The NS heating bound yields

$$\Lambda \gtrsim 7 \times 10^{11} \left( \frac{g_N}{10^{-25}} \right)^{1/3} \text{ GeV}$$
 (HST)

• Potential improvements from James Webb Space Telescope

E.g., Chatterjee et al., 2022; Raj, Shivanna, Rachh, 2024

### Ultralight Dark Matter

- Alternative assumptions can make  $\phi$  viable DM
- Example: allow for electron coupling  $g_e\phi\,ar{e}e$  with  $g_e\sim 10^{-25}$ 
  - $g_e \lesssim 1.4 \times 10^{-25}$  at  $2\sigma$  Microscope collaboration 2022; Fayet 2017
- $\phi \sim g_e n_e m_{\phi}^{-2}$  by "thermal misalignment" Batell, Ghalsasi, 2020
- $\phi$  starts oscillating once  $H \sim m_{\phi}$  corresponding to  $T \sim$  MeV,  $n_e \sim T^3$
- For  $m_{\phi} \sim 10^{-16}$  eV we find  $\phi_i \sim 10^{25}$  eV
- Initial energy density  $ho_i \sim m_\phi^2 \phi_i^2 \sim 10^{18}~{
  m eV^4}$  redshifts like  $T^{-3}$
- At  $T \sim eV$  (matter-radiation equality):  $\rho_i \rightarrow \mathcal{O}(eV^4) \Rightarrow \phi$  could be DM
- For  $ho_{\rm DM}\sim 0.3~{
  m GeV}~{
  m cm}^{-3}$  (Solar system):  $\phi_{\rm DM}\sim 10^{13}~{
  m eV}$ ,  ${\cal O}(10)$  large than  $\phi_\oplus$ 
  - Would not lead to stronger constraint from nucleon decay data than from NS heating
  - $\bullet$  Introduces time variation due to wavelike nature of  $\phi$  DM
  - Further phenomenology beyond the scope of this talk

# **Concluding Remarks**

- We considered the effect of an ultralight scalar  $\phi$  on BNV
- Besides providing a final state,  $\phi$  may be sourced by matter
- Our discussion focused on a particular operator, as an example
- This can enhance standard operators mediating BNV near astronomical bodies
  - $\langle \phi \rangle(x)$  as a Wilson coefficient in the EFT

• We examined laboratory bounds, as well as solar neutrino emission and neutron star heating via BNV

• Current HST observations of the coldest known pulsar seem to provide the strongest bounds on our setup

- Data from JWST could provide improved bounds
- Depending on choice of parameters,  $\phi$  could be an ultralight DM candidate