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Introduction

B — X.v is interesting to search (or constraint) new physics in the
quark sector:

e b — sv is forbidden at tree-level in the SM.

e The dominant contributions in the SM come from weak decays.

= The SM rate is small.

= The decay is sensitive to new physics.




Status of B — X,y

Experimental:

B(B = Xs7)2%. 1 6cev = (3.49 £0.19) x10~*
L >1.

+5.4%

e CLEO, BaBar and Belle measurements combined by PDG and HFLAV [arXiv:2206.07501] *

INewest Bellell measurement not yet included. [arXiv:2210.10220]



Status of B — X,y

Experimental:

B(B = Xs7)2%. 1 6cev = (3.49 £0.19) x10~*
L >1.

+5.4%

e CLEO, BaBar and Belle measurements combined by PDG and HFLAV [arXiv:2206.07501] *

In the future:

B(B = Xs7)2%. 1 6cev = (3.49 £ 0.09) x10~*
1.

+2.6%

o After Belle Il a significant reduction in expected. [arXiv:1808.10567]

INewest Bellell measurement not yet included. [arXiv:2210.10220]



Status of B — X,y

Experimental:

B(B = Xs7) 2% 1 6cev = (349 £0.19) x10™*
g —_———
+5.4%

e CLEO, BaBar and Belle measurements combined by PDG and HFLAV [arXiv:2206.07501] .

Theoretical: [Misiak, Rehman, Steinhauser '20]

B(B = Xs7)2%. 1 gcev = (3.40£0.17) x10~*
- >1.
+5.0%

Breakdown of the error: mc-interpolation

15%:\/ (£3%)° + (£3%)° + (£2.5%)°

higher orders parametric and non-perturbative



B — Xsv in the SM



B — X,y in the SM

Determination of B — X,y in the SM:

B(B — Xs7)e,>6 = B(B = XceD)ep Vi Vi

Vcb

% 6a
o [P(Eo) + N(Eo)]

s

e semileptonic phase-space factor: [Alberti, Gambino, Healey, Nandi '14] 2

>T(B — X.ep)
r(B — X,ev)

Vu b
Vcb

-

e P(Ep): perturbative contributions
P(Eo) ~T(b— XPvy)=T(b— sy)+T(b— sgv)+T(b— sqqy) + ... = 96%

e N(Ep): non perturbtative contributions ~ 4%

2A N3LO refinement is possible [Fael, KS, Steinhauser '20; Fael, Usivitsch '23]



Effective Hamiltonian

e At low energies we want to work in the effective theory to resum large logarithmic

contributions: (as In m‘z/v/m[z))"

e For b — sy (when neglecting NLO EW and CKM suppressed effects) we have:

4G
L = Locoxqep(u, d,s, c, b) + —F ViV Z Ci(u

Q12 (sTic)(cTib) oS cL |Ci(mp)| ~ 1
b, SL
@3,456 (sTib)>_, (aTq) q q |Ci(mp)| < 0.07
by SL
emp = nz Y
Q? 167rb25LUl bRF,uV § ‘C7(mb)| ~ 0.3
by - SL
gm a a >/Og
Q8 6 T bRG/u/ C ‘Cg(mb)| R 015



Effective Hamiltonian

8
M(b— XP —@24v*v2 Ci(up) Ci(up) G
(b— XPy) = =E=2m* |V Vil D 7 Cilja) Gi(110) G

ij=1

~P(Eo)

Three steps for the calculation:
1. Calculate the Wilson coefficients C;(10) at the hard scale pg = myy.

2. Derive the renormalization group equations and anomalous dimensions ;; in the effective
theory to evolve down to the low scale p = my:

Gl = S (0) - Gio)

J

3. Evaluate the matrix elements Gjj(mj) in the effective theory.



Effective Hamiltonian

Wilson coefficients at hard scale: for expample C7(my)

LO [Inami, Lim '81, ..] NLO [Adel, Yao '3, ..] NNLO [Misiak, Steinhasuser '04]




Effective Hamiltonian

Anomalous dimensions: u% Gi(p) = > ij(p) - ()
J
2 Ly Zog

[Gaillard, Lee '74; Altarelli, Maiani '74] [Grinstein et al '90]

[Shifmann et al '78; Grigjanis et al '88]

£y A
LO Id 4
¢ [Altarelli et al '81; Buras, Weisz '90] [Chetryrkin, Misiak, Miinz '97]
. )
4 . [Misiak, Miinz '95]
oy A

N LO 299090929898 : A ‘;

[Gorbahn, Haisch '04] [Czakon, Haisch, Misiak '06] [Gorbahn,

Haisch, Misiak '05]

NNLO

NNLO corrections give —4% correction to the branching ratio



P GEMRQ ) 4\ w2 &
M(b— X27) = ——===2m" |V, V| Y~ Ciln) Gi(11s) Gj
ij=1

~P(Eo)

Status:

e NLO is known com pletely. [Greub, Hurth, Wyler '96; Ali, Greub '91-'95; Buras, Czarnecki, Urban, Misiak '02; Pott '95]

e NNLO:
e Gy7 and Gyg are known completely. [Biokiand et al ‘05; Melnikov, Mitov '05; Asatrian et al. '06-'10]
e For numerically small contributions the two body contributions are known, the rest is

approximated using BLM.
e Gi7 and Gy interpolated between m: = 0 and m. — oo.



Calculation of G,; at NN

0.175} AB,,
Boy

0.125

0.075

0.025

Perturbative calculation can be done by considering diagrams with operator insertions and
unitarity cuts.

Calculation for m. — 00: [Misiak, Steinhauser '06, '10]

e Calculation for me = 0: [Czakon, Fiedler, Huber, Misiak, Schutzmeier, Steinhauser '15]

Calculation of terms proportional to nf for arbitrary values of m.: [Misiak, Rehmann,
Steinhauser '20]

= Interpolation to physical m./my introduces +3% error in final result.

10



Calculation of G,; at NNLO

General work flow:

1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar
integrals with unitarity cuts.

11
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Calculation of G,; at NNLO

General work flow:

1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar
integrals with unitarity cuts.

2. Reduce to master integrals with the help of Integration-By-Parts (IBP).

3. Using the IBP reduction we can find a system of differential equations for the masters Mj:

d
EM/((Z = mg/m%7 €) = Ru(z,e)My(z,€)
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Calculation of G,; at NNLO

General work flow:

1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar
integrals with unitarity cuts.

2. Reduce to master integrals with the help of Integration-By-Parts (IBP).

3. Using the IBP reduction we can find a system of differential equations for the masters Mj:

d
EM;((Z = mg/mi7 €) = Ru(z,e)M(z,€)

4a. Solve the master integrals numerically with boundary values obtained for z — oo.

11



Calculation of G,; at NNLO

General work flow:

1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar
integrals with unitarity cuts.

2. Reduce to master integrals with the help of Integration-By-Parts (IBP).

3. Using the IBP reduction we can find a system of differential equations for the masters Mj:

d
EMk(Z = mi/mi7 €) = Ru(z,e)My(z,€)

4b. Calculate the master integrals numerically at the physical point with AMFlow [Liu, Ma '22] .
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Two Body contributions to G,; at NN

[Czaja, Czakon, Huber, Misiak, Niggetiedt, Rehmann, KS, Steinhauser '23]

e We finished the calculation of the 2-body contributions.
e We find O(500) integral familes.

e The reductions to master integrals are done with Fire [Smirnv, Chuharev '19] and Kira
[Klappert, Lange, Maierhdfer, Usovitsch '20] .

e For the two body contributions we need to evaluate 447 master integrals.
e The master integrals are evaluated at the physical point with AMFLow.

e We cross-checked the boundary conditions for z — oo.
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Two Body contributions to G,; at NNLO

[Czaja, Czakon, Huber, Misiak, Niggetiedt, Rehmann, KS, Steinhauser '23]

e We finished the calculation of the 2-body contributions.

N3G (2 =0.04) ~ — 127.624515

0.181070  6.063805  34.087329
€3 €2 €

(0.482853 . 4.093615
€

3 + 10.984004) n

€

(0482853 n 4.185427
€

5 + 19.194053) Ne
€

€2

0.482853  4.135795
( 4 219075 19.647238) oy
€

A5G (2 = 0.04)

R

1. . 0.087654  6.383643
—2BanGE (2 = 0.04) + b =

5 =+ 34.077780

E 12



Two Body contributions to G,; at NNLO

[Fael, Lange, KS, Steinhauser '23]

Other approach: oo ' o

e Interpret the cut diagrams as vertex corrections:

V

— -~

, | «w“ e

b Qi s b Q

H f

13



Two Body contributions to G,; at NNLO

Calculation of the vertex: b(py) — s(ps) + v(qy)

_ qy pL
M* = s(ps)Pr (t1 L+t L t39* ) up(pp)
mp mp

e Calculate 30 (591) diagrams at 2-(3-)loop level.
e We find masters 14 (479) master integrals at at 2-(3-)loop level.

e At 2-loop: We are able to solve all master integrals analytically, extending the previously
known results. [Misiak, Rehman, Steinhauser '17]

14



Two Body contributions to G,; at NNLO

Master integrals at 3-loop:

e Calculate initial values of the master integrals at x = m./mp = 1/5 with AMFlow.

e Construct symbolic expansions around x = 1/5,1/10,0 by inserting an ansatz into the
differential equation and solve a large linear system of equations in terms of a small
number of initial conditions.

e Use either the initial boundary value or the previous expansion to fix the initial conditions.

= We obtain a precise semi-analytic result for 0 < m./my, < 1/5.
We agree with a partial result obtained in [Greub, Asatrian, Saturnino, Wiegand '23] .

15



Non-perturbative effects

e The matrix elements also receive non-perturbative contributions.
e The most important effects come from photons coupling to light quarks.
[ ]

Effects can be described using SCET and non-local soft matrix elements (shape
functions). [Benzke, Lee, Neubert, Paz '10]

e Moments of the shape functions can be related to HQET parameters. [Gunawardana, Paz '19]

16



Non-perturbative effects

The matrix elements also receive non-perturbative contributions.

The most important effects come from photons coupling to light quarks.

Effects can be described using SCET and non-local soft matrix elements (shape
functions). [Benzke, Lee, Neubert, Paz '10]

e Moments of the shape functions can be related to HQET parameters. [Gunawardana, Paz '19]

For example:

+oo

2 dWl m2 mpwiy T 2
N7 = =R 1-F < ——1| h dwi hi7 = =% ..
17 3 e / w { (mbW1> = 2m2 17(w1) / w1 My 3/16 )

— 00
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Non-perturbative effects

e Some non-perturbative effects can be estimated by data driven approaches, e.g. the
@7 — Qg interference:

B~ = X7 ~A+BQ,+ CQy+DQs, T[B°—= Xy] ~A+BQy+ CQ,+ DQs

e Isospin averaged: I ~ A+ (B + C)(Q, + Q4) + DQs = A+ 675
e lIsospin asymmetry: Ag_ ~ %(Qu — Qq)

ol7s  Qu+ Qg
—_—~ — |1+ +0.3 No_
r Qd - Qu —V 0

SUEF(3) breaking

e Belle [arxiv:1807.04236] : [o_ = (—0.48 &+ 1.49 + 0.97 + 1.15)%
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Non-perturbative effects

e Some non-perturbative effects can be estimated by data driven approaches, e.g. the
@7 — Qg interference:

B~ = X7 ~A+BQ,+ CQy+DQs, T[B°—= Xy] ~A+BQy+ CQ,+ DQs

e Isospin averaged: I ~ A+ (B + C)(Q, + Q4) + DQs = A+ 675

Isospin asymmetry: Ag_ ~ B(Q, — Qq)

ol7s  Qu+ Qg
—~ — |1+ +0.3 JAV
r Qd - Qu —V 0
SUF(3) breaking

Belle [arXiv:1807.04236] : g_ = (—0.48 =1.49 4 0.97 + 1.15)%

Belle Il expects a factor of 4 improvement.
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Exclusive decays

B — Vv [Paul, Straub '16]

GRe? | Vi Vigl” mp, m
B(By — V) = 78, e (IGP+1GP) Ta(0)

[(By(t) = V) = T(By(t) = V)
[(By(t) = V) + T(By(t) = V)

Acp(Bq(t) = V) =

T1(0): non-perturbative form factor, C; = ms/myC; in the SM
e The main source of uncertainty in the branching ratio comes from T7(0).

e Other hadronic contributions are estimated using QCD factorization and
light-cone-sum-rules.

18



Exclusive decays

B — Vv [Paul, Straub '16, Straub (flavio) '18]
Bexp - 10° By - 10°
B — K*y  447+£0.10+0.16 BaBar 4.1840.84
B® — K*0y  39640.07+0.14  Belle
Bt — K**y  42240.144+0.16 BaBar 4.2540.88
Bt - K**y 3764+0.10+0.12  Belle
B - ¢y 36+05+03+06 Belle 4.02+0.52
BY — ¢ 3.384+0.34+0.20 LHCb

e The SM predicition for the branching ratios has large uncertainties due to
non-perturbative effects.

19



Exclusive decays

B — Vy
experimental SM
Acp(B® — K*y) (-0.4+1.4403)% Belle (0.3+0.1)%
(-=0.3+1.74+0.7)% BaBar
(+0.8£1.74+0.9)% LHCb
(-0.4£0.21)% Belle I

e Specific angular observables and asymmetries are theoretically clean.

e In these cases the theoretical precision often exceeds the experimental one.

= Global fits to inclusive and exclusive decay modes can severely constrain NP.

20



Summary and Outlook



Status of B — X,y

Experimental:
B(B = X71)E 1 6cv = (3:49 £ 0.19) x107*
—_———
+5.4%
Theoretical: [Misiak, Rehman, Steinhauser '20]
B(B — Xs7)EP.1 66ev = (340 £0.17) x107*
—_———
+5.0%
Breakdown of the error: me-interpolation

15% =/ (£3%)2 + (£3%)° + (£25%)
higher orders parametric and non-perturbative
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Status of B — X,y

In the future:

B(B = X:7) 2. 1 6cev = (3-49 £ 0.09) x10~*
L >1.

+2.6%

Theoretical: [Misiak, Rehman, Steinhauser '20]

B(B = Xs7)£%. 1 6cev = (340 £0.13) x10~*
L >1.

+3.9%

Breakdown of the error: /il /AptefHoNAtISA
+3.9% = \/ (£3%)°  + JAp3nyy +  (£25%)°

higher orders parametric and non-perturbative
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Two Body contributions to G,; at NLO

New analytic results at 2-loop:

1),2P 92
62(7) =

= — o= +h(2) + ¢h(2) + O(),

971 + 1916w + 1602w?* + 1916w® + 971w 2wHy(w)?
162(1 + w)? 3(1+w)?
4 8w (27 + 57w + 26w? + Tw® + 5w?) Hy(w) ~ 16w(2+ 3w+ 2w?) Ho()?
27(1 +w)® 9(1 +w)*
2w( — 1 — 2w + dw? + 6w + 3w!)Ho(w)?  8w(l + w?)Hop,_1(w)
- 3(1+w)® - 3(1 + w)?
8(5 + 29w + 54w? + 29w® + 5w')H_, (w) 4 16w*(3 + 13w + 15w* + 6w®) Hy 1 (w)
27(1 + w)? 91 +w)s
16w(l — vw + w)

- 70(1 TP (34 8w + 8w? + 3w + 2v/w + 3w®? + 2w*?) H, () with

16w(1 + w + w) ) 3 Iy -
— Y Z(3+8w+8 3w — 2v/w — 3w — 2w/ H
90T wp (34 8w + 8w* + 3w w w w’*)H_ o(x) 5%
N 16w(3 + 9w + 13w? + 9w? + 3wh)H_; o(w) Sw(s

9(1+w)® S () w=(1-—+v1-4x2)/(1+ V1 —4x?)

_ 32w(3 + 9w + 13w? + 9w + 3w H_y 1 (w) B 16w(2 + 3w + 2w?) Hy 1 o(x)

Jo= CF[

= mc/mp,

9(1 +w)® 3(1 4 w)*
16w(2 + 3w + 20?) Ho10(x)  16w(l + 3w + w?) H_y 00(w)
3(1+w)* 3(1 4 w)*

+n? (—ﬁ(ls + 60w + 94w? + 84w® + 27w — 12/w — 36w/
w

— 36w*? — 1207/?) —

2w(3 + 8w + 3w?) Ho(w) =~ 8w (5 + 12w + 5w*) H_;(w)
3(1+ w)? 9(1 + w)?
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