

Established by the European Commission

Precision $b \rightarrow s\gamma$

Recontres de Moriond, 2024

Kay Schönwald — La Thuille, March 27, 2024

University of Zürich

Outline

Introduction

- $ar{B}
 ightarrow X_s \gamma$ in the SM
 - Low-energy effective theory
 - Perturbative calculations
 - Non-perturbative effects
 - Exclusive decays

Summary and Outlook

Introduction

 $\bar{B} \rightarrow X_s \gamma$ is interesting to search (or constraint) new physics in the quark sector:

- $b \rightarrow s \gamma$ is forbidden at tree-level in the SM.
- The dominant contributions in the SM come from weak decays.
- \Rightarrow The SM rate is small.
- \Rightarrow The decay is sensitive to new physics.

Status of $\bar{B} \rightarrow X_s \gamma$

Experimental:

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{GeV}}^{\text{exp}} = \underbrace{(3.49 \pm 0.19)}_{\pm 5.4\%} \times 10^{-4}$$

 $\bullet\,$ CLEO, BaBar and Belle measurements combined by PDG and HFLAV [arXiv:2206.07501] $^{-1}$

¹Newest Bellell measurement not yet included. [arXiv:2210.10220]

Status of $\bar{B} \to X_s \gamma$

Experimental:

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_\gamma > 1.6 \text{GeV}}^{\text{exp}} = \underbrace{(3.49 \pm 0.19)}_{\pm 5.4\%} \times 10^{-4}$$

 $\bullet\,$ CLEO, BaBar and Belle measurements combined by PDG and HFLAV [arXiv:2206.07501] $^{-1}$

In the future:

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_\gamma > 1.6 \text{GeV}}^{\text{exp}} = \underbrace{(3.49 \pm 0.09)}_{\pm 2.6\%} \times 10^{-4}$$

• After Belle II a significant reduction in expected. [arXiv:1808.10567]

¹Newest Bellell measurement not yet included. [arXiv:2210.10220]

Experimental:

$$\mathcal{B}(ar{B}
ightarrow X_s \gamma)_{E_{\gamma} > 1.6 ext{GeV}}^{ ext{exp}} = \underbrace{(3.49 \pm 0.19)}_{\pm 5.4\%} imes 10^{-4}$$

 $\bullet\,$ CLEO, BaBar and Belle measurements combined by PDG and HFLAV <code>[arXiv:2206.07501]</code> .

Theoretical:

[Misiak, Rehman, Steinhauser '20]

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{GeV}}^{\text{exp}} = \underbrace{(3.40 \pm 0.17)}_{\pm 5.0\%} \times 10^{-4}$$

Breakdown of the error: *mc*-interpolation

$$\pm 5\% = \sqrt{(\pm 3\%)^2 + (\pm 3\%)^2 + (\pm 2.5\%)^2}$$

higher orders

parametric and non-perturbative

$\bar{B} \to X_{\!s} \gamma$ in the SM

$\bar{B} \rightarrow X_s \gamma$ in the SM

Determination of $\bar{B} \rightarrow X_s \gamma$ in the SM:

$$\mathcal{B}(\bar{B} \to X_{s}\gamma)_{E_{\gamma} > E_{0}} = \mathcal{B}(\bar{B} \to X_{c}e\overline{\nu})_{exp} \left|\frac{V_{ts}^{*}V_{tb}}{V_{cb}}\right|^{2} \frac{6\alpha}{\pi C} \left[P(E_{0}) + N(E_{0})\right]$$

 \bullet semileptonic phase-space factor: [Alberti, Gambino, Healey, Nandi '14] 2

$$C = \left|\frac{V_{ub}}{V_{cb}}\right|^2 \frac{\Gamma(\bar{B} \to X_c e\bar{\nu})}{\Gamma(\bar{B} \to X_u e\bar{\nu})}$$

• $P(E_0)$: perturbative contributions

 $P(E_0) \sim \Gamma(b \rightarrow X_s^p \gamma) = \Gamma(b \rightarrow s\gamma) + \Gamma(b \rightarrow sg\gamma) + \Gamma(b \rightarrow sq\bar{q}\gamma) + ... \approx 96\%$

• $N(E_0)$: non perturbtative contributions $\approx 4\%$

²A N³LO refinement is possible [Fael, KS, Steinhauser '20; Fael, Usivitsch '23]

Effective Hamiltonian

- At low energies we want to work in the effective theory to resum large logarithmic contributions: $\boxed{\left(\alpha_s \ln m_W^2/m_b^2\right)^n}$
- For $b
 ightarrow s\gamma$ (when neglecting NLO EW and CKM suppressed effects) we have:

$$\mathcal{L} = \mathcal{L}_{QCD \times QED}(u, d, s, c, b) + \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^8 C_i(\mu) Q_i + \dots$$

$$Q_{1,2} \qquad (\overline{s}\Gamma_{i}c)(\overline{c}\Gamma_{i}'b) \qquad c_{L} \qquad |C_{i}(m_{b})| \sim 1$$

$$Q_{3,4,5,6} \qquad (\overline{s}\Gamma_{i}b)\sum_{q}(\overline{q}\Gamma_{i}'q) \qquad q \qquad |C_{i}(m_{b})| < 0.07$$

$$Q_{7} \qquad \frac{em_{b}}{16\pi^{2}}\overline{s}_{L}\sigma^{\mu\nu}b_{R}F_{\mu\nu} \qquad s_{L} \qquad |C_{7}(m_{b})| \sim 0.3$$

$$Q_{8} \qquad \frac{gm_{b}}{16\pi^{2}}\overline{s}_{L}\sigma^{\mu\nu}T^{a}b_{R}G_{\mu\nu}^{a} \qquad b_{R} \qquad s_{L} \qquad |C_{8}(m_{b})| \sim 0.15$$

$$\Gamma(b \to X_s^p \gamma) = \frac{G_F^2 m_b^5 \alpha}{3} 2\pi^4 |V_{ts}^* V_{tb}|^2 \underbrace{\sum_{i,j=1}^8 C_i(\mu_b) C_j(\mu_b) G_{ij}}_{\sim P(E_0)}$$

Three steps for the calculation:

- 1. Calculate the Wilson coefficients $C_i(\mu_0)$ at the hard scale $\mu_0 = m_W$.
- 2. Derive the renormalization group equations and anomalous dimensions γ_{ij} in the effective theory to evolve down to the low scale $\mu = m_b$:

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} C_i(\mu) = \sum_j \gamma_{ij}(\mu) \cdot C_j(\mu)$$

3. Evaluate the matrix elements $G_{ij}(m_b)$ in the effective theory.

Wilson coefficients at hard scale: for expample $C_7(m_W)$

Effective Hamiltonian

Anomalous dimensions: $\mu \frac{\mathrm{d}}{\mathrm{d}\mu} C_i(\mu) = \sum_i \gamma_{ij}(\mu) \cdot C_j(\mu)$

NNLO corrections give -4% correction to the branching ratio

$$\Gamma(b \to X_s^p \gamma) = \frac{G_F^2 m_b^5 \alpha}{3} 2\pi^4 \left| V_{ts}^* V_{tb} \right|^2 \underbrace{\sum_{i,j=1}^8 C_i(\mu_b) C_j(\mu_b) G_{ij}}_{\sim P(E_0)}$$

Status:

- NLO is known completely. [Greub, Hurth, Wyler '96; Ali, Greub '91-'95; Buras, Czarnecki, Urban, Misiak '02; Pott '95]
- NNLO:
 - G77 and G78 are known completely. [Blokland et al '05; Melnikov, Mitov '05; Asatrian et al. '06-'10]
 - For numerically small contributions the two body contributions are known, the rest is approximated using BLM.
 - G_{17} and G_{27} interpolated between $m_c = 0$ and $m_c \rightarrow \infty$.

Calculation of G₂₇ at NNLO

- Perturbative calculation can be done by considering diagrams with operator insertions and unitarity cuts.
- Calculation for $m_c \rightarrow \infty$: [Misiak, Steinhauser '06, '10]
- Calculation for $m_c = 0$: [Czakon, Fiedler, Huber, Misiak, Schutzmeier, Steinhauser '15]
- Calculation of terms proportional to n_f for arbitrary values of m_c : [Misiak, Rehmann, Steinhauser '20]
- \Rightarrow Interpolation to physical m_c/m_b introduces $\pm 3\%$ error in final result.

1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar integrals with unitarity cuts.

- 1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar integrals with unitarity cuts.
- 2. Reduce to master integrals with the help of Integration-By-Parts (IBP).

- 1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar integrals with unitarity cuts.
- 2. Reduce to master integrals with the help of Integration-By-Parts (IBP).
- 3. Using the IBP reduction we can find a system of differential equations for the masters M_k :

$$\frac{d}{dz}M_k(z=m_c^2/m_b^2,\epsilon)=R_{kl}(z,\epsilon)M_l(z,\epsilon)$$

- 1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar integrals with unitarity cuts.
- 2. Reduce to master integrals with the help of Integration-By-Parts (IBP).
- 3. Using the IBP reduction we can find a system of differential equations for the masters M_k :

$$\frac{d}{dz}M_k(z=m_c^2/m_b^2,\epsilon)=R_{kl}(z,\epsilon)M_l(z,\epsilon)$$

4a. Solve the master integrals numerically with boundary values obtained for $z \rightarrow \infty$.

- 1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar integrals with unitarity cuts.
- 2. Reduce to master integrals with the help of Integration-By-Parts (IBP).
- 3. Using the IBP reduction we can find a system of differential equations for the masters M_k :

$$\frac{d}{dz}M_k(z=m_c^2/m_b^2,\epsilon)=R_{kl}(z,\epsilon)M_l(z,\epsilon)$$

4b. Calculate the master integrals numerically at the physical point with AMFlow [Liu, Ma '22] .

Two Body contributions to G₂₇ at NNLO

[Czaja, Czakon, Huber, Misiak, Niggetiedt, Rehmann, KS, Steinhauser '23]

- We finished the calculation of the 2-body contributions.
 - We find $\mathcal{O}(500)$ integral familes.
 - The reductions to master integrals are done with Fire [Smirnv, Chuharev '19] and Kira [Klappert, Lange, Maierhöfer, Usovitsch '20].
 - For the two body contributions we need to evaluate 447 master integrals.
- The master integrals are evaluated at the physical point with AMFLow.
- We cross-checked the boundary conditions for $z \to \infty$.

Two Body contributions to G_{27} at NNLO

[Czaja, Czakon, Huber, Misiak, Niggetiedt, Rehmann, KS, Steinhauser '23]

• We finished the calculation of the 2-body contributions.

$$\begin{split} \Delta_{30} \hat{G}_{27}^{(2)2P}(z=0.04) &\simeq \frac{0.181070}{\epsilon^3} - \frac{6.063805}{\epsilon^2} - \frac{34.087329}{\epsilon} - 127.624515 \\ &+ \left(\frac{0.482853}{\epsilon^2} + \frac{4.093615}{\epsilon} + 10.984004\right) n_b \\ &+ \left(\frac{0.482853}{\epsilon^2} + \frac{4.185427}{\epsilon} + 19.194053\right) n_c \\ &+ \left(\frac{0.482853}{\epsilon^2} + \frac{4.135795}{\epsilon} + 19.647238\right) n_l , \end{split}$$
$$\Delta_{30} \hat{G}_{17}^{(2)2P}(z=0.04) &\simeq -\frac{1}{6} \Delta_{30} \hat{G}_{27}^{(2)2P}(z=0.04) + \frac{0.987654}{\epsilon^2} + \frac{6.383643}{\epsilon} + 34.077780 \end{split}$$

Two Body contributions to G_{27} at NNLO

[Fael, Lange, KS, Steinhauser '23]

Other approach:

• Interpret the cut diagrams as vertex corrections:

Two Body contributions to G₂₇ at NNLO

Calculation of the vertex: $b(p_b) \rightarrow s(p_s) + \gamma(q_\gamma)$

$$M^{\mu} = \bar{u}_{s}(p_{s})P_{R}\left(t_{1}\frac{q_{\gamma}^{\mu}}{m_{b}} + t_{2}\frac{p_{b}^{\mu}}{m_{b}} + t_{3}\gamma^{\mu}\right)u_{b}(p_{b})$$

- Calculate 30 (591) diagrams at 2-(3-)loop level.
- We find masters 14 (479) master integrals at at 2-(3-)loop level.
- At 2-loop: We are able to solve all master integrals analytically, extending the previously known results. [Misiak, Rehman, Steinhauser '17]

Master integrals at 3-loop:

- Calculate initial values of the master integrals at $x = m_c/m_b = 1/5$ with AMFlow.
- Construct symbolic expansions around x = 1/5, 1/10, 0 by inserting an ansatz into the differential equation and solve a large linear system of equations in terms of a small number of initial conditions.
- Use either the initial boundary value or the previous expansion to fix the initial conditions.
- \Rightarrow We obtain a precise semi-analytic result for 0 < m_c/m_b < 1/5.

We agree with a partial result obtained in [Greub, Asatrian, Saturnino, Wiegand '23] .

- The matrix elements also receive non-perturbative contributions.
- The most important effects come from photons coupling to light quarks.
- Effects can be described using SCET and non-local soft matrix elements (shape functions). [Benzke, Lee, Neubert, Paz '10]
- Moments of the shape functions can be related to HQET parameters. [Gunawardana, Paz '19]

- The matrix elements also receive non-perturbative contributions.
- The most important effects come from photons coupling to light quarks.
- Effects can be described using SCET and non-local soft matrix elements (shape functions). [Benzke, Lee, Neubert, Paz '10]
- Moments of the shape functions can be related to HQET parameters. [Gunawardana, Paz '19]

For example:

$$\Lambda_{17} = \frac{2}{3} \operatorname{Re} \int_{-\infty}^{+\infty} \frac{\mathrm{d}w_1}{w_1} \left[1 - F\left(\frac{m_c^2}{m_b w_1}\right) + \frac{m_b w_1}{12m_c^2} \right] h_{17}(\omega_1) , \qquad \int_{-\infty}^{\infty} \mathrm{d}\omega_1 h_{17} = \frac{2}{3} \mu_G^2 , \ \dots$$

Non-perturbative effects

• Some non-perturbative effects can be estimated by data driven approaches, e.g. the $Q_7 - Q_8$ interference:

 $\Gamma[B^- \to X_s \gamma] \sim A + B Q_u + C Q_d + D Q_s, \quad \Gamma[\bar{B}^0 \to X_s \gamma] \sim A + B Q_d + C Q_u + D Q_s$

- Isospin averaged: $\Gamma \sim A + \frac{1}{2}(B+C)(Q_u+Q_d) + DQ_s = A + \delta\Gamma_{78}$
- Isospin asymmetry: $\Delta_{0-} \sim rac{C-B}{2\Gamma}(Q_u-Q_d)$

$$\boxed{\frac{\delta\Gamma_{78}}{\Gamma}\sim \frac{Q_u+Q_d}{Q_d-Q_u}\left[1+\underbrace{\pm 0.3}_{SU_F(3) \text{ breaking}}\right]\Delta_{0-}}$$

• Belle [arXiv:1807.04236] : $\Gamma_{0-} = (-0.48 \pm 1.49 \pm 0.97 \pm 1.15)\%$

Non-perturbative effects

• Some non-perturbative effects can be estimated by data driven approaches, e.g. the $Q_7 - Q_8$ interference:

 $\Gamma[B^- \to X_s \gamma] \sim A + B Q_u + C Q_d + D Q_s, \quad \Gamma[\bar{B}^0 \to X_s \gamma] \sim A + B Q_d + C Q_u + D Q_s$

- Isospin averaged: $\Gamma \sim A + \frac{1}{2}(B+C)(Q_u + Q_d) + DQ_s = A + \delta\Gamma_{78}$
- Isospin asymmetry: $\Delta_{0-} \sim rac{C-B}{2\Gamma}(Q_u-Q_d)$

$$\boxed{\frac{\delta\Gamma_{78}}{\Gamma}\sim \frac{Q_u+Q_d}{Q_d-Q_u}\left[1+\underbrace{\pm 0.3}_{SU_F(3) \text{ breaking}}\right]\Delta_{0-}}$$

- Belle [arXiv:1807.04236] : $\Gamma_{0-} = (-0.48 \pm 1.49 \pm 0.97 \pm 1.15)\%$
- Belle II expects a factor of 4 improvement.

 $\mathbf{B} \rightarrow \mathbf{V} \gamma$

[Paul, Straub '16]

$$\mathcal{B}(B_q \to V\gamma) = \tau_{B_q} \frac{G_F^2 e^2 |V_{tb}^* V_{tq}|^2 m_{B_q}^3 m_b^2}{128\pi^4} \left(|C_7|^2 + |C_7'|^2 \right) T_1(0) ,$$

$$\mathcal{A}_{CP}(B_q(t) \to V\gamma) = \frac{\Gamma(\bar{B}_q(t) \to \bar{V}\gamma) - \Gamma(B_q(t) \to V\gamma)}{\Gamma(\bar{B}_q(t) \to \bar{V}\gamma) + \Gamma(B_q(t) \to V\gamma)}$$

 $T_1(0):$ non-perturbative form factor, $C_7^\prime=m_s/m_bC_7$ in the SM

- The main source of uncertainty in the branching ratio comes from $T_1(0)$.
- Other hadronic contributions are estimated using QCD factorization and light-cone-sum-rules.

 $\mathbf{B} \rightarrow \mathbf{V}\gamma$

[Paul, Straub '16, Straub (flavio) '18]

	$\mathcal{B}_{exp} \cdot 10^5$		$\mathcal{B}_{SM}\cdot 10^5$
$B^0 o K^{*0} \gamma$	$4.47 \pm 0.10 \pm 0.16$	BaBar	4.18 ± 0.84
$B^0 o K^{*0} \gamma$	$3.96 \pm 0.07 \pm 0.14$	Belle	
$B^+ ightarrow K^{*+} \gamma$	$4.22 \pm 0.14 \pm 0.16$	BaBar	$\textbf{4.25} \pm \textbf{0.88}$
$B^+ o K^{*+} \gamma$	$3.76 \pm 0.10 \pm 0.12$	Belle	
$B_s^0 o \phi \gamma$	$3.6 \pm 0.5 \pm 0.3 \pm 0.6$	Belle	4.02 ± 0.52
$B_s^0 \to \phi \gamma$	$3.38 \pm 0.34 \pm 0.20$	LHCb	

• The SM predicition for the branching ratios has large uncertainties due to non-perturbative effects.

 $\mathbf{B} \rightarrow \mathbf{V}\gamma$

	experimental		SM
$A_{CP}(B^0 o K^* \gamma)$	$(-0.4 \pm 1.4 \pm 0.3)\%$	Belle	$(0.3\pm0.1)\%$
	$(-0.3\pm1.7\pm0.7)\%$	BaBar	
	$(+0.8\pm1.7\pm0.9)\%$	LHCb	
	$(-0.4\pm 0.21)\%$	Belle II	

- Specific angular observables and asymmetries are theoretically clean.
- In these cases the theoretical precision often exceeds the experimental one.
- \Rightarrow Global fits to inclusive and exclusive decay modes can severely constrain NP.

Summary and Outlook

Experimental:

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{GeV}}^{\text{exp}} = \underbrace{(3.49 \pm 0.19)}_{\pm 5.4\%} \times 10^{-4}$$

Theoretical:

[Misiak, Rehman, Steinhauser '20]

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{GeV}}^{\text{exp}} = \underbrace{(3.40 \pm 0.17)}_{\pm 5.0\%} \times 10^{-4}$$

Breakdown of the error: *m_c*-interpolation

$$\pm 5\% = \sqrt{(\pm 3\%)^2 + (\pm 3\%)^2 + (\pm 2.5\%)^2}$$

higher orders

parametric and non-perturbative

Status of $B \rightarrow X_s \gamma$

In the future:

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_\gamma > 1.6 \text{GeV}}^{\text{exp}} = \underbrace{(3.49 \pm 0.09)}_{\pm 2.6\%} \times 10^{-4}$$

Theoretical:

[Misiak, Rehman, Steinhauser '20]

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{GeV}}^{\text{exp}} = \underbrace{(3.40 \pm 0.13)}_{\pm 3.9\%} \times 10^{-4}$$

Breakdown of the error: ///////hterpolation

$$\pm 3.9\% = \sqrt{(\pm 3\%)^2 + //(1/2)^2/(1/2)^2} + (\pm 2.5\%)^2$$

higher orders

parametric and non-perturbative

Backup

Two Body contributions to G_{27} at NLO

New analytic results at 2-loop:

$$G_{27}^{(1),2P} = -\frac{92}{81\epsilon} + f_0(z) + \epsilon f_1(z) + \mathcal{O}(\epsilon^2),$$

$$\begin{split} f_0 &= C_F \left[-\frac{971+1916w+1602w^2+1916w^3+971w^4}{162(1+w)^4} + \frac{2wH_0(w)^3}{3(1+w)^2} \right. \\ &+ \frac{8w(27+57w+26w^2+7w^3+5w^4)H_0(w)}{27(1+w)^5} - \frac{16w(2+3w+2w^2)H_0(x)^3}{9(1+w)^4} \\ &- \frac{2w(-1-2w+4w^2+6w^3+3w^4)H_0(w)^2}{3(1+w)^6} - \frac{8w(1+w^2)H_{0,0-1}(w)}{3(1+w)^4} \\ &- \frac{8(5+29w+54w^2+29w^3+5w^4)H_{-1}(w)}{27(1+w)^4} + \frac{16w^2(3+13w+15w^2+6w^3)H_{0,-1}(w)}{9(1+w)^6} \\ &- \frac{16w(1-\sqrt{w}+w)}{9(1+w)^6}(3+8w+8w^2+3w^3+2\sqrt{w}+3w^{3/2}+2w^{5/2})H_{1,0}(x) \\ &+ \frac{16w(1+\sqrt{w}+w)}{9(1+w)^6}(3+8w+8w^2+3w^3-2\sqrt{w}-3w^{3/2}-2w^{5/2})H_{-1,0}(x) \\ &+ \frac{16w(3+9w+13w^2+9w^3+3w^4)H_{-1,0}(w)}{9(1+w)^6} - \frac{8w\zeta_3}{(1+w)^2} \\ &- \frac{32w(3+9w+13w^2+9w^3+3w^4)H_{-1,-1}(w)}{9(1+w)^6} - \frac{16w(2+3w+2w^2)H_{0,1,0}(x)}{3(1+w)^4} \\ &+ \frac{16w(2+3w+2w^2)H_{0,-1,0}(x)}{3(1+w)^4} - \frac{16w(1+3w+w^2)H_{-1,0,0}(w)}{3(1+w)^4} \\ &+ \frac{16w(2-3w+2w^2)H_{0,-1,0}(x)}{3(1+w)^4} - \frac{16w(1+3w+w^2)H_{-1,0,0}(w)}{3(1+w)^4} \\ &+ \pi^2 \left(-\frac{2w}{27(1+w)^6}(15+60w+94w^2+84w^3+27w^4-12\sqrt{w}-36w^{3/2}}{(1+w)^4} \right) \right] \end{split}$$

with

$$x = m_c/m_b,$$

 $w = (1 - \sqrt{1 - 4x^2})/(1 + \sqrt{1 - 4x^2})$