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Introduction



Introduction

B̄ → Xsγ is interesting to search (or constraint) new physics in the

quark sector:

• b → sγ is forbidden at tree-level in the SM.

• The dominant contributions in the SM come from weak decays.

⇒ The SM rate is small.

⇒ The decay is sensitive to new physics.
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Status of B̄ → Xsγ

Experimental:

B(B̄ → Xsγ)
exp
Eγ>1.6GeV = (3.49± 0.19)︸ ︷︷ ︸

±5.4%

×10−4

• CLEO, BaBar and Belle measurements combined by PDG and HFLAV [arXiv:2206.07501] 1

In the future:

B(B̄ → Xsγ)
exp
Eγ>1.6GeV = (3.49± 0.09)︸ ︷︷ ︸

±2.6%

×10−4

• After Belle II a significant reduction in expected. [arXiv:1808.10567]

1Newest BelleII measurement not yet included. [arXiv:2210.10220]
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Status of B → Xsγ

Experimental:

B(B̄ → Xsγ)
exp
Eγ>1.6GeV = (3.49± 0.19)︸ ︷︷ ︸

±5.4%

×10−4

• CLEO, BaBar and Belle measurements combined by PDG and HFLAV [arXiv:2206.07501] .

Theoretical: [Misiak, Rehman, Steinhauser ’20]

B(B̄ → Xsγ)
exp
Eγ>1.6GeV = (3.40± 0.17)︸ ︷︷ ︸

±5.0%

×10−4

Breakdown of the error: mc -interpolation

±5% =

√
(±3%)2 + (±3%)2 + (±2.5%)2

higher orders parametric and non-perturbative
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B̄ → Xsγ in the SM

Determination of B̄ → Xsγ in the SM:

B(B̄ → Xsγ)Eγ>E0 = B(B̄ → Xceν)exp

∣∣∣∣V ∗
tsVtb

Vcb

∣∣∣∣2 6α

πC
[P(E0) + N(E0)]

• semileptonic phase-space factor: [Alberti, Gambino, Healey, Nandi ’14] 2

C =

∣∣∣∣Vub

Vcb

∣∣∣∣2 Γ(B̄ → Xceν̄)

Γ(B̄ → Xueν̄)

• P(E0): perturbative contributions

P(E0) ∼ Γ(b → X p
s γ) = Γ(b → sγ) + Γ(b → sgγ) + Γ(b → sqq̄γ) + ... ≈ 96%

• N(E0): non perturbtative contributions ≈ 4%

2A N3LO refinement is possible [Fael, KS, Steinhauser ’20; Fael, Usivitsch ’23]
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Effective Hamiltonian

• At low energies we want to work in the effective theory to resum large logarithmic

contributions: (
αs lnm

2
W /m2

b

)n
• For b → sγ (when neglecting NLO EW and CKM suppressed effects) we have:

L = LQCD×QED(u, d , s, c , b) +
4GF√

2
V ∗
tsVtb

8∑
i=1

Ci (µ)Qi + . . .

Q1,2

Q3,4,5,6

Q7

Q8

(sΓic) (cΓ
′
ib)

(sΓib)
∑

q (qΓ
′
iq)

emb

16π2 sLσ
µνbRFµν

gmb

16π2 sLσ
µνT abRG

a
µν

|Ci (mb)| ∼ 1

|Ci (mb)| < 0.07

|C7(mb)| ∼ 0.3

|C8(mb)| ∼ 0.15
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Effective Hamiltonian

Γ(b → X p
s γ) =

G 2
Fm

5
bα

3
2π4 |V ∗

tsVtb|2
8∑

i,j=1

Ci (µb)Cj(µb)Gij︸ ︷︷ ︸
∼P(E0)

Three steps for the calculation:

1. Calculate the Wilson coefficients Ci (µ0) at the hard scale µ0 = mW .

2. Derive the renormalization group equations and anomalous dimensions γij in the effective

theory to evolve down to the low scale µ = mb:

µ
d

dµ
Ci (µ) =

∑
j

γij(µ) · Cj(µ)

3. Evaluate the matrix elements Gij(mb) in the effective theory.
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Effective Hamiltonian

Wilson coefficients at hard scale: for expample C7(mW )

LO [Inami, Lim ’81, ...] NLO [Adel, Yao ’93, ...]
NNLO [Misiak, Steinhauser ’04]
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Effective Hamiltonian

Anomalous dimensions: µ d
dµCi (µ) =

∑
j

γij(µ) · Cj(µ)

Z22 Z27 Z28

LO

NLO

NNLO

[Gaillard, Lee ’74; Altarelli, Maiani ’74] [Grinstein et al ’90]

[Shifmann et al ’78; Grigjanis et al ’88]

[Altarelli et al ’81; Buras, Weisz ’90] [Chetryrkin, Misiak, Münz ’97]

[Misiak, Münz ’95]

[Gorbahn, Haisch ’04] [Czakon, Haisch, Misiak ’06] [Gorbahn,

Haisch, Misiak ’05]

NNLO corrections give −4% correction to the branching ratio
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NNLO corrections to B → Xsγ

Γ(b → X p
s γ) =

G 2
Fm

5
bα

3
2π4 |V ∗

tsVtb|2
8∑

i,j=1

Ci (µb)Cj(µb)Gij︸ ︷︷ ︸
∼P(E0)

Status:

• NLO is known completely. [Greub, Hurth, Wyler ’96; Ali, Greub ’91-’95; Buras, Czarnecki, Urban, Misiak ’02; Pott ’95]

• NNLO:

• G77 and G78 are known completely. [Blokland et al ’05; Melnikov, Mitov ’05; Asatrian et al. ’06-’10]

• For numerically small contributions the two body contributions are known, the rest is

approximated using BLM.

• G17 and G27 interpolated between mc = 0 and mc → ∞.

9



Calculation of G27 at NNLO

• Perturbative calculation can be done by considering diagrams with operator insertions and

unitarity cuts.

• Calculation for mc → ∞: [Misiak, Steinhauser ’06, ’10]

• Calculation for mc = 0: [Czakon, Fiedler, Huber, Misiak, Schutzmeier, Steinhauser ’15]

• Calculation of terms proportional to nf for arbitrary values of mc : [Misiak, Rehmann,

Steinhauser ’20]

⇒ Interpolation to physical mc/mb introduces ±3% error in final result.
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Calculation of G27 at NNLO

General work flow:

1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar

integrals with unitarity cuts.

2. Reduce to master integrals with the help of Integration-By-Parts (IBP).

3. Using the IBP reduction we can find a system of differential equations for the masters Mk :

d

dz
Mk(z = m2

c/m
2
b, ϵ) = Rkl(z , ϵ)Ml(z , ϵ)
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integrals with unitarity cuts.

2. Reduce to master integrals with the help of Integration-By-Parts (IBP).

3. Using the IBP reduction we can find a system of differential equations for the masters Mk :

d

dz
Mk(z = m2

c/m
2
b, ϵ) = Rkl(z , ϵ)Ml(z , ϵ)

4a. Solve the master integrals numerically with boundary values obtained for z → ∞.
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Calculation of G27 at NNLO

General work flow:

1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar

integrals with unitarity cuts.

2. Reduce to master integrals with the help of Integration-By-Parts (IBP).

3. Using the IBP reduction we can find a system of differential equations for the masters Mk :

d

dz
Mk(z = m2

c/m
2
b, ϵ) = Rkl(z , ϵ)Ml(z , ϵ)

4b. Calculate the master integrals numerically at the physical point with AMFlow [Liu, Ma ’22] .
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Two Body contributions to G27 at NNLO

[Czaja, Czakon, Huber, Misiak, Niggetiedt, Rehmann, KS, Steinhauser ’23]

• We finished the calculation of the 2-body contributions.

• We find O(500) integral familes.

• The reductions to master integrals are done with Fire [Smirnv, Chuharev ’19] and Kira

[Klappert, Lange, Maierhöfer, Usovitsch ’20] .

• For the two body contributions we need to evaluate 447 master integrals.

• The master integrals are evaluated at the physical point with AMFLow.

• We cross-checked the boundary conditions for z → ∞.
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Two Body contributions to G27 at NNLO

[Czaja, Czakon, Huber, Misiak, Niggetiedt, Rehmann, KS, Steinhauser ’23]

• We finished the calculation of the 2-body contributions.
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Two Body contributions to G27 at NNLO

[Fael, Lange, KS, Steinhauser ’23]

Other approach:

• Interpret the cut diagrams as vertex corrections:
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Two Body contributions to G27 at NNLO

Calculation of the vertex: b(pb) → s(ps) + γ(qγ)

Mµ = ūs(ps)PR

(
t1

qµγ
mb

+ t2
pµb
mb

+ t3 γ
µ

)
ub(pb)

• Calculate 30 (591) diagrams at 2-(3-)loop level.

• We find masters 14 (479) master integrals at at 2-(3-)loop level.

• At 2-loop: We are able to solve all master integrals analytically, extending the previously

known results. [Misiak, Rehman, Steinhauser ’17]
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Two Body contributions to G27 at NNLO

Master integrals at 3-loop:

• Calculate initial values of the master integrals at x = mc/mb = 1/5 with AMFlow.

• Construct symbolic expansions around x = 1/5, 1/10, 0 by inserting an ansatz into the

differential equation and solve a large linear system of equations in terms of a small

number of initial conditions.

• Use either the initial boundary value or the previous expansion to fix the initial conditions.

⇒ We obtain a precise semi-analytic result for 0 < mc/mb < 1/5.

We agree with a partial result obtained in [Greub, Asatrian, Saturnino, Wiegand ’23] .
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Non-perturbative effects

• The matrix elements also receive non-perturbative contributions.

• The most important effects come from photons coupling to light quarks.

• Effects can be described using SCET and non-local soft matrix elements (shape

functions). [Benzke, Lee, Neubert, Paz ’10]

• Moments of the shape functions can be related to HQET parameters. [Gunawardana, Paz ’19]

For example:

Λ17 =
2

3
Re

+∞∫
−∞

dw1

w1

[
1− F

(
m2

c

mbw1

)
+

mbw1

12m2
c

]
h17(ω1) ,

∞∫
−∞

dω1 h17 =
2

3
µ2
G , ...
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Non-perturbative effects

• Some non-perturbative effects can be estimated by data driven approaches, e.g. the

Q7 − Q8 interference:

Γ[B− → Xsγ] ∼ A+ BQu + CQd + DQs , Γ[B̄0 → Xsγ] ∼ A+ BQd + CQu + DQs

• Isospin averaged: Γ ∼ A+ 1
2 (B + C )(Qu + Qd) + DQs = A+ δΓ78

• Isospin asymmetry: ∆0− ∼ C−B
2Γ (Qu − Qd)

δΓ78
Γ

∼ Qu + Qd

Qd − Qu

1 + ±0.3︸︷︷︸
SUF (3) breaking

∆0−

• Belle [arXiv:1807.04236] : Γ0− =
(
−0.48± 1.49± 0.97± 1.15

)
%

• Belle II expects a factor of 4 improvement.
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Exclusive decays

B → Vγ [Paul, Straub ’16]

B(Bq → V γ) = τBq

G 2
F e

2 |V ∗
tbVtq|2 m3

Bq
m2

b

128π4

(
|C7|2 + |C ′

7|2
)
T1(0) ,

ACP(Bq(t) → V γ) =
Γ(B̄q(t) → V̄ γ)− Γ(Bq(t) → V γ)

Γ(B̄q(t) → V̄ γ) + Γ(Bq(t) → V γ)

T1(0): non-perturbative form factor, C ′
7 = ms/mbC7 in the SM

• The main source of uncertainty in the branching ratio comes from T1(0).

• Other hadronic contributions are estimated using QCD factorization and

light-cone-sum-rules.
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Exclusive decays

B → Vγ [Paul, Straub ’16, Straub (flavio) ’18]

Bexp · 105 BSM · 105

B0 → K∗0γ 4.47± 0.10± 0.16 BaBar 4.18± 0.84

B0 → K∗0γ 3.96± 0.07± 0.14 Belle

B+ → K∗+γ 4.22± 0.14± 0.16 BaBar 4.25± 0.88

B+ → K∗+γ 3.76± 0.10± 0.12 Belle

B0
s → ϕγ 3.6± 0.5± 0.3± 0.6 Belle 4.02± 0.52

B0
s → ϕγ 3.38± 0.34± 0.20 LHCb

• The SM predicition for the branching ratios has large uncertainties due to

non-perturbative effects.
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Exclusive decays

B → Vγ
experimental SM

ACP(B
0 → K∗γ) (−0.4± 1.4± 0.3)% Belle (0.3± 0.1)%

(−0.3± 1.7± 0.7)% BaBar

(+0.8± 1.7± 0.9)% LHCb

(−0.4± 0.21)% Belle II

• Specific angular observables and asymmetries are theoretically clean.

• In these cases the theoretical precision often exceeds the experimental one.

⇒ Global fits to inclusive and exclusive decay modes can severely constrain NP.
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Two Body contributions to G27 at NLO

New analytic results at 2-loop:

G
(1),2P
27 = − 92

81ϵ
+ f0(z) + ϵf1(z) +O(ϵ2),

with

x = mc/mb,

w = (1−
√

1− 4x2)/(1 +
√

1− 4x2)
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