Imperial College London

$b ightarrow s\ell\ell$ decays at LHCb

Moriond EW

Mark Smith, on behalf of the LHCb collaboration 27 March 2024

Reminder

Penguin:

 $b \rightarrow s\ell\ell$ decays at LHCb

LHCb results

Global fit

Is this all NP?

• Could be due to long-distance charm-loop:

• Difficult to calculate

Can we measure the long-distance contribution?

$$B^0 \to K^{*0} \mu^+ \mu^-$$

 $B
ightarrow V \ell^+ \ell^-$ - 3 decay angles (Ω), $q^2 = m_{\ell\ell}^2$, $k^2 = m_{K\pi}^2$

- Final state of $K^+\pi^-\mu^+\mu^-$
 - + P-wave ${\it K}^{*0}$ and S-wave ${\it K}^+\pi^-$ must be accounted for

$$\frac{\mathrm{d}^{4}\Gamma_{P}}{\mathrm{d}q^{2}\mathrm{d}\Omega} = \frac{9}{32\pi} \begin{bmatrix} J_{1\mathrm{s}}\sin^{2}\theta_{K} + J_{1c}\cos^{2}\theta_{K} \\ + (J_{2\mathrm{s}}\sin^{2}\theta_{K} + J_{2c}\cos^{2}\theta_{K})\cos 2\theta_{\ell} \\ + J_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos 2\phi + J_{4}\sin 2\theta_{K}\sin 2\theta_{\ell}\cos \phi \\ + J_{5}\sin 2\theta_{K}\sin\theta_{\ell}\cos \phi + J_{6\mathrm{s}}\sin^{2}\theta_{K}\cos \theta_{l} \\ + J_{7}\sin 2\theta_{K}\sin\theta_{\ell}\sin \phi + J_{8}\sin 2\theta_{K}\sin 2\theta_{\ell}\sin \phi \\ + J_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin^{2}\theta_{\ell}\sin 2\phi \end{bmatrix}$$

$$B^0 \to K^{*0} \mu^+ \mu^-$$

 $B
ightarrow V \ell^+ \ell^-$ - 3 decay angles (Ω), $q^2 = m_{\ell\ell}^2$, $k^2 = m_{K\pi}^2$

- Final state of $K^+\pi^-\mu^+\mu^-$
 - + P-wave K^{*0} and S-wave $K^+\pi^-$ must be accounted for

$$B^0 o K^{*0} \mu^+ \mu^-$$

 $B
ightarrow V \ell^+ \ell^-$ - 3 decay angles (Ω), $q^2 = m_{\ell\ell}^2$, $k^2 = m_{K\pi}^2$

+ Final state of $K^+\pi^-\mu^+\mu^-$

+ P-wave K^{*0} and S-wave $K^+\pi^-$ must be accounted for

$$\frac{\mathrm{d}^{4}\Gamma_{P}}{\mathrm{d}q^{2}\mathrm{d}\Omega} = \frac{9}{32\pi} \begin{bmatrix} J_{1\mathrm{s}}\sin^{2}\theta_{K} + J_{1c}\cos^{2}\theta_{K} \\ + (J_{2\mathrm{s}}\sin^{2}\theta_{K} + J_{2c}\cos^{2}\theta_{K})\cos 2\theta_{\ell} \\ + J_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos 2\phi + J_{4}\sin 2\theta_{K}\sin 2\theta_{\ell}\cos\phi \\ + (J_{5})\sin 2\theta_{K}\sin\theta_{\ell}\cos\phi + J_{6\mathrm{s}}\sin^{2}\theta_{K}\cos\theta_{\ell} \\ + J_{7}\sin 2\theta_{K}\sin\theta_{\ell}\sin\phi + J_{8}\sin 2\theta_{K}\sin 2\theta_{\ell}\sin\phi \\ + J_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin^{2}\theta_{\ell}\sin2\phi \end{bmatrix}$$

$$\begin{bmatrix} \mathrm{PRL} \ 125 \ (2020) \ 011802] \\ -0.5 \\ -1 \\ 0 \\ 5 \\ 10 \\ 0 \\ 5 \\ 10 \\ 0 \\ 5 \\ 10 \\ 0 \\ 5 \\ 10 \\ 0 \\ 5 \\ 10 \\ 0 \\ 5 \\ 10 \\ 0 \\ 5 \\ 10 \\ 0 \\ 15 \\ q^{2} \ [\mathrm{GeV}^{2}c^{4}] \end{bmatrix}$$

The observables, J_i are constructed from q^2 dependent *amplitudes*. E.g.:

$$J_5 \sim \left[\Re(\mathcal{A}_0^L \mathcal{A}_{\perp}^L *) - \Re(\mathcal{A}_0^R \mathcal{A}_{\perp}^{R*}) \right]$$

Unbinned amplitudes

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ \underbrace{\left[\underbrace{(C_9 \pm C_9') \mp (C_{10} \pm C_{10}')}_{\text{WCs}} \right]}_{\text{WCs}} \underbrace{\mathcal{F}_{\lambda}(q^2)}_{\text{WCs}} + \frac{2m_b M_B}{q^2} \underbrace{\left[\underbrace{(C_7 \pm C_7')}_{\text{WCs}} \underbrace{\mathcal{F}_{\lambda}^T(q^2)}_{\text{WCs}} - 16\pi^2 \frac{M_B}{m_b} \underbrace{\mathcal{H}_{\lambda}(q^2)}_{\text{non-local}} \right] \right\}$$

- C_9 , C'_9 , C_{10} , C'_{10} are fit parameters. C_7 , C'_7 fixed to SM.
- Local FFs $F_{\lambda}^{(T)}(q^2)$ constrained to lattice + LCSR determinations [JHEP 01 (2019) 150], [PoS (LATTICE2014) 372]
- Non-local function follows [JHEP 09 (2022) 133]

$$\mathcal{H}_{\lambda}(z) = \frac{1 - z Z_{j/\psi}}{z - Z_{j/\psi}} \frac{1 - z Z_{\psi(2S)}}{z - Z_{\psi(2S)}} \hat{\mathcal{H}}_{\lambda}(z), \qquad \qquad \hat{\mathcal{H}}_{\lambda}(z) = \phi_{\lambda}^{-1}(z) \sum_{k} a_{\lambda,k} z^{k}$$

- Option to use theory predictions at $q^2 < 0$ [JHEP 02 (2021) 088]
- Experimental inputs for magnitudes and phases at resonances [PRD 90 (2014) 112009],
 [PRD 76 (2007) 031102], [PRD 88 (2013) 074026], [PRD 88 (2016) 052002], [EPJC 72 (2012) 2118]
- Include k^2 dependence: $\mathcal{A}_{\lambda}^{L,R}
 ightarrow \mathcal{A}_{\lambda}^{L,R} imes f(k^2)$
 - $f(k^2)$ is a relativistic Breit-Wigner for P-wave, LASS for S-wave

Plan

[arXiv:2312.09102] [arXiv:2312.09115]

Fit for the non-local contributions in the data:

- 4.7 fb⁻¹ of data: Run 1 + 2016
 - Same data as published binned angular analysis [PRL 125 (2020) 011802]
- Unbinned fit in q² for the *amplitude* parameters: FFs, WCs etc
 - 6D fit: 3 decay angles, q^2 , k^2 and $m(K\pi\mu\mu)$
 - BF relative to $B^0 \rightarrow J/\psi K^+ \pi^$ for absolute WC magnitude
- Two versions of the fit: with or without $q^2 < 0$ non-local predictions

- Model dependent analysis
- Maximum sensitivity to non-local effects

Fit projections

[arXiv:2312.09102] [arXiv:2312.09115]

Local FFs, $\mathcal{F}_{\lambda}^{(T)}$

[arXiv:2312.09102] [arXiv:2312.09115]

- Data slightly pulls down the ratios $\frac{\mathcal{F}_{\parallel}}{\mathcal{F}_{0}}$ and $\frac{\mathcal{F}_{\parallel}}{\mathcal{F}_{0}}$
 - Apparent for fits without and with $q^2 < 0$ constraints

Non-local FFs, \mathcal{H}_{λ}

[arXiv:2312.09102] [arXiv:2312.09115]

- In general good agreement between fits without and with $q^2 < 0$ constraints
 - Slight discrepancy in the imaginary parts

Wilson coefficients

[arXiv:2312.09102] [arXiv:2312.09115]

1D profiles:

WC	deviation from SM	
	$q^2 > 0$ only	$q^2 < 0$ constraint
C ₉	1.9 σ	1.8σ
C ₁₀	1.5 σ	0.9σ
C'_9	0.9 σ	0.5σ
C'_{10}	1.5 σ	1.0 σ

For all 4 WCs the best fit point is 1.3 (1.4) σ from the SM without (with) $q^2 < 0$ constraint

Comparison with binned results

- In general good agreement with binned results
 - Minimal difference between fit with or without $q^2 < 0$ constraint
- Calculate effect of non-local contribution to observables, i.e. $\Delta P_5^{\prime b \to s c \bar c}$
 - \cdot The shifts are small

Comparison with binned results

- In general good agreement with binned results
 - Minimal difference between fit with or without $a^2 < 0$ constraint
- Calculate effect of non-local contribution to observables, i.e. $\Delta P_5^{\prime b \rightarrow sc\bar{c}}$
 - The shifts are small
- Slight discrepancy in P'_6 (or S_7)
 - · Driven by the imaginary part of the non-local $\mathcal{H}_{\lambda}(q^2)$

$$S_7 \sim \Im[\mathcal{A}_0^L \mathcal{A}_{\parallel}^{L*} - \mathcal{A}_0^R \mathcal{A}_{\parallel}^{R*}]$$

GRvDV [[HEP 09 (2022) 133] DHMV [JHEP 09 (2010) 089] [JHEP 12 (2014) 125] $q^2 > 0$ only $a^2 < 0$ constr. LHCDPRL 125 (2020) 011802à° LHCb 4.7 fb⁻ 0.0 -0.2-0.40.25 $\Delta P'_6^{b \to sc\bar{c}}$

5.0

75

0.00 -0.25

0.0

2.5

12.5

10.0

Conclusion

First unbinned amplitude analysis of $B^0 \to K^{*0} \mu^+ \mu^-$

- Complementary information to the previous binned analysis
 - $\cdot\,$ Determination from data of non-local contribution with and without theory constraint
- Even with freedom of non-local component the data prefers a shift in C_9 from the SM

Much data in hand, more analysis possibilities to study $B^0 \to K^{*0} \mu^+ \mu^-$:

- Binned 'model-independent' analysis with full Run 1+2 data [JHEP 12 (2021) 085]
- Unbinned analysis fit WCs with a model including resonances [EPJC 80 (2020) 12,1095], [EPJC 78 (2018) 6,453]
- Ansatz analysis fit the q^2 -dependent amplitudes [JHEP 06 (2015) 084]

More data to be collected:

• $7 \, \text{fb}^{-1}$ in 2024 \rightarrow double the data set!

BACKUP

Angular analysis alone can only tell you the relative sizes of the amplitudes (WCs) \rightarrow Fit the BF to set the scale

- Note: BF is measured relative to $B^0 \rightarrow J/\psi K^+ \pi^-$, with 0.795 $< m_{K\pi} < 0.995 \,\text{GeV}$, not $B^0 \rightarrow J/\psi K^{*0}$
 - $B^0 \rightarrow J/\psi K^{*0}$ included significant S-wave and $J/\psi \pi^-$ exotic contributions
 - Estimate fraction of $B^0 \rightarrow J/\psi K^+\pi^-$ in the 100 MeV window from Belle analysis [PRD 90 (2014) 112009]

$$f_{\pm 100~{
m MeV}}(B^0 o J\!/\!\psi\,{
m K}^+\pi^-) = 0.644\pm 0.010$$

2D profiles

