Dark Matter and Majorana Neutrino Searches with PandaX Experiment

Ning Zhou Shanghai Jiao Tong University on behalf of PandaX Collaboration

EW Moriond 2024.03.30

Dark Matter Detection

colliders Production at

PandaX: Dual-phase xenon TPC

- PandaX: Particle and Astrophysical Xenon Observatory
 - Incoming DM scattering off xenon atom (nucleus or electrons)
- TPC: paired scintillation (S1) and ionization (S2) signals
 - Precise energy measurement
 - 3-D position reconstruction
 - Discrimination between nuclear recoil and electron recoil signals

PandaX Detectors

- Increasing the detector sensitive target volume
- Lowering radioactive background

PandaX-4T

5

- Sensitive volume: 3.7 tonne xenon
- Commissioning started from Nov/2020 (95 days)
 - 0.63 tonne-year exposure
 - limits on DM-nucleon scattering xsec reaching 3.8x10⁻⁴⁷cm²

How dark is dark matter?

Image Credit: Public Domain

Luminance of Dark Matter

Residual weak EM properties: coupling with photons

tree-level

higher-order loop-level

Photon-Mediated Interaction

- Various nuclear recoil energy spectra
- Dedicated searches of these EM properties

Results from Xenon Recoil Data

C:

10

Electric dipole

Anapole

- First experimental constraints on DM charge radius
 - 4 orders of magnitude smaller than neutrino
- Other EM properties
 - up to 3 10 times improvement

Table 1 | Comparison of electromagnetic properties

	dark matter	neutrino	neutron
Charge radius (fm ²)	<1.9×10 ⁻¹⁰	[-2.1,3.3]×10 ^{-6*}	-0.1155 *
Millicharge (e)	<2.6×10 ⁻¹¹	<4 ×10 ⁻³⁵ *	(-2±8)×10 ^{-22*}
Magnetic dipole (µ _B)	<4.8×10 ⁻¹⁰	<2.8×10 ⁻¹¹ *	-1×10 ^{-3*}
Electric dipole (ecm)	<1.2×10 ⁻²³	<2×10 ⁻²¹ [†]	<1.8×10 ^{-26*}
Anapole (cm ²)	<1.6×10 ⁻³³	~10 ^{-34 ‡}	~10 ^{-28 §}

* Datas are taken from PDG [32]

† Taken from [31]

‡ Taken from [33]

§ Taken from [34]

PandaX, Nature 618, 47-50 (2023)

----- DEAP-3600

10² m_χ[GeV/c²]

10²

m,[GeV/c²]

Y. Bai, J. Berger arXiv:1402.6696

UV Complete Model with EM properties

Lepton Portal DM Model (LPDM) with a charged mediator

 – coupling to single flavor lepton, here assuming muon (avoid flavor-violating process from dark sector)

$$\begin{split} \mathcal{L}_{\text{LPDM}} \supset \lambda_i \phi_i \overline{\chi}_L e_R^i + h.c. \\ \mathcal{L}_{\text{LPDM}} &= \mathcal{L}_{\text{CR}} + \mathcal{L}_{\text{MD}} + \mathcal{L}_{\text{A}} + \mathcal{L}_{\text{ED}} \\ &= b_\chi \overline{\chi} \gamma^\mu \chi \partial^\nu F_{\mu\nu} + \frac{\mu_\chi}{2} \overline{\chi} \sigma^{\mu\nu} \chi F_{\mu\nu} \\ &+ a_\chi \overline{\chi} \gamma^\mu \gamma^5 \chi \partial^\nu F_{\mu\nu} + i \frac{d_\chi}{2} \overline{\chi} \sigma^{\mu\nu} \gamma^5 \chi F_{\mu\nu} \end{split}$$

10

LPDM @LHC

Similar final state as SUSY slepton pair production

Constraints on LPDM from PandaX

- Dirac DM: Significant space being excluded
 - main contribution from charge radius and magnetic dipole moment

Constraints on LPDM from PandaX

- Majorana DM: large parameter space still valid
 - the only contribution from anapole moment

Dark Mediator

Connecting dark sector with SM particles

Pseudo-scalar Mediator

• 2HDM+a

- type-II 2HDM (*h*, *H*^o, *H*[±], *A*) with additional pseudo-scalar mediator *a*
- rich phenomenology at LHC

2HDM+a @PandaX

- <u>Tree-level process</u>: $\bar{\chi}\gamma^5\chi N\gamma^5N \rightarrow -(\vec{S}_{\chi}\cdot\vec{q})(\vec{S}_N\cdot\vec{q})$
 - spin-dependent scattering cross section
 - momentum-suppressed
- undetectable signal rate

$$\frac{d\sigma_{\rm SD}({\rm D4})}{dE_R} = \frac{1}{32\pi} \frac{m_T}{m_\chi^2 m_N^2 v^2} \frac{q^4}{m_a^4} \sum_{N,N'=p,n} C_N^{\rm tree}({\rm D}_4) C_{N'}^{\rm tree}({\rm D}_4) F_{\Sigma''}^{(N,N')}(q^2),$$

T. Li, P. Wu 1904.03407

2HDM+a @PandaX

χ

q

Loop-level process: spin-independent scattering

PandaX, PLB 834 (2022) 137487

2HDM+a @PandaX

- **For** $m_a = 250 \text{ GeV}$
 - small WIMP mass: excluded by ATLAS
 - large WIMP mass: stronger constraints from direct detection

$$m_H = m_{H^{\pm}} = m_A = 600 \text{ GeV}/c^2,$$

 $\cos(\beta - \alpha) = 0, \ \tan \beta = 1, \ \sin \theta = 0.35,$
 $g_{\chi} = 1, \ \lambda_3 = \lambda_{P1} = \lambda_{P2} = 3.$

Parameters recommended by LHC DM group

Direct detection is expected to cover the remaining parameter space in near future

Scalar Mediator

- η mesons from cosmic-ray beam dump in atmosphere may decay into DMs
 - Hadrophilic scalar mediator

 $\succ L \supset -g_{\chi}S\bar{\chi}_L\chi_R - g_uS\bar{u}_Lu_R + h.c.$

 \succ Free parameters: $g_{\chi}, g_u, m_S, m_{\chi}$

- $BR(\eta \to \pi^0 S \to \pi^0 \chi \overline{\chi})$
 - no dedicated measurements on this semiinvisible yet
- Strongly boosted atmospheric dark matter

J. Alvey, M. Campos, M. Fairbairn, T. You, PRL 123, 261802 (2019) L. Su, L. Wu, NZ, B. Zhu, PRD 108, 035004 (2023)

Constraints on the coupling strength

 Same model could be searched in beam experiments, like MinibooNE and E787/E949

E787/E949: rare Kaon decay

Dark Photon Mediator

- Scalar DM with dark photon
- Low-threshold detection mode
 - Ionization-only signal: threshold 1 keV -> 0.1 keV

21

PandaX-4T Physics Run

2020/11 2021/04	Commissioning (Run 0) 95 days
2021/07 2021/10	Tritium removal xenon distillation, gas flushing, etc
2021/11 2022/05	Physics run (Run 1) 164 days
2022/09 2023/12	CJPL B2 hall construction xenon recuperation, detector upgrade
Current Status	Resuming physics data-taking

Status of Run-1 Data Analysis

- Tritium background
 - excess of low electron-recoil energy
- Significant reduction from Run0 to Run1

Run0

Multi-physics targets

Majorana Neutrino

- Neutrinoless double-beta decay
 - Golden channel for Majorana neutrino searches
- Xe-136: natural abundance 8.9%
 - $2\nu\beta\beta$ $T_{1/2}~$ $2.2x10^{21}$ years, $Q_{\beta\beta}~$ 2.46 MeV

 136 Xe \rightarrow 136 Ba + 2e⁻+?v

Xe-134 @ PandaX-4T

- Next promising discovery of 2vββ decay
 - natural abundance 10.4%
 - $-~2\nu\beta\beta~T_{1/2}~~\sim 10^{24}$ years, $~Q_{\beta\beta}~~0.83~MeV$
- Energy resolution @ Q-value : σ/E=2.4%
- Single-site (SS) and multi-site (MS) discrimination

E_{max}=825.8 keV

134Xe

χ^2 / NDF = 1.13 600 300 400 500 700 800 900 1000 Energy [keV] $T_{1/2}^{0\nu\beta\beta}$ PandaX-4T: 3.0x10²³yr EXO-200: 1.1x10²³yr DAMA: 5.8x10²²yr 10 20 30 50 60 **4**0 Half-life(10²² year)

Xe-134 @ PandaX-4T

10⁵

10⁴

10³

10²

10

200

Counts / 4 keV

Res. [ơ]

- 95 live-days with 656 kg natural xenon
 - $-2\nu\beta\beta$: 10±269(stat.)±680(syst.)
 - $0\nu\beta\beta$: 105±48(stat.)±38(syst.)
- 90%CL limits on half-life

$$- T_{1/2}^{2\nu\beta\beta} > 2.8 \cdot 10^{22} \text{ yr}$$

$$-T_{1/2}^{0\nu\beta\beta} > 3.0 \cdot 10^{23} \text{ yr}$$

PandaX, arXiv:2312.15632, accepted by PRL

Future plan: PandaX-xT

- "Ultimate" liquid xenon experiment
 - With >30 tonne sensitive volume
 - Letter-of-interest sent to Chinese funding agency
 - Key tests on WIMP and Dirac/Majorana neutrino

PandaX, arXiv:2402.03596

Summary

- PandaX-4T is one of the new generation multi-tonne xenon experiments
- Intense searches for various types of physics, including DMs and neutrinos
- Expecting more interesting results
- Highly welcome new collaborators!

Thank You

- PandaX: Particle and Astrophysical Xenon Observatory
 - ~100 members

China Jinping Underground Laboratory

31

- Deepest underground lab
 - 6700 m.w.e. and horizontal access
- CJPL-II: 8 experiment halls (14m x 14m x 60m)

DM – nucleus interaction

- Elastic coherent, quasi-elastic (QE), and inelastic scatterings
 - For $T_{\chi} > 0.2$ GeV, QE becomes significant
 - Dedicated QE scattering calculation with light mediator

$$\chi(k) + A(p_A) \rightarrow \chi(k') + X(\rightarrow n + Y)$$

$$\frac{\mathrm{d}\sigma_{\mathrm{QE}}}{\mathrm{d}T'_{\chi}\mathrm{d}\Omega} = Z \frac{\mathrm{d}\sigma_p}{\mathrm{d}T'_{\chi}\mathrm{d}\Omega} + (A-Z) \frac{\mathrm{d}\sigma_n}{\mathrm{d}T'_{\chi}\mathrm{d}\Omega},$$

Signal in detector

6

- Earth attenuation
 - Monte Carlo simulation with QE and Elastic process included

Constraints on the DM-nucleon

- Cosmic-ray beam dump gives a unique window to search this scalar mediated DM-nucleon interaction
 - DM mass scanning range \sim MeV/c²

PandaX, PRL 131, 041001 (2023)

