

Latest KOTO Results from 2021 Data on $K_L \rightarrow \pi^0 \nu \bar{\nu}$

58th Rencontres de Moriond 24th March–1st April 2024

Ryota Shiraishi (Osaka University) on behalf of the KOTO collaboration

 $K_I \rightarrow \pi^0 \nu \bar{\nu}$

CALCENTION EXPERIMENT @ J-PARC

30-GeV proton beam from Main Ring

Hadron Experimental Facility

Data Taking History

(). (). (). (). **P** Accumulated Target rotons on

Results from 2016–2018 Data [Phys. Rev. Lett. 126, 121

• Single Event Sensitivity (SES):

$$SES = \frac{1}{N_{K_L} \times A_{signal}} = 7.2 \times 10^{-10}$$

• Observed 3 events ==> consistent to #BG

Total #BG in signal region: 1.22 ± 0.26 Major background events K^{\pm} : 0.87 ± 0.25 $K_L \rightarrow 2\gamma$ (beam halo): 0.26 ± 0.07

• Set an upper limit of $BR(K_L \rightarrow \pi^0 \nu \overline{\nu}) < 4.9 \times 10^{-9} (90\% \text{ C.L.})$

==> Need to reduce these dominant background events!

Backward e^{\pm} missed at inactive regions 1st & 2nd collimator **VETO** K_L $(\pi^0 \rightarrow) 2\gamma$ K^{\pm} Gold **VETO** target Photon absorber Magnet (lead) **Upstream Charged Veto (UCV)** 160 mm mm

Reduction of *K*[±] Background Installed a charged particle detector to veto K^{\pm} (2021) • 0.5-mm square scintillating fibers • Readout by MPPCs(SiPM) from the fiber edge ==> Reduced #BG(K^{\pm}) by a factor of 13 with a signal efficiency of 96% **MPPCs**

Reduction of Halo $K_L \rightarrow 2\gamma$ Background 1st & 2nd collimator **Proton** K_L Beam K_I Gold target Photon absorber Magnet (lead)

Developed new analysis methods:

- Shower-shape consistency in the calorimeter
 → Likelihood ratio
- Kinematical distributions

→ Multivariate analysis (Fischer Discriminant)

==> Reduced #BG(Halo $K_L \rightarrow 2\gamma$) by a factor of 8 with a signal efficiency of 94%

Analysis of 2021 Data

For background rejection

• Installed Upstream Charged Veto (UCV)

UCV

MPPCs(SiPM) attached on the front surfcace of Csl

Our recent analysis focus

Executive Summary of the 2021 Data Analysis

Single Event Sensitivity: $SES = 8.7 \times 10^{-10}$ (cf. $SES_{2016-18 \text{ data}} = 7.2 \times 10^{-10}$)

Background:

- Reduced the background contributions from K^{\pm} and halo $K_L \rightarrow 2\gamma$
 - $N_{\rm BG}(K^{\pm}) < O(10^{-1})$
 - $N_{\text{BG}}(\text{Halo } K_L \rightarrow 2\gamma) < \mathcal{O}(10^{-1})$
- Introduced data-driven evaluations for more accurate estimation

 $K_I \rightarrow 2\pi^0$ Background

- $K_L \to 2\pi^0 \,(\mathrm{Br} = 8.64 \times 10^{-4})$
 - $2\gamma \rightarrow$ calorimeter
 - $2\gamma \rightarrow \text{missed} \iff \text{must be vetoed}$)

Key: Inefficiency of veto detectors

Geant4-based MC simulation shows version dependence in the inefficiency

Evaluated the inefficiency with $K_L \rightarrow 3\pi^0 (\rightarrow 6\gamma)$ events

- $5\gamma \rightarrow$ calorimeter
- $\gamma_6 \rightarrow$ veto detector

Evaluation of Inefficiency

Inefficiency(Data) = $(4.8 \pm 4.8) \times 10^{-5}$

cf. $N_{\text{BG w/o correction}}(K_L \rightarrow 2\pi^0)$ $= 0.049 \pm 0.018$ (stat)

 $=> Z_{vtx}$ shifts downstream and can enter the signal region

Key: Probability of energy mis-measurement in calorimeter

Probability of Energy Mis-measurement

Evaluated the probability of energy mis-measurement with $K_L \rightarrow 3\pi^0 (\rightarrow 6\gamma)$ events

- Reconstructed mass $M_{6\gamma} \neq M_{K_L}$
- Large center-of-energy radius (R_{COE})

==> Enhanced events with a photonuclear interaction

Discrepancy between #events(data) and #events(MC) **Correction factor (= N_{Data} / N_{MC})** = 2.64 ± 0.35

==> Applied this correction factor in the background estimation of upstream- π^0

Number of Upstream π^0 Background Events

- MC was normalized with # of events in data in $Z_{vtx} < 2900 \text{ mm}$ under a loose cut condition
- 25% discrepancy in the upstream region comes from an imperfect reproducibility of π^{0} 's kinematics in MC
- cf. $N_{\text{BG w/o correction}}$ (upstream π^0) = 0.035 ± 0.025(stat)

Beam-halo neutron MC with all the event selection

Summary of Background Estimation

Single Event Sensitivity (SES) SES = 8.7×10^{-10} (preliminary)

Source	# of events in signal regior
Upstream π^0	$0.064 \pm 0.050(\text{stat}) \pm 0.006(\text{syst})$
$K_L \rightarrow 2\pi^0$	$0.060 \pm 0.022(\text{stat})^{+0.051}_{-0.060}(\text{syst})$
K^{\pm}	$0.043 \pm 0.015(\text{stat})^{+0.004}_{-0.030}(\text{syst})$
Hadron cluster	$0.024 \pm 0.004(\text{stat}) \pm 0.006(\text{syst})$
η production in CV	$0.023 \pm 0.010(\text{stat}) \pm 0.006(\text{syst})$
Scattered $K_L \rightarrow 2\gamma$	$0.022 \pm 0.005(\text{stat}) \pm 0.004(\text{syst})$
Halo $K_L \rightarrow 2\gamma$	$0.018 \pm 0.007(\text{stat}) \pm 0.004(\text{syst})$
Total	$0.255 \pm 0.058(\text{stat})^{+0.053}_{-0.068}(\text{syst})$

Result

KOTO 2021 data analysis

Single Event Sensitivity: SES = 8.7×10^{-10}

Number of backgound events: $N_{BG} = 0.255 \pm 0.058(\text{stat})^{+0.053}_{-0.068}(\text{syst})$

Observed no candidate events in the signal region

Result

KOTO 2021 data analysis

Single Event Sensitivity: SES = 8.7×10^{-10}

Number of backgound events: $N_{BG} = 0.255 \pm 0.058(\text{stat})^{+0.053}_{-0.068}(\text{syst})$

$BR(K_L \rightarrow \pi^0 \nu \overline{\nu}) < 2.0 \times 10^{-9}$ at 90% C.L. (preliminary)

cf. Previous upper limit: 3.0 × 10⁻⁹ at 90% C.L. (KOTO 2015 data) [Phys. Rev. Lett. 122, 021802]

Prospect

Future Sensitivity in KOTO

KOTO aims to reach sensitivity < 10⁻¹⁰ in 3–4 years

We will collect 10 times more POT assuming,

 80–100 kW beam intensity (64.5 kW in 2021)

• 60 days/year beam time

Next Step

KOTO

White paper [arXiv:2110.04462]

Top priority in KEK Project Implementation Plan 2022

KOTO II @ Extended Hadron Exp. Facility

Smaller extraction angle (16° for KOTO \rightarrow 5° for KOTO II) ==> Higher momentum K_{I} ==> Larger decay volume **KOTO**

KOTO II @ Extended Hadron Exp. Facility

- 100 kW beam, 3×10^7 s = 6.3 $\times 10^{20}$ POT • SES = 8.5×10^{-13}
- 35 SM signal / 40 background events • 5.6 σ observation of $K_L \rightarrow \pi^0 \nu \bar{\nu}$
- $\Delta BR/BR = 25\%$ for $BR_{SM}(K_L \rightarrow \pi^0 \nu \bar{\nu})$ • 44% deviation from SM \rightarrow 90%-CL indication of NP

Preparing for proposal submission in JFY2024

New KL beamline (~ 44m)

T2

0 m 3 m 6.5 m 15 m 20 m

Summary

- KOTO 2021 data achieved $SES = 8.7 \times 10^{-10}$ (preliminary)
- Observed no candidate events ==> New upper limit was obtained as (Preparing a paper for the 2021 data analysis)

 $BR(K_I \rightarrow \pi^0 \nu \bar{\nu}) < 2.0 \times 10^{-9}$ at 90% C.L. (preliminary)

• We will continue data taking for 3–4 years to achieve SES < 10^{-10}

• We are preparing for KOTO II which aims to observe >30 SM events

Backup

New Physics Models

[JHEP11(2015)166]

NA62 [JHEP06(2021)093]

 $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11} @68\% \text{ CL}$

Timeline

- Time line for the earliest case
 - 1st Priority to get budget on KEK PIP2020
 - Depends on the budget request (every one year)

			Slipped	by 1 year							
	FY2022	FY2023	FY2024	FY2025	FY2026	FY2027	FY2028	FY2029	FY2030	FY2031	FY203
MR accelerator Upgrade			cons	truction par beam	BELLI rallel to bea suspension	HK starts E2 LS2 I m operatio In in the next	n in the firs t 2.5 years	t 4 years,			
Hadron Hall			The Ex	tension	Project	of Hadron	E _{xperimental} Fa	cility (7 ye	ars)		
		wi	Curre th SX Pow	ent Progra ver towar	ms ds 100kW		Hall	Extension	Ewi	xpanded P th more b	rogram eam line

Discrepancy in Upstream Region

Discrepancy appeared after the normalization of MC.

Fisher Discriminant output (for halo $K_L \rightarrow 2\gamma$ background)

Discrepancy in Upstream Region

 π^0 energy spectrum shows difference between data and MC ==> Re-estimated #BG based on E_{π^0} weight

Evaluation of Inefficiency

Summary of inefficiency evaluation with $K_L \rightarrow 3\pi^0$ events

Veto Detector	FB	Barrel for high Εγ ₆	Barrel for low Εγ ₆	BHPV
Correction Factor (= Ineff.(Data) / Ineff.(MC))	1.42 ± 0.13	$0.77^{+0.85}_{-0.77}$	1.10 ± 0.10	$1.50^{+0.42}_{-0.51}$

==> Applied these correction factors in the background estimation of $K_I \rightarrow 2\pi^0$

Neural Net Cut for $K_I \rightarrow 2\pi^0$ BG

• Developed a neural net cut based on kinematical distributions

• $\pi^0 P_T$, Z_{vtx} , E_{γ} , etc

- Background sample • $K_L \rightarrow 2\pi^0$ MC after applying the selection criteria
- Signal sample • $K_L \to \pi^0 \nu \overline{\nu} MC$
- \rightarrow Reduced the #BG by 40% with 90% signal efficiency

 \Rightarrow Calculate invariant mass of K^+ as $M_{\pi^+\pi^0} = \sqrt{(p_{\gamma_1} + p_{\gamma_2} + p_{\pi^+})^2}$

Measurement of K^{\pm} Flux

Measured the flux ratio of K^+ to K_L to be $F_{K^+}/F_{K_L} = (3.3 \pm 0.1) \times 10^{-5}$.

• There is 1.4% of K_L contamination in the K^+ sample

• K_L flux was measured under loose selection where $K_L \rightarrow \pi^+ \pi^- \pi^0$ is dominant

Measurement of Halo K_L Flux

Flux of halo K_L was evaluated using $K_L \rightarrow 3\pi^0$ events. Definition: R_{COE} (center-of-energy radius) > 200 mm

Multivariate analysis using Fisher Discriminant

ReconstructedZ_{vtx}

 R_{COE}

Halo K_L Flux

1 mm sq. fiber prototype UCV (2020)

0.5 mm sq. fiber UCV (2021)

May

Genat4 Version Dependence

- **Photonuclear(PN) reaction** occurs in the $K_L \rightarrow 2\pi^0$ events that remain in the signal region.
- Inefficiency of the barrel detectors depends on the version of Geant4.
 (No difference when turning off the PN process.)
- The physics model of PN process was changed for better code management.

Downstream Charged Veto

Downstream Charged Veto (DCV) (2019–)

• Rejected the $K_L \to \pi^+ \pi^- \pi^0$ BG (< 0.07 @90%CL) ==> acceptance recovery by extending the signal region

2016–18 signal region

2021 signal region

Upgrade of Calorimeter

 Hadron cluster background Halo neutron hits the calorimeter, which makes another cluster

Front view (~4000 MPPCs in total)

 $X_0 \sim 2 \text{ cm}$

 $\lambda_I \sim 40 \text{ cm}$

Cut for Hadron Cluster Background

Fourier Pulse Shape Discrimination

Cluster Shape Discrimination

neutron

Both-end

CSDDL output

Halo Neutron Flux

50000_E 0.5mmt 1mmt No UCV 45000 UCV UCV **40000**₿ Neutron Flux 35000 30000 I **25000 20000** 15000E 10000 Without UCV 5000 2019 2020 2021 2018 Run79 Run81 Run82 Run85 Run85 Run86 Run87 W/UCV UCV

1 mm sq. fiber prototype UCV (2020)

0.5 mm sq. fiber UCV (2021)

