Gravitational Waves from Graviton Bremsstrahlung during Reheating

2301.11345, 2305.16388, 2311.12649 B. Barman, NB, S. Cléry, Y. Mambrini, Y. Xu, Ó. Zapata

> Nicolás BERNAL جامعـة نيويورك أبوظـي

Rencontres de Moriond March 25th-31st, 2024

Gravitational Waves

Gravitational waves from:

- * Binary neutron star
- * Binary black hole
- * Neutron star black hole binary
- * Phase transitions
- * Topological defects
- * Primordial black holes
- * Preheating

← Talks by G. Arcadi & P. di Bari

Gravitons

Gravitons → massless spin-2 particles

- * Perturbations of the metric
- * Graviton matter interaction

$$g_{\mu
u}\simeq\eta_{\mu
u}+rac{1}{M_P}h_{\mu
u}$$

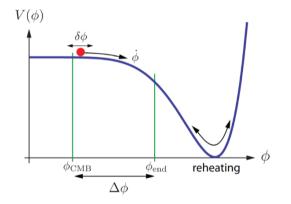
$$\sqrt{-g}\,\mathcal{L} \supset -\frac{1}{M_P}\,h_{\mu\nu}\,T^{\mu\nu}$$

* Graviton emission suppressed by $1/M_P^2 \rightarrow \text{large } T^{\mu\nu} \rightarrow \text{reheating!}$

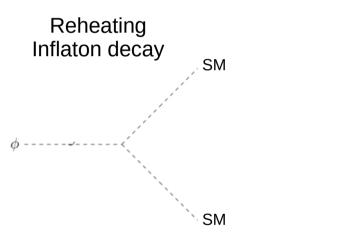
Inflationary Reheating

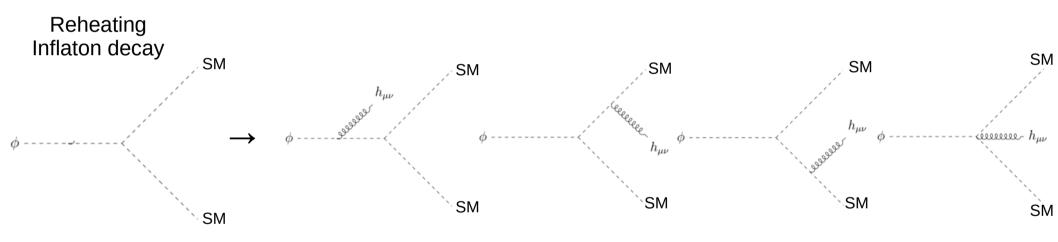
Reheating:

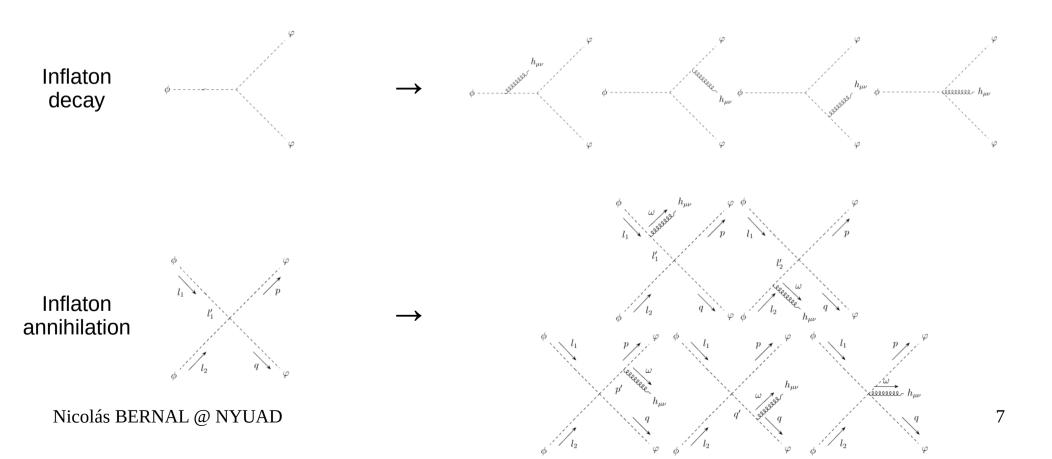
Transition from an *inflaton* to a *SM-radiation* dominated universe

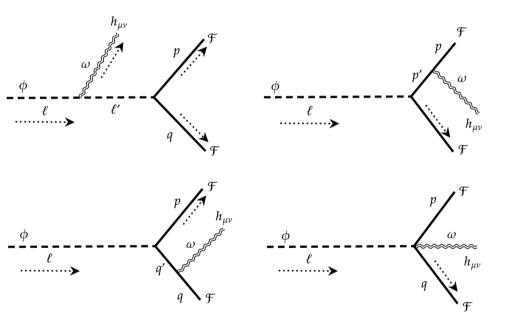


- * Inflaton decays or annihilation
- * Inflaton potential during reheating
- * Possible non-perturbative effects: Preheating
 - fermions: Fermi blocking
 - scalars: quartic couplings avoid tachyonic instabilities
 - \rightarrow preheating not efficient in this setup









Matrix elements

$$i\mathcal{M}_{1} = \frac{-i\mu}{M_{P}} \frac{l_{\mu} l_{\nu} \epsilon_{i}^{\star \mu \nu}}{M E_{\omega}} = 0$$
$$i\mathcal{M}_{2} = \frac{i\mu}{M_{P}} \frac{p_{\mu} p_{\nu} \epsilon_{j}^{\star \mu \nu}}{p \cdot \omega} ,$$
$$i\mathcal{M}_{3} = \frac{i\mu}{M_{P}} \frac{q_{\mu} q_{\nu} \epsilon_{k}^{\star \mu \nu}}{M E_{\omega} - p \cdot \omega}$$
$$i\mathcal{M}_{4} \propto \eta_{\mu\nu} \epsilon^{\mu\nu} = 0 ,$$

Decay Widths

* Inflaton 2-body decay

$$^{\text{-2-body}} \simeq \frac{2M}{16\pi} \left(\frac{\mu}{M}\right)^2$$

* Inflaton 3-body decay

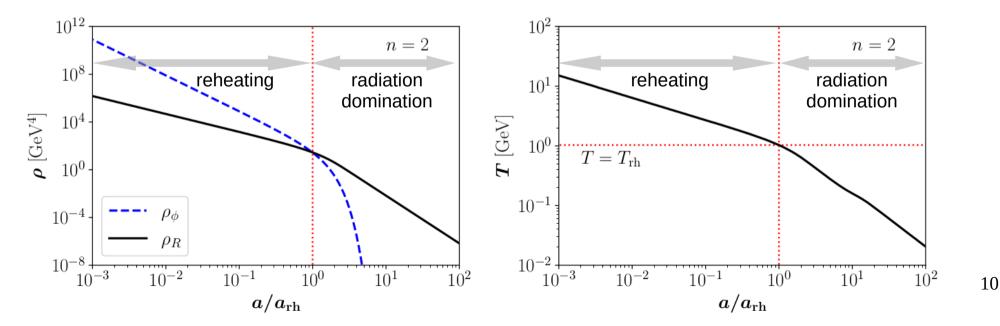
$$\frac{d\Gamma^{3-\text{body}}}{dE_{\omega}} \simeq \frac{2}{64\pi^3} \left(\frac{\mu}{M_P}\right)^2 \frac{(2x-1)^2}{4x} \qquad x = E_{\omega}/M$$

* $x < \frac{1}{2} \rightarrow$ graviton carries at most *M*/2

* IR divergence at $x \rightarrow 0$ need vertex and self-energy 1-loop corrections

Boltzmann Equations: background

$$\frac{d\rho_{\phi}}{dt} + 3 H \rho_{\phi} = -\Gamma^{2\text{-body}}\rho_{\phi}$$
$$\frac{d\rho_{R}}{dt} + 4 H \rho_{R} = +\Gamma^{2\text{-body}}\rho_{\phi}$$



Boltzmann Equations: GWs

$$\begin{split} \frac{d\rho_{\phi}}{dt} + 3 H \rho_{\phi} &= -\left(\left(\Gamma^{2\text{-body}} + \Gamma^{3\text{-body}}\right)\rho_{\phi} \implies \text{fraction of energy to radiation} \\ \frac{d\rho_{R}}{dt} + 4 H \rho_{R} &= +\Gamma^{2\text{-body}}\rho_{\phi} + \int \frac{d\Gamma^{3\text{-body}}}{dE_{\omega}} \frac{M - E_{\omega}}{M} \rho_{\phi} dE_{\omega} \\ \frac{d\rho_{\text{GW}}}{dt} + 4 H \rho_{\text{GW}} &= +\int \frac{d\Gamma^{3\text{-body}}}{dE_{\omega}} \frac{E_{\omega}}{M} \rho_{\phi} dE_{\omega} \\ \implies \text{fraction of energy to graviton} \end{split}$$

$$\frac{d(\rho_{\rm GW}/\rho_R)}{dE_{\omega}} \sim \left(\frac{d\Gamma^{3-\rm body}}{dE_{\omega}}\frac{1}{\Gamma^{2-\rm body}}\right) \times \left(\frac{E_{\omega}}{M}\right)$$

~ differential BR × energy fraction

GW Spectrum

* GW amplitude

$$\begin{split} \Omega_{\rm GW}(f) &= \Omega_{\gamma}^{0} \, \frac{d(\rho_{\rm GW}/\rho_{R})}{d\ln f} \\ &\sim \mathcal{C}_{\Omega_{\rm GW}} \, \left(\frac{T_{\rm rh}}{5.5 \times 10^{15} \,\, {\rm GeV}}\right) \left(\frac{M}{M_{P}}\right) \left(\frac{f}{10^{12} \,\, {\rm Hz}}\right) \end{split}$$

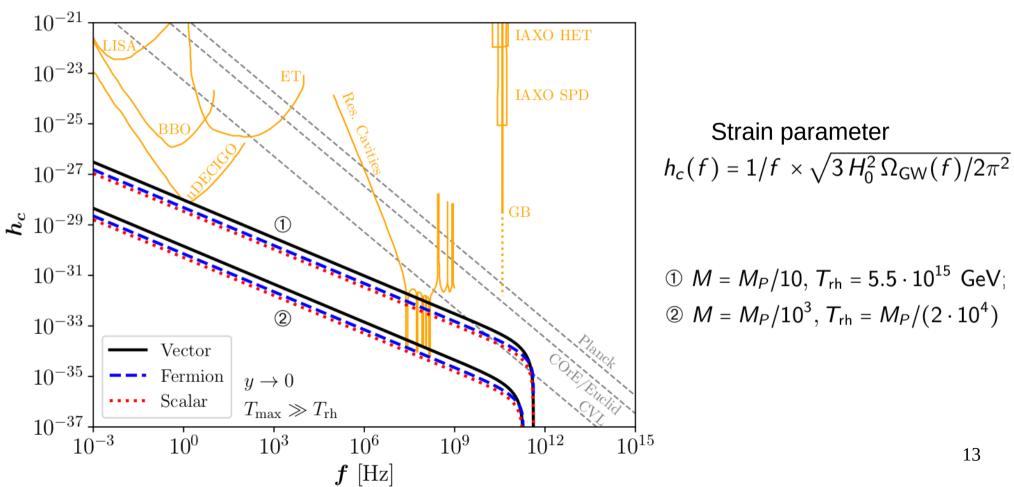
* Graviton energy and frequency

$$E_{\omega} = 2\pi f \frac{a_0}{a_{\rm rh}} \sim 2\pi f \frac{T_{\rm rh}}{T_0}$$

* Frequency: Upper bound

$$f \lesssim rac{M}{4\pi} \, rac{T_0}{T_{
m rh}} \sim 4.1 imes 10^{12} \, \left(rac{M}{M_P}
ight) \left(rac{5.5 imes 10^{15} \, \, {
m GeV}}{T_{
m rh}}
ight) {
m Hz}$$

GW Spectrum



Reheating in General Potential ϕ^n

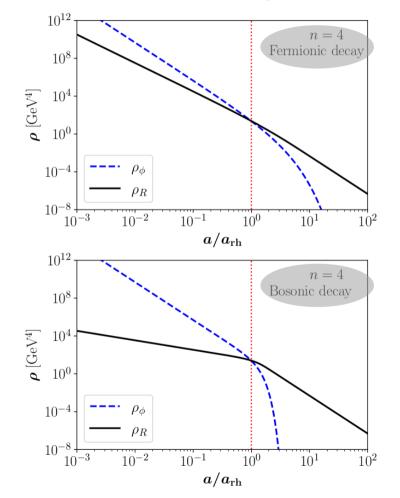
- * So far $V(\phi) \sim \phi^2$ during reheating
- * General monomial potentials $V(\phi) \sim \phi^n$
- * Inflaton mass $M^2 \sim V''(\phi) \rightarrow$ becomes field dependent
- * Decay widths become filed dependent

$$\Gamma_{\rm bos} \sim rac{\mu^2}{8\pi m_{\phi}} \qquad \Gamma_{\rm ferm} \sim rac{y^2 m_{\phi}}{8\pi}$$

Reheating in General Potential ϕ^n

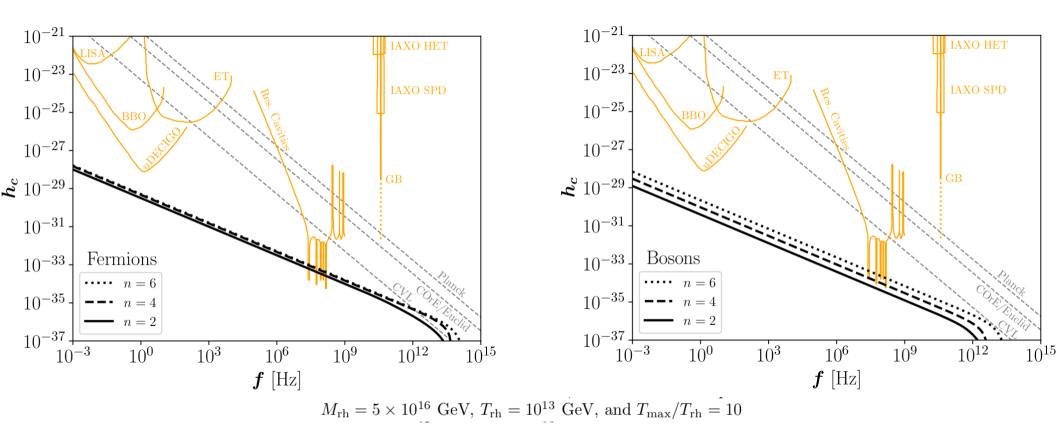


Nicolás BERNAL @ NYUAD



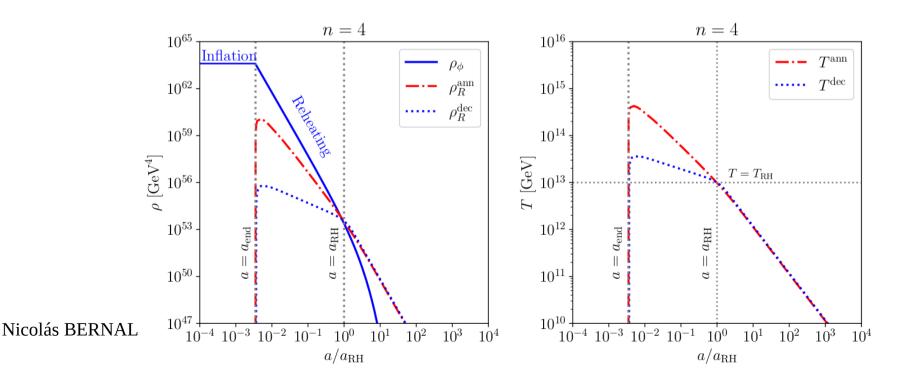
15

GW Spectrum in ϕ^n



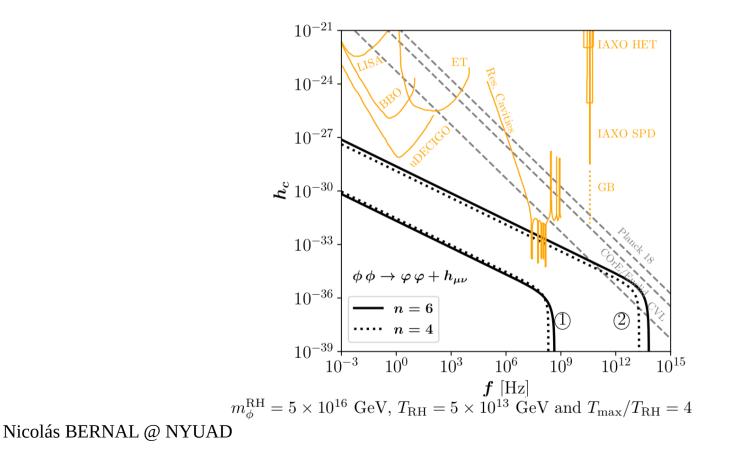
Reheating through Annihilations

* So far reheating through inflaton decays \rightarrow inflaton annihilations are also viable



17

GW Spectrum for Annihilations



Conclusions & Outlook

- Reheating happens after cosmic inflation
- Irreducible GW background produced during cosmic reheating
 - * reheating dynamics (inflaton potential)
 - * inflaton dynamics (decay or annihilation)
 - * inflaton matter coupling
- Quadratic potentials: Very large M and T_{rh}
- Steeper potential: significant boost for bosonic reheating * not that large *M* and T_{rh}
- Decay & annihilation: Possible boost of GW spectrum
- Reheating could be probed by graviton Bremsstrahlung

Muchas gracias

Polarization Tensor

Massless gravitons have 2 polarizations

 $\begin{aligned} \epsilon^{i\,\mu\nu} &= \epsilon^{i\,\nu\mu} & \text{symmetric,} \\ \omega_{\mu} \,\epsilon^{i\,\mu\nu} &= 0 & \text{transverse,} \\ \eta_{\mu\nu} \,\epsilon^{i\,\mu\nu} &= 0 & \text{traceless,} \\ \epsilon^{i\,\mu\nu} \,\epsilon^{j\,\star}_{\mu\nu} &= \delta^{ij} & \text{orthonormal,} \end{aligned}$

$$\sum_{\text{pol}} \epsilon^{\star\mu\nu} \epsilon^{\alpha\beta} = \frac{1}{2} \left(\hat{\eta}^{\mu\alpha} \hat{\eta}^{\nu\beta} + \hat{\eta}^{\mu\beta} \hat{\eta}^{\nu\alpha} - \hat{\eta}^{\mu\nu} \hat{\eta}^{\alpha\beta} \right)$$

$$\hat{\eta}_{\mu\nu} \equiv \eta_{\mu\nu} - \frac{\omega_{\mu}\bar{\omega}_{\nu} + \bar{\omega}_{\mu}\omega_{\nu}}{\omega \cdot \bar{\omega}}$$
where $\omega = (E - \vec{\omega})$ and $\bar{\omega} = (E - \vec{\omega})$

where
$$\omega = (E_{\omega}, \vec{\omega})$$
 and $\bar{\omega} = (E_{\omega}, -\vec{\omega})$

Contribution to $\Delta N_{\rm eff}$

