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Problem Formulation
LHCb Detector
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• 2 bunches of ∼ 𝟏𝟎𝟏𝟏 protons cross every ~30 ns
→ ≈ 30 MHz bunch crossing rate

• ~ 5 proton-proton collisions / bunch crossing



Problem Formulation
LHCb Detector
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𝑧

𝑥

Magnet 
stations

• Detector acceptance:
1°< |θ| <15°

• 2 bunches of ∼ 𝟏𝟎𝟏𝟏 protons cross every ~30 ns
→ ≈ 30 MHz bunch crossing rate

• ~ 5 proton-proton collisions / bunch crossing
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Vertex Locator
With silicon pixels
No magnetic field

UT
Upstream Tracker
With silicon strips

SciFi 
With Scintillating Fibres
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SciFi 
With Scintillating Fibres

𝑧

𝑥
Magnet stations

Magnetic field 𝑩

26 planes

Velo track
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Track Finding in the Velo
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Track finding: find tracks from hits
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Track finding: find tracks from hits

251 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26
Plane number

1 plane = 4 sensor planes

P. C. Tsopelas, ‘A Silicon Pixel Detector for LHCb’, PhD Thesis, Vrije 
U., Amsterdam, 2016. 

=

1 plane 4 sensor planes

https://inspirehep.net/literature/1645999
https://inspirehep.net/literature/1645999
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Track Finding in the Velo
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Track finding: find tracks from hits

251 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26
Plane number

Simplified 
example

Input: Velo Hits Output: Velo tracks

Noise
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What is Track Finding?
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Input: Velo Hits Output: Velo tracks
Goal

• Everything in GPU
• ⇒ needs to be as much parallelised as possible (NOT sequential)

Noise
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What is Track Finding?
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Input: Velo Hits Output: Velo tracks
Goal

• Everything in GPU
• ⇒ needs to be as much parallelised as possible (NOT sequential)

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟15 𝜙15 𝑧15

𝑟16 𝜙16 𝑧16

Hit coordinates

List of connected components
• {1, 4, 7, 11, 15, 16, 19}
• {2, 6, 10, 13, 18}
• {3}
• {5, 8, 12, 17}
• {9}
• {14}
• {20}

Noise
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Problem Formulation
A GNN-Based Pipeline
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NoiseGoal

• GNN-based pipeline is based on the work of Exa.Trkx (Eur. Phys. J. C 81, 876 (2021)).

• With PyTorch

https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas
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A GNN-Based Pipeline
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1

2
Score every edge between 0 (fake) and 1 (genuine)
using a Graph Neural Network (GNN)

Build a rough graph
e.g., link every hits to hits on the next 2 planes.

3
Discard fake edges
by requiring edge score > 𝑠edge,min (for instance)

NoiseGoal
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A GNN-Based Pipeline

1

2
Score every edge between 0 (fake) and 1 (genuine)
using a Graph Neural Network (GNN)

Build a rough graph
e.g., link every hits to hits on the next 2 planes.

3
Discard fake edges
by requiring edge score > 𝑠edge,min

4
Find connected components
using a weakly connected component algorithm
Use of cugraph (GPU) or SciPy (CPU)

https://docs.rapids.ai/api/cugraph/stable/api_docs/api/cugraph/cugraph.connected_components/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html
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A GNN-Based Pipeline

1

2
Score every edge between 0 (fake) and 1 (genuine)
using a Graph Neural Network (GNN)

Build a rough graph
e.g., link every hits to hits on the next 2 planes.

3
Discard fake edges
by requiring edge score > 𝑠edge,min

4
Find connected components
using a weakly connected component algorithm
Use of cugraph (GPU) or SciPy (CPU)

Build graph Filter edges with GNN Find connected components

https://docs.rapids.ai/api/cugraph/stable/api_docs/api/cugraph/cugraph.connected_components/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html


16Interlude on Neural Network
Input 𝒙

Predict 𝒚 from 𝒙?

𝑥

𝑦
Polynomial model

5 parameters
ො𝑦 = 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒

Output ෝ𝒚



17Interlude on Neural Network
Input 𝒙

Deep Learning model
Many parameters

ෝ𝒚 = 𝐌𝐨𝐝𝐞𝐥 𝒙

Probability of being a cat?

Predict 𝒚 from 𝒙?

𝑥

𝑦
Polynomial model

5 parameters
ො𝑦 = 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒

0.4

0.9

0.2

Output ෝ𝒚



18Interlude on Neural Network
Input 𝒙

Deep Learning model
Many parameters

ෝ𝒚 = 𝐌𝐨𝐝𝐞𝐥 𝒙

Probability of being a cat?

Predict 𝒚 from 𝒙?

𝑥

𝑦
Polynomial model

5 parameters
ො𝑦 = 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒

0.4

0.9

0.2

Fit 𝒂, 𝒃, 𝒄, 𝒅, 𝒆 by minimising Mean Squared Distance Loss

ℒMSE = ෍

𝑖=1

𝑁

𝑦𝑖 − ො𝑦𝑖
2

Fit parameters by minimising Binary Cross Entropy Loss

ℒ = − ෍

𝑖=1

𝑁

𝑦𝑖 log ො𝑦𝑖 − 1 − 𝑦𝑖 log 1 − ො𝑦𝑖
2

Output ෝ𝒚

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html


19Interlude on Neural Network

Multi-Layer Perceptron
(MLP)

Probability of being a cat?

𝑋 =

𝑥11 ⋯ 𝑥1𝑁

𝑥21 ⋯ 𝑥2𝑁

𝑥31 ⋯ 𝑥3𝑁

𝑁 pixels

෠𝑌 =
0.4
0.9
0.2

Target

𝑌 =
0
1
0

NB: For a picture, you should rather use a Convolutional Neural Network (CNN)

NB: Input features 
should be normalised.
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Multi-Layer Perceptron
(MLP)

Probability of being a cat?

𝑋 =

𝑥11 ⋯ 𝑥1𝑁

𝑥21 ⋯ 𝑥2𝑁

𝑥31 ⋯ 𝑥3𝑁

𝑁 pixels

෠𝑌 =
0.4
0.9
0.2

𝑋0 = X

𝑋1 = 𝜎 𝑋0𝑾1 + 𝒃𝟏

Matrices 𝑊1 and 𝑏1 containing the 
parameters to fit

෠𝑌 = 𝑋1

Sigmoid function so that result ∈ 0,1

1 layer

Target

𝑌 =
0
1
0

NB: For a picture, you should rather use a Convolutional Neural Network (CNN)

NB: Input features 
should be normalised.
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Multi-Layer Perceptron
(MLP)

Probability of being a cat?

𝑋 =

𝑥11 ⋯ 𝑥1𝑁

𝑥21 ⋯ 𝑥2𝑁

𝑥31 ⋯ 𝑥3𝑁

𝑁 pixels

෠𝑌 =
0.4
0.9
0.2

NB: For a picture, you should rather use a Convolutional Neural Network (CNN)

𝑋0 = X

𝑋1 = ReLU 𝑋0𝑾𝟏 + 𝒃𝟏

𝑋2 = ReLU 𝑋1𝑾𝟐 + 𝒃𝟐

𝑋3 = 𝜎 𝑋2𝑾𝟑 + 𝒃𝟑

3 layers

Activation function
(typically non-linear)

Target

𝑌 =
0
1
0

෠𝑌 = 𝑋3

Fit 𝑊1, 𝑏1, 𝑊2, 𝑏2, 𝑊3 and 𝑏3 by minimising binary cross entropy loss

ℒ = − ෍

𝑖=1

𝑁

𝑦𝑖 log ො𝑦𝑖 − 1 − 𝑦𝑖 log 1 − ො𝑦𝑖
2

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity


Stage 1: Graph Building 22

Graph Representation

Graph 𝓖 is defined as : 𝒱, ℰ
• Set of nodes / vertices 𝓥 = 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, … , 𝑣𝑁

• Set of edges 𝓔 ≡ connection between nodes

• Features / attributes:
• Node features: node coordinates 𝑋

• Edge features:
concatenated node coordinates 𝐹
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Graph Representation

Graph 𝓖 is defined as : 𝒱, ℰ
• Set of nodes / vertices 𝓥 = 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, … , 𝑣19, 𝑣20

• Set of edges 𝓔 ≡ connection between nodes

Iℰ =
1 2 4 5 6 7 8 10 11 11 12 13 15 16
4 6 7 8 10 11 12 13 15 16 17 18 19 19

• Features / attributes:
• Node features: node coordinates 𝑋

• Edge features:
concatenated node coordinates 𝐹
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1915
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4

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟19 𝜙19 𝑧19

𝑟20 𝜙20 𝑧20

𝑋ℰ =

𝑟1 𝜙1 𝑧1 𝑟4 𝜙4 𝑧4

𝑟2 𝜙2 𝑧2 𝑟6 𝜙6 𝑧6

𝑟4 𝜙4 𝑧4 𝑟7 𝜙7 𝑧7

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑟15 𝜙15 𝑧15 𝑟19 𝜙19 𝑧19

𝑟16 𝜙16 𝑧16 𝑟20 𝜙20 𝑧20



Hit coordinates

Goal

Stage 1: Graph Building 24

Input: hits
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Build graph Filter edges with GNN Find connected components

Problem Formulation



Hit coordinates

Goal

Stage 1: Graph Building 25

Input: hits
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𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟19 𝜙19 𝑧19

𝑟20 𝜙20 𝑧20

Hit coordinates

Iℰ =
1 1 1 1 1 1 2 2 2 2 2 ⋯ 17 17
3 4 5 6 7 8 4 5 6 7 8 ⋯ 19 20

Output: Edges of the rough graph 
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Edge indices

Formally….

Build graph Filter edges with GNN Find connected components

Problem Formulation



Hit coordinates

Stage 1: Graph Building 26
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# Idea Observation

1 Connect all the nodes 
together.

Too many edges. 
99.9% of edges are ≤ 2 plane apart.
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Goal
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Stage 1: Graph Building 27

5 8 12 17

2

6 10

13
18

1
7 11 16 19

15
14

9
3

20

4

# Idea Observation

1 Connect all the nodes 
together.

Too many edges. 
99.9% of edges are ≤ 2 plane apart.

2 Connect nodes in 
plane 𝒌 to all the 
nodes in plane 𝒌 + 𝟏
and 𝒌 + 𝟐

Still too many edges 
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Goal
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Idea

# Idea Observation

1 Connect all the nodes 
together.

Too many edges. 
99.9% of edges are ≤ 2 plane apart.

2 Connect nodes in 
plane 𝒌 to all the 
nodes in plane 𝒌 + 𝟏
and 𝒌 + 𝟐

Still too many edges 
Edges tend to be:
• Forward
• Away from 𝑧-axis more tilted

3

𝑝 = 10 𝑝 = 11 𝑝 = 12

Hit coordinates
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Idea

Hit coordinates
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Goal
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# Idea Observation

1 Connect all the nodes 
together.

Too many edges. 
99.9% of edges are ≤ 2 plane apart.

2 Connect nodes in 
plane 𝒌 to all the 
nodes in plane 𝒌 + 𝟏
and 𝒌 + 𝟐

Still too many edges 
Edges tend to be:
• Forward
• Away from 𝑧-axis more tilted

3 Use a Neural Network 
to capture this trend.

𝑝 = 10 𝑝 = 11 𝑝 = 12



Stage 1: Graph Building 30

𝑝 = 10 𝑝 = 11 𝑝 = 12

Example of edges drawn in the rough graph.
Only 1 true edge out of ~15 edges.

All the true edges

𝑝 = 10 𝑝 = 11 𝑝 = 12

Idea

Hit coordinates
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Hit coordinates

Goal

Let’s focus on connecting hits from plane 𝑝 to plane 𝑝 + 1 and 𝑝 + 2 
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9
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9
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5 8
2

3

With an Embedding Network



𝒆𝒌 =

𝑒𝑘1

𝑒𝑘2

𝑒𝑘3

Stage 1: Graph Building 32

Hit coordinates

Goal

Let’s focus on connecting hits from plane 𝑝 to plane 𝑝 + 1 and 𝑝 + 2 
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1

5

8

6

9

2

3

Embedding space

𝑥𝑘 =

𝑟𝑘

𝜙𝑘

𝑧𝑘

Embed each hit 𝑥𝑘 → 𝒆𝒌 so that,
between nodes 𝑣𝑖 and 𝑣𝑗:

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
< 𝟏: edge is likely

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
> 𝟏: edge is unlikely

MLP
251 parameters

1

With an Embedding Network



𝒆𝒌 =

𝑒𝑘1

𝑒𝑘2

𝑒𝑘3
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Hit coordinates

Goal

Let’s focus on connecting hits from plane 𝑝 to plane 𝑝 + 1 and 𝑝 + 2 
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1

5

8

6

9

2

3

Embedding space

𝑥𝑘 =

𝑟𝑘

𝜙𝑘

𝑧𝑘

2
Embed each hit 𝑥𝑘 → 𝒆𝒌 so that,
between nodes 𝑣𝑖 and 𝑣𝑗:

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
< 𝟏: edge is likely

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
> 𝟏: edge is unlikely

MLP
251 parameters

1

74
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8
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9
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3

For each node 𝑣𝑖 in plane 𝑝,

find 𝒌𝐦𝐚𝐱 nearest nodes 𝑣𝑗

within sphere of radius 𝒅𝐦𝐚𝐱
𝟐

With an Embedding Network



𝒆𝒌 =

𝑒𝑘1

𝑒𝑘2

𝑒𝑘3
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Hit coordinates

Goal

Let’s focus on connecting hits from plane 𝑝 to plane 𝑝 + 1 and 𝑝 + 2 
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Embedding space

𝑥𝑘 =

𝑟𝑘

𝜙𝑘

𝑧𝑘

2
Embed each hit 𝑥𝑘 → 𝒆𝒌 so that,
between nodes 𝑣𝑖 and 𝑣𝑗:

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
< 𝟏: edge is likely

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
> 𝟏: edge is unlikely

MLP
251 parameters
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3

For each node 𝑣𝑖 in plane 𝑝,

find 𝒌𝐦𝐚𝐱 nearest nodes 𝑣𝑗

within sphere of radius 𝒅𝐦𝐚𝐱
𝟐

a. Apply 𝐤𝐦𝐚𝐱-Nearest Neighbours (kNN)
from plane 𝑝 to planes 𝑝 + 1, 𝑝 + 2

b. Only keep edges for which 𝑑𝑖𝑗
2 < 𝒅𝐦𝐚𝐱

𝟐  

Iℰ =
𝟏 𝟏 𝟐 𝟐 𝟐 𝟑 𝟑
4 7 4 5 8 6 9

2

With an Embedding Network
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With an Embedding Network

Hit coordinates

Goal
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Recap’

Embedding Network1 𝑬 =

𝑒1,1 𝑒1,2 𝑒1,3

𝑒2,1 𝑒2,2 𝑒2,3

𝑒3,1 𝑒3,2 𝑒3,3

⋮ ⋮ ⋮
𝑒19,1 𝑒19,3 𝑒19,3

𝑒20,1 𝑒20,2 𝑒20,3

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟19 𝜙19 𝑧19

𝑟20 𝜙20 𝑧20

MLP

So that 𝑑 𝑣𝑖 , 𝑣𝑗
2

= 𝑒𝑖 − 𝑒𝑗
2

< 1

if 𝑣𝑖 , 𝑣𝑗 likely to be an edge 

Train with hinge embedding loss (see annexe)
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With an Embedding Network

Hit coordinates

Goal
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Recap’

Embedding Network1 𝑬 =

𝑒1,1 𝑒1,2 𝑒1,3

𝑒2,1 𝑒2,2 𝑒2,3

𝑒3,1 𝑒3,2 𝑒3,3

⋮ ⋮ ⋮
𝑒19,1 𝑒19,3 𝑒19,3

𝑒20,1 𝑒20,2 𝑒20,3

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟19 𝜙19 𝑧19

𝑟20 𝜙20 𝑧20

MLP

kNNs plane by plane 2

So that 𝑑 𝑣𝑖 , 𝑣𝑗
2

= 𝑒𝑖 − 𝑒𝑗
2

< 1

if 𝑣𝑖 , 𝑣𝑗 likely to be an edge 

a) Apply every plane 𝑝 ∈ 1, … , 𝑛planes − 1 ,

apply 𝒌𝐦𝐚𝐱NN from plane 𝑝 to next 2 planes 𝑝 + 1 and 𝑝 + 2

b) Only keep edges for which 𝑑 𝑣𝑖 , 𝑣𝑗 < 𝒅𝐦𝐚𝐱
𝟐

⇒ 2 parameters to choose for inference: 𝒌𝐦𝐚𝐱 and 𝒅𝐦𝐚𝐱
𝟐 (in annexe)

Train with hinge embedding loss (see annexe)

Use faiss library

https://github.com/facebookresearch/faiss
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Siamese Network for One-Shot Face Recognition

Embedding network seen earlier can be used for face recognition 

Convolutional 
Neural 

Network

Embedding space

Trained with
hinge embedding loss

⇒ save only 1 picture / person in database Paper (2015)

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
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Choice of 𝑘max and 𝑑max
2
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Definition

• Graph Neural Network (GNN): Neural Network architecture that operates on graphs
→ Problem needs to be formulated with a graph.

• MANY GNN architectures exist
• List of GNNs implemented in PyTorch Geometric

Graph neural networks: A review of methods and applications (2020)

https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/gnn_cheatsheet.html
https://www.sciencedirect.com/science/article/pii/S2666651021000012
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Definition

• Graph Neural Network (GNN): Neural Network architecture that operates on graphs
→ Problem needs to be formulated with a graph.

• MANY GNN architectures exist
• List of GNNs implemented in PyTorch Geometric

Graph neural networks: A review of methods and applications (2020)

• GNN we used was described from this paper (2021)
• Used by the Exa.TrkX collaboration
• Follows the Interaction Network (IN) 

architecture
• Can be described by the Message Passing 

Neural Network (MPNN) framework

https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/gnn_cheatsheet.html
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://link.springer.com/article/10.1007/s41781-021-00073-z
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212


Task 
level

Example Graph Task

Node AlphaFold 2 (2020)
Input: protein = amino acid sequence
Target: 3D structure of folded protein

Graph = proteine
• Node: amino acid
• Edge: if in proximity

Predict node 
coordinates.

Edge

Graph
or
subgraph

Stage 2: Graph Neural Networks 41

Examples of GNNs

Description of these example cases are oversimplified.

https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
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Examples of GNNs

Task 
level

Example Graph Task

Node AlphaFold 2 (2020)
Input: protein = amino acid sequence
Target: 3D structure of folded protein

Graph = proteine
• Node: amino acid
• Edge: if in proximity

Predict node coordinates.

Edge Decagon (2018)
Input: side effects between various 
drug combinations
Target: (unknown) side effect 
between a 2 drug combinations

Graph of side effects
• Node: drug
• Edge: side effect

Predict probability 
that an edge 
corresponds to a 
given side effect.

Graph
Or
subgraph

Description of these example cases are oversimplified.

https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770


Stage 2: Graph Neural Networks 43

Examples of GNNs

Task 
level

Example Graph Task

Node AlphaFold 2 (2020)
Input: protein = amino acid sequence
Target: 3D structure of folded protein

Graph = proteine
• Node: amino acid
• Edge: if in proximity

Predict node coordinates.

Edge Decagon (2018)
Input: side effects between various drug combinations
Target: (unknown) side effect between a 2 drug 
combinations

Graph of side effects
• Node: drug
• Edge: side effect

Predict probability that an 
edge corresponds to a given 
side effect.

Graph
Or
subgraph

Google Maps (2020)
Input: road network
Target: travel time of a chunk of road

Graph = road network
• Node: route segment
• Edge: if route segments 

are consecutive

Predict travel time 
of a supersegment 
= multiple adjacent 
segments.

Description of these example cases are oversimplified.

https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
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Examples of GNNs

Task 
level

Example Graph Task

Node AlphaFold 2 (2020)
Input: protein = amino acid sequence
Target: 3D structure of folded protein

Graph = proteine
• Node: amino acid
• Edge: if in proximity

Predict node 
coordinates.

Edge Decagon (2018)
Input: side effects between various 
drug combinations
Target: (unknown) side effect 
between a 2 drug combinations

Graph of side effects
• Node: drug
• Edge: side effect

Predict probability 
that an edge 
corresponds to a 
given side effect.

Graph
Or
subgraph

Google Maps (2020)
Input: road network
Target: travel time of a chunk of road

Graph = road network
• Node: route segment
• Edge: if route segments 

are consecutive

Predict travel time 
of a supersegment 
= multiple adjacent 
segments.

Description of these example cases are oversimplified.

https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
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Examples of GNNs

Task 
level

Example Graph Task

Node AlphaFold 2 (2020)
Input: protein = amino acid sequence
Target: 3D structure of folded protein

Graph = proteine
• Node: amino acid
• Edge: if in proximity

Predict node 
coordinates.

Edge Decagon (2018)
Input: side effects between various 
drug combinations
Target: (unknown) side effect 
between a 2 drug combinations

Graph of side effects
• Node: drug
• Edge: side effect

Predict probability 
that an edge 
corresponds to a 
given side effect.

Graph
Or
subgraph

Google Maps (2020)
Input: road network
Target: travel time of a chunk of road

Graph = road network
• Node: route segment
• Edge: if route segments 

are consecutive

Predict travel time 
of a supersegment 
= multiple adjacent 
segments.

Other applications: recommender system (e.g., PinSage (2018)), fraud detection, novel molecule 
generation with desirable properties, physics simulation with many particles, weather forecasting 
[2023], etc.

https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
https://arxiv.org/abs/1806.01973
https://www.sciencedirect.com/science/article/abs/pii/S0957417423026581
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558534/
https://arxiv.org/abs/2002.09405
https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/


Hit coordinates

Goal
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5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9
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Input: rough graph Output: edge scores

Input

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟19 𝜙19 𝑧19

𝑟20 𝜙20 𝑧20

Hit coordinates

Edge indices Iℰ =
1 1 1 1 1 1 2 2 2 2 2 ⋯ 17 17
3 4 5 6 7 8 4 5 6 7 8 ⋯ 19 20

𝑆 =

𝑠1→3

𝑠1→4

𝑠1→5

𝑠1→6

𝑠1→7

𝑠1→8

𝑠2→4

𝑠2→5

𝑠2→6
𝑠2→7

𝑠2→8

⋮
𝑠17→19

𝑠17→20

=

0
1
0
0
0
0
0
0
1
0
0
⋮
0
0

Edge scores 

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9
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Build graph Filter edges with GNN Find connected components

Problem Formulation
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𝑣𝑖 𝑣𝑗

Typical graph
around edge 𝑖 → 𝑗

Explanation

𝒔𝒊𝒋
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𝑣𝑖 𝑣𝑗

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

Typical graph
around edge 𝑖 → 𝑗

Explanation

𝒔𝒊𝒋
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𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

Typical graph
around edge 𝑖 → 𝑗

Explanation

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸



Stage 2: Graph Neural Networks 50

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

Typical graph
around edge 𝑖 → 𝑗

Explanation

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸
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GNNHit coordinates 𝑿 =
𝒙𝟏

𝑻

⋮

𝒙𝑵
𝑻

Edge indices 𝑰𝓔

Idea: work with intermediate « edge encoding » 

Edge score 𝒔𝒊𝒋 ∈ 𝟎, 𝟏

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
ෞ𝒚𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Trained with binary cross entropy loss or sigmoid focal loss

https://pytorch.org/vision/main/generated/torchvision.ops.sigmoid_focal_loss.html
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Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗 Edge encoder

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Update
edge 

encodings

Updated edge 
encodings

𝑒𝑖𝑗
final ∈ ℝ128

Concatenated node 
features

Edge classifier

Intermediate 128-dimensional edge encoding representation

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏
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Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Update
edge 

encodings

Updated edge 
encodings

𝑒𝑖𝑗
final ∈ ℝ128

Goal: update edge encoding 𝑒𝑖𝑗
0  according to edge encodings of connected edges 



Stage 2: Graph Neural Networks 54

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

1. Build message for 𝒗𝒊:
Aggregate neigbhour information
▪ Node-ordering invariant
▪ Separate incoming/outgoing nodes

𝑚𝑖 =
𝑒𝐴→𝑖

0 + 𝑒𝐵→𝑖
0 + +𝑒𝐶→𝑖

0

𝑒𝑖→𝐹
0 + 𝑒𝑖→𝑗 + 𝑒𝑖→𝐺

0

incoming

outgoing
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Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

1. Build message for 𝒗𝒊:
Aggregate neigbhour information
▪ Node-ordering invariant
▪ Separate incoming/outgoing nodes

2. Build message for 𝒗𝒋:

in a similar fashion

𝑚𝑗 =
𝑒𝐷→𝑗

0 + 𝑒𝑖→𝑗
0 + +𝑒𝐸→𝑗

0

𝑒𝑗→𝐻
0 + 𝑒𝑗→𝐼 + 𝑒𝑗→𝐽

0

incoming

outgoing

𝑚𝑖 =
𝑒𝐴→𝑖

0 + 𝑒𝐵→𝑖
0 + +𝑒𝐶→𝑖

0

𝑒𝑖→𝐹
0 + 𝑒𝑖→𝑗 + 𝑒𝑖→𝐺

0

incoming

outgoing
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Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

𝑚𝑖 =
𝑒𝐴→𝑖

0 + 𝑒𝐵→𝑖
0 + +𝑒𝐶→𝑖

0

𝑒𝑖→𝐹
0 + 𝑒𝑖→𝑗 + 𝑒𝑖→𝐺

0

𝑚𝑗 =
𝑒𝐷→𝑗

0 + 𝑒𝑖→𝑗
0 + +𝑒𝐸→𝑗

0

𝑒𝑗→𝐻
0 + 𝑒𝑗→𝐼 + 𝑒𝑗→𝐽

0

incoming

outgoing

incoming

outgoing

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

𝒆𝒊→𝒋
𝐟𝐢𝐧𝐚𝐥

This is called message passing.

1. Build message for 𝒗𝒊:
Aggregate neigbhour information
▪ Node-ordering invariant
▪ Separate incoming/outgoing nodes

2. Build message for 𝒗𝒋:

in a similar fashion

3. Infer 𝒆𝒊→𝒋
𝐟𝐢𝐧𝐚𝐥 from 𝑚𝑖, 𝑚𝑗 and 𝑒𝑖→𝑗

0 using a MLP
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Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Update
edge 

encodings

Updated edge 
encodings

𝑒𝑖𝑗
final ∈ ℝ128

Goal: update edge encoding 𝑒𝑖𝑗
0  according to edge encodings of connected edges 
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Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Updated edge 
encodings

𝑒𝑖𝑗
final ∈ ℝ128

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

Neigbour 
aggregation

Goal: update edge encoding 𝑒𝑖𝑗
0  according to edge encodings of connected edges 
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Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Updated edge 
encodings

𝑒𝑖𝑗
final ∈ ℝ128

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

Neigbour 
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗 Edge encoder
Concatenated node 
features

Edge classifier

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏
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Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Updated edge 
encodings

𝑒𝑖𝑗
final ∈ ℝ128

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

Neigbour 
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗

Edge encoder
Concatenated 
node features

Edge classifier

message passing

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏
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Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

However, edge encoding only updated w.r.t. immediate neighbours.
→ How to update edge encoding as a function of indirect neighbours?

Just repeat 
message passing

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Updated edge 
encodings

𝑒𝑖𝑗
final ∈ ℝ128

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

Neigbour 
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗

Edge encoder
Concatenated 
node features

Edge classifier

message passing

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏
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Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Updated edge 
encodings

𝑒𝑖𝑗
final ∈ ℝ128

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

Neigbour 
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗

Edge encoder
Concatenated 
node features

Edge classifier

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

However, edge encoding only updated w.r.t. immediate neighbours.
→ How to update edge encoding as a function of indirect neighbours?

Just repeat 
message passing

message passing
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Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
𝑘−1 ∈ ℝ128

Updated edge 
encodings

𝑒𝑖𝑗
k ∈ ℝ128

𝑚𝑖
𝑘−1

𝑚𝑗
𝑘−1

𝑒𝑖→𝑗
𝑘−1

Edge network

Neigbour 
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗

Edge encoder
Concatenated 
node features

Edge classifier

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

However, edge encoding only updated w.r.t. immediate neighbours.
→ How to update edge encoding as a function of indirect neighbours?

Just repeat 
message passing

message passing, repeat for 𝒌 ∈ 𝟏, … , 𝟓
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Explanation

Message 𝑚𝑖

• Is node-related
• Does not contain any node information!

Combine it with 
node encodings.

Edge encodings

𝑒𝑖𝑗
𝑘−1 ∈ ℝ128

Updated edge 
encodings

𝑒𝑖𝑗
k ∈ ℝ128

𝑚𝑖
𝑘−1

𝑚𝑗
𝑘−1

𝑒𝑖→𝑗
𝑘−1

Edge network

Neigbour 
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗

Edge encoder
Concatenated 
node features

Edge classifier

message passing, repeat for 𝒌 ∈ 𝟏, … , 𝟓

Typical graph
𝑣𝑖 𝑣𝑗

𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸
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Explanation

Edge encodings

𝑒𝑖𝑗
𝑘−1 ∈ ℝ128

Updated edge 
encodings

𝑒𝑖𝑗
k ∈ ℝ128

ℎ𝑖
𝑘

ℎ𝑗
𝑘

𝑒𝑖→𝑗
0

Edge network

Neigbour 
aggregation

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗

Edge encoder
Edge classifier

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

message passing, repeat for 𝒌 ∈ 𝟏, … , 𝟓

𝑥𝑙 =

𝑟𝑙

𝜙𝑙

𝑧𝑙

Node encodings

ℎ𝑙
𝑘−1 ∈ ℝ128

𝑚𝑙
𝑘

ℎ𝑙
𝑘−1

Node encoder

Updated node 
encodings

ℎ𝑙
k ∈ ℝ128

Typical graph
𝑣𝑖 𝑣𝑗

𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸
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Explanation

Edge encodings

𝑒𝑖𝑗
𝑘−1 ∈ ℝ128

Updated edge 
encodings

𝑒𝑖𝑗
k ∈ ℝ128

ℎ𝑖
𝑘

ℎ𝑗
𝑘

𝑒𝑖→𝑗
0

Edge network

Neigbour 
aggregation

𝑓𝑖𝑗 =
ℎ𝑖

0

ℎ𝑗
0

Edge encoder

Concatenated 
node encodings

Edge classifier

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

message passing, repeat for 𝒌 ∈ 𝟏, … , 𝟓

𝑥𝑙 =

𝑟𝑙

𝜙𝑙

𝑧𝑙

Node encoder

Node encodings

ℎ𝑙
𝑘−1 ∈ ℝ128

𝑚𝑙
𝑘

ℎ𝑙
𝑘−1

Node encoder

Updated node 
encodings

ℎ𝑙
k ∈ ℝ128

Typical graph
𝑣𝑖 𝑣𝑗

𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸
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Electron Performance

But if you do this… track efficiency on long electrons is terrible!

Metric Default GPU algorithm ETX4VELO

Efficiency 98.17% 46.23%

(evaluated on 1000 events)

Graph Building GNN to filter edges Build tracks from graph
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Electron Performance

• ∼ 55 % electrons share hits with another electron
• The 2 electrons share ≥ 1 hit(s) before splitting up

Observations

⇒ the connected component algorithm consider the 2 electron tracks as a single track

Example 1: share the first hit only Example 2: share several hits before splitting up
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Other Tracks With Shared Hits

• Tracks crossing (> 524 in 1000 events) • Track starts on a shared hit

• Track ends on a shared hit 
• The last hit of a track is the first hit of 

another track
(>141 in 1000 events)
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Edge-Edge Connections

Hit-hit connection is not enough
⇒ need edge-edge connections

In this case, one cannot even guess that there are 
possibly 2 tracks!
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Edge-Edge Connections

3 kind of edge-edge connections (or triplets) are possible

Articulation

Left elbow

Right elbow

Could be a shared hit

A
B

C
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Updated Pipeline

Goal

New simplified example to take into account shared hits 

Track Finding

First 2 steps are the same as before
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Updated Pipeline

Goal

New simplified example to take into account shared hits 

Track Finding

First 2 steps are the same as before

1 Build a “rough” graph 

2 Classify the edges as 
genuine or fake

Embedding Network + kNN

Graph Neural Network
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Updated Pipeline

Goal

Handle Shared Hits
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Updated Pipeline

Goal

Handle Shared Hits

3 Build edge-edge connections
(or triplets)
Use dataframes with Pandas 
(CPU) or cudf (GPU)

Articulation

Elbow

https://github.com/rapidsai/cudf
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Updated Pipeline

Goal

Handle Shared Hits

4
Classify the triplets with the GNN
Filter out the fake triplets

3 Build edge-edge connections
(or triplets)
Use dataframes with Pandas 
(CPU) or cudf (GPU)

Articulation

Elbow

https://github.com/rapidsai/cudf
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Updated Pipeline

Goal

Handle Shared Hits

4

5 Build tracks from triplets

Classify the triplets with the GNN
Filter out the fake triplets

3 Build edge-edge connections
(or triplets)
Use dataframes with Pandas 
(CPU) or cudf (GPU)

Articulation

Elbow

https://github.com/rapidsai/cudf
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• Pipeline has become

Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge 
classifier

Filter 
edges 

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

Triplet 
classifier

Filter 
triplets 

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Build rough graph Filter out fake edges Filter out fake triplets



Updated 
edge 
encoding
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Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge 
classifier

Filter 
edges 

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

Triplet 
classifier

Filter 
triplets 

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

• Last step of the GNN edge classifier was Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

Edge classifier

𝑒𝑖𝑗
𝑛



Concatenated edge 
encodings

Updated 
edge 
encoding

ETX4VELO 80

Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge 
classifier

Filter 
edges 

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

Triplet 
classifier

Filter 
triplets 

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

• Last step of the GNN edge classifier was

• DO NOT REPEAT THE GNN

• Instead, re-use directly the very same edge encodings!

• Training with sum of edge and triplet classification losses:
ℒtot = ℒedges + ℒtriplets

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

Edge classifier

𝑒𝑖𝑗
𝑛

Triplet score
𝒔𝑨→𝑪→𝑩 ∈ 𝟎, 𝟏

Triplet classifier

𝑒𝐴𝐶
𝑛

𝑒𝐶𝐵
𝑛
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Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge 
classifier

Filter 
edges 

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

Triplet 
classifier

Filter 
triplets 

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Goal

In annexe.
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Physics performance

⇒ can reach better physics performance than default algorithm at LHCb.

However, need to consider throughput ≡ # bunch crossings processed / s

Proportion of… Default GPU algorithm ETX4VELO

Reconstructed particles 99.08% 99.33%

Duplicate tracks 2.65% 1.09%

Fake tracks 2.51% 0.71%

For particles reconstructible in the VELO and the SciFi.

Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge 
classifier

Filter 
edges 

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

Triplet 
classifier

Filter 
triplets 

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

• Choice of 𝑠edge,min and 𝑠triplet,min : vary them and choose the one leading to best performance.
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Throughput

• Goal: implement GNN-based pipeline on C++/CUDA inside Allen          .

• Optimization: To optimize throughput
(PyTorch slower than C++/CUDA implementation)

• Integration: can be used with other reconstruction algorithms.
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Throughput

• Goal: implement GNN-based pipeline on C++/CUDA inside Allen          .

• Optimization: To optimize throughput
(PyTorch slower than C++/CUDA implementation)

• Integration: can be used with other reconstruction algorithms.

• Pipeline: no triplet for the moment

• Detailed view:

Embedding Neural Network kNN GNN edge classifier Filter edges
Weakly connected component 

algorithm

Graph Building GNN to filter edges Build tracks
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Throughput

• Goal: implement GNN-based pipeline on C++/CUDA inside Allen          .

• Optimization: To optimize throughput
(PyTorch slower than C++/CUDA implementation)

• Integration: can be used with other reconstruction algorithms.

• Pipeline: no triplet for the moment

• Detailed view:

• There are deep learning model to export and algorithms to implement in C++/CUDA.
• Deep learning model inference in C++:

1. Export model in ONNX open-source format.
2. Inference in C++ using either ONNXRuntime or NVIDIA TensorRT libraries.

Embedding Neural Network kNN GNN edge classifier Filter edges
Weakly connected component 

algorithm

Graph Building GNN to filter edges Build tracks

https://onnx.ai/
https://onnxruntime.ai/
https://developer.nvidia.com/tensorrt-getting-started
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Throughput

• So far

• But we still have ideas        to increase the throughput.

Throughput: # bunch crossings processed  / s

ETX4VELO with ONNXRuntime 310

ETX4VELO with TensorRT 730

Allen (default) 540k
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• First-level trigger at LHCb on GPU  

• ETX4VELO:
• New GNN-based pipeline for track-finding in the Velo at LHCb.
• Repository and documentation.

• Can meet Allen          physics performance.

• Ongoing work:
• Run the full ETX4VELO pipeline in C++/CUDA inside Allen.
• Optimise ETX4VELO throughput.
• Adapt the pipeline to other LHCb tracking detectors (e.g., SciFi detector).

https://gitlab.cern.ch/gdl4hep/etx4velo/-/tree/main
https://etx4velo.docs.cern.ch/


Thank you!

88
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Search by Triplet on GPU
arXiv:2207.03936

Noise

In Allen           : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936
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Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen           : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936
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Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen           : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936
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Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen           : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936
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Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen           : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936
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Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen           : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936
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Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen           : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936
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Search by Triplet on GPU

a Seeding:
Find compatible triplets of hits

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

arXiv:2207.03936

Noise

In Allen           : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936
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Search by Triplet on GPU

a Seeding:
Find compatible triplets of hits

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

2 Filter triplets

arXiv:2207.03936

Noise

In Allen           : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936
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1

For a random given set of hits, build a dataset of genuine edges and fake edges.
Compute the distances between their hits in the embedding space:

𝑑genuine,𝑖
2 , ∀𝑖 and 𝑑fake,𝑗

2 , ∀𝑗

2

Embed all the hits using the network DNN Ԧ𝑒 = 𝑒1, 𝑒2, 𝑒3, e4𝑟, 𝜙, 𝑧, plane

3 Minimise hinge loss ℒtotal = 8ℒgenuine + ℒfake where

ℒgenuine =
1

𝑛genuine
෍

𝑖

𝑑genuine,𝑖
2 ℒfake =

1

𝑛fake
෍

𝑗

max 1 − 𝑑fake,𝑗
2 , 0

Minimise 𝑑genuine,𝑖 Maximise 𝑑fake,𝑗

hyperparameter

hyperparameter

T
r
a
in

in
g

 
s
te

p

• Hard Negative Mining: edges built by a kNN (→ “hard” negatives)
• True edges
• Random edges

Training 
dataset

Graph Building GNN to filter edges Build tracks from graph



• After training, we choose maximal number of neighbours 𝒌𝐦𝐚𝐱 = 𝟓𝟎 (not optimised)

• To choose maximal squared distance 𝑑max
2 , for various values for 𝑑max

2 :
1. Build the rough graph using 𝑑max

2

2. Remove all fake edges in the rough graph and build the tracks from this purified graph
3. Compute track-finding performance ⇒ correspond to the best performance given 𝒅𝐦𝐚𝐱

𝟐

Performance if all the fake edges are discarded(≡ best performance) 

Graph Building GNN to filter edges Build tracks from graph

⇒ Choose 𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟗 (evaluated on 200 events)
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Rough graph with 𝑘max = 50 and 𝑑max
2 = 0.010

Even though 𝟏% of genuine edges are 2-plane apart, 
the rough graph needs to contain almost 𝟓𝟎% of such 
edges

⇒ 𝒌𝐦𝐚𝐱 could probably be reduced to increase throughput

Stage 1: Graph Building 100



Interlude on Graph Neural Networks 101

Graph Neural Networks

• Graph Neural Network (GNN): Neural Network architecture that operates on graphs
→ Problem needs to be formulated with a graph.

Resource Description Opinion

Stanford online videos Series of lectures 
recorded in Youtube.

• Clear explanations
• Quite complete
• Notebooks without solution

Introduction to Graph Neural Networks
Zhiyuan Liu, Lie Zhou

Book • Clear, quite complete
• Succinct

PyTorch Geometric Tutorials Videos & notebooks • Notebooks
• Use of PyTorch Geometric
• Not very clear
• Self-advertisement

Graph Neural Networks: Foundations, 
Frontiers, and Applications 
Lingfei Wu, Peng Cui, Jian Pei, Liang 
Zhao

Book • Extremely complete
• Not so good for just learning

Probably other learning resources out there!

http://web.stanford.edu/class/cs224w/
http://web.stanford.edu/class/cs224w/
https://link.springer.com/book/10.1007/978-3-031-01587-8
https://github.com/AntonioLonga/PytorchGeometricTutorial/tree/main
https://link.springer.com/book/10.1007/978-981-16-6054-2
https://link.springer.com/book/10.1007/978-981-16-6054-2
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Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge 
classifier

Filter 
edges 

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

Triplet 
classifier

Filter 
triplets 

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Goal

1
Connect left and right elbows
and remove duplicate edge-edge 
connections

Apply connected components, 
excluding splitting edge-edge 
connections

2

Each remaining link 
correspond to a new track

3
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