
Optimisation and Deployment of
an AI pipeline based on a Graph
Neural Network (GNN) for Track

Finding at LHCb
Anthony Correia, Fotis Giasemis,

Nabil Garroum, Vava Gligorov, Bertrand Granado

22nd March 2024

1

In collaboration with

Protection zone

Problem Formulation
LHCb Detector

2

𝑧

𝑥

Magnet
stations

• 2 bunches of ∼ 𝟏𝟎𝟏𝟏 protons cross every ~30 ns
→ ≈ 30 MHz bunch crossing rate

• ~ 5 proton-proton collisions / bunch crossing

Problem Formulation
LHCb Detector

3

𝑧

𝑥

Magnet
stations

• Detector acceptance:
1°< |θ| <15°

• 2 bunches of ∼ 𝟏𝟎𝟏𝟏 protons cross every ~30 ns
→ ≈ 30 MHz bunch crossing rate

• ~ 5 proton-proton collisions / bunch crossing

Problem Formulation
3 Tracking Detectors

4

Velo
Vertex Locator
With silicon pixels
No magnetic field

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧

𝑥

Magnet
stations

Problem Formulation
3 Tracking Detectors

5

Velo
Vertex Locator
With silicon pixels

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧

𝑥
Magnet stations

Magnetic field 𝑩

26 planes

Velo track
Reconstructible in the Velo
No momentum measurement

Long track
Reconstructible in the Velo and SciFi

Problem Formulation
3 Tracking Detectors

6

Velo
Vertex Locator
With silicon pixels

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧

𝑥
Magnet stations

Magnetic field 𝑩

26 planes

Velo track
Reconstructible in the Velo
No momentum measurement

Long track
Reconstructible in the Velo and SciFi

Problem Formulation
Track Finding in the Velo

7

Track finding: find tracks from hits

Problem Formulation
Track Finding in the Velo

8

Track finding: find tracks from hits

251 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26
Plane number

1 plane = 4 sensor planes

P. C. Tsopelas, ‘A Silicon Pixel Detector for LHCb’, PhD Thesis, Vrije
U., Amsterdam, 2016.

=

1 plane 4 sensor planes

https://inspirehep.net/literature/1645999
https://inspirehep.net/literature/1645999

Problem Formulation
Track Finding in the Velo

9

Track finding: find tracks from hits

251 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26
Plane number

Simplified
example

Input: Velo Hits Output: Velo tracks

Noise

Problem Formulation
What is Track Finding?

10

Input: Velo Hits Output: Velo tracks
Goal

• Everything in GPU
• ⇒ needs to be as much parallelised as possible (NOT sequential)

Noise

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Problem Formulation
What is Track Finding?

11

Input: Velo Hits Output: Velo tracks
Goal

• Everything in GPU
• ⇒ needs to be as much parallelised as possible (NOT sequential)

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟15 𝜙15 𝑧15

𝑟16 𝜙16 𝑧16

Hit coordinates

List of connected components
• {1, 4, 7, 11, 15, 16, 19}
• {2, 6, 10, 13, 18}
• {3}
• {5, 8, 12, 17}
• {9}
• {14}
• {20}

Noise

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Problem Formulation
A GNN-Based Pipeline

12

NoiseGoal

• GNN-based pipeline is based on the work of Exa.Trkx (Eur. Phys. J. C 81, 876 (2021)).

• With PyTorch

https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas

Problem Formulation
A GNN-Based Pipeline

13

1

2
Score every edge between 0 (fake) and 1 (genuine)
using a Graph Neural Network (GNN)

Build a rough graph
e.g., link every hits to hits on the next 2 planes.

3
Discard fake edges
by requiring edge score > 𝑠edge,min (for instance)

NoiseGoal

Problem Formulation 14

A GNN-Based Pipeline

1

2
Score every edge between 0 (fake) and 1 (genuine)
using a Graph Neural Network (GNN)

Build a rough graph
e.g., link every hits to hits on the next 2 planes.

3
Discard fake edges
by requiring edge score > 𝑠edge,min

4
Find connected components
using a weakly connected component algorithm
Use of cugraph (GPU) or SciPy (CPU)

https://docs.rapids.ai/api/cugraph/stable/api_docs/api/cugraph/cugraph.connected_components/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html

Problem Formulation 15

A GNN-Based Pipeline

1

2
Score every edge between 0 (fake) and 1 (genuine)
using a Graph Neural Network (GNN)

Build a rough graph
e.g., link every hits to hits on the next 2 planes.

3
Discard fake edges
by requiring edge score > 𝑠edge,min

4
Find connected components
using a weakly connected component algorithm
Use of cugraph (GPU) or SciPy (CPU)

Build graph Filter edges with GNN Find connected components

https://docs.rapids.ai/api/cugraph/stable/api_docs/api/cugraph/cugraph.connected_components/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html

16Interlude on Neural Network
Input 𝒙

Predict 𝒚 from 𝒙?

𝑥

𝑦
Polynomial model

5 parameters
ො𝑦 = 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒

Output ෝ𝒚

17Interlude on Neural Network
Input 𝒙

Deep Learning model
Many parameters

ෝ𝒚 = 𝐌𝐨𝐝𝐞𝐥 𝒙

Probability of being a cat?

Predict 𝒚 from 𝒙?

𝑥

𝑦
Polynomial model

5 parameters
ො𝑦 = 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒

0.4

0.9

0.2

Output ෝ𝒚

18Interlude on Neural Network
Input 𝒙

Deep Learning model
Many parameters

ෝ𝒚 = 𝐌𝐨𝐝𝐞𝐥 𝒙

Probability of being a cat?

Predict 𝒚 from 𝒙?

𝑥

𝑦
Polynomial model

5 parameters
ො𝑦 = 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒

0.4

0.9

0.2

Fit 𝒂, 𝒃, 𝒄, 𝒅, 𝒆 by minimising Mean Squared Distance Loss

ℒMSE = ෍

𝑖=1

𝑁

𝑦𝑖 − ො𝑦𝑖
2

Fit parameters by minimising Binary Cross Entropy Loss

ℒ = − ෍

𝑖=1

𝑁

𝑦𝑖 log ො𝑦𝑖 − 1 − 𝑦𝑖 log 1 − ො𝑦𝑖
2

Output ෝ𝒚

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

19Interlude on Neural Network

Multi-Layer Perceptron
(MLP)

Probability of being a cat?

𝑋 =

𝑥11 ⋯ 𝑥1𝑁

𝑥21 ⋯ 𝑥2𝑁

𝑥31 ⋯ 𝑥3𝑁

𝑁 pixels

෠𝑌 =
0.4
0.9
0.2

Target

𝑌 =
0
1
0

NB: For a picture, you should rather use a Convolutional Neural Network (CNN)

NB: Input features
should be normalised.

20Interlude on Neural Network

Multi-Layer Perceptron
(MLP)

Probability of being a cat?

𝑋 =

𝑥11 ⋯ 𝑥1𝑁

𝑥21 ⋯ 𝑥2𝑁

𝑥31 ⋯ 𝑥3𝑁

𝑁 pixels

෠𝑌 =
0.4
0.9
0.2

𝑋0 = X

𝑋1 = 𝜎 𝑋0𝑾1 + 𝒃𝟏

Matrices 𝑊1 and 𝑏1 containing the
parameters to fit

෠𝑌 = 𝑋1

Sigmoid function so that result ∈ 0,1

1 layer

Target

𝑌 =
0
1
0

NB: For a picture, you should rather use a Convolutional Neural Network (CNN)

NB: Input features
should be normalised.

21Interlude on Neural Network

Multi-Layer Perceptron
(MLP)

Probability of being a cat?

𝑋 =

𝑥11 ⋯ 𝑥1𝑁

𝑥21 ⋯ 𝑥2𝑁

𝑥31 ⋯ 𝑥3𝑁

𝑁 pixels

෠𝑌 =
0.4
0.9
0.2

NB: For a picture, you should rather use a Convolutional Neural Network (CNN)

𝑋0 = X

𝑋1 = ReLU 𝑋0𝑾𝟏 + 𝒃𝟏

𝑋2 = ReLU 𝑋1𝑾𝟐 + 𝒃𝟐

𝑋3 = 𝜎 𝑋2𝑾𝟑 + 𝒃𝟑

3 layers

Activation function
(typically non-linear)

Target

𝑌 =
0
1
0

෠𝑌 = 𝑋3

Fit 𝑊1, 𝑏1, 𝑊2, 𝑏2, 𝑊3 and 𝑏3 by minimising binary cross entropy loss

ℒ = − ෍

𝑖=1

𝑁

𝑦𝑖 log ො𝑦𝑖 − 1 − 𝑦𝑖 log 1 − ො𝑦𝑖
2

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Stage 1: Graph Building 22

Graph Representation

Graph 𝓖 is defined as : 𝒱, ℰ
• Set of nodes / vertices 𝓥 = 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, … , 𝑣𝑁

• Set of edges 𝓔 ≡ connection between nodes

• Features / attributes:
• Node features: node coordinates 𝑋

• Edge features:
concatenated node coordinates 𝐹

Stage 1: Graph Building 23

Graph Representation

Graph 𝓖 is defined as : 𝒱, ℰ
• Set of nodes / vertices 𝓥 = 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, … , 𝑣19, 𝑣20

• Set of edges 𝓔 ≡ connection between nodes

Iℰ =
1 2 4 5 6 7 8 10 11 11 12 13 15 16
4 6 7 8 10 11 12 13 15 16 17 18 19 19

• Features / attributes:
• Node features: node coordinates 𝑋

• Edge features:
concatenated node coordinates 𝐹

5 8 12 17

2

6
10

13
18

1

7 11 16

1915
14

9
3

20

4

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟19 𝜙19 𝑧19

𝑟20 𝜙20 𝑧20

𝑋ℰ =

𝑟1 𝜙1 𝑧1 𝑟4 𝜙4 𝑧4

𝑟2 𝜙2 𝑧2 𝑟6 𝜙6 𝑧6

𝑟4 𝜙4 𝑧4 𝑟7 𝜙7 𝑧7

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑟15 𝜙15 𝑧15 𝑟19 𝜙19 𝑧19

𝑟16 𝜙16 𝑧16 𝑟20 𝜙20 𝑧20

Hit coordinates

Goal

Stage 1: Graph Building 24

Input: hits

5 8 12 17

2

6 10

13
18

1
7 11 16 19

15
14

9
3

20

4

Output: Edges of the rough graph

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Build graph Filter edges with GNN Find connected components

Problem Formulation

Hit coordinates

Goal

Stage 1: Graph Building 25

Input: hits

5 8 12 17

2

6 10

13
18

1
7 11 16 19

15
14

9
3

20

4

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟19 𝜙19 𝑧19

𝑟20 𝜙20 𝑧20

Hit coordinates

Iℰ =
1 1 1 1 1 1 2 2 2 2 2 ⋯ 17 17
3 4 5 6 7 8 4 5 6 7 8 ⋯ 19 20

Output: Edges of the rough graph

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Edge indices

Formally….

Build graph Filter edges with GNN Find connected components

Problem Formulation

Hit coordinates

Stage 1: Graph Building 26

5 8 12 17

2

6 10

13
18

1
7 11 16 19

15
14

9
3

20

4

Idea Observation

1 Connect all the nodes
together.

Too many edges.
99.9% of edges are ≤ 2 plane apart.

3

Goal

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Idea

Hit coordinates

Stage 1: Graph Building 27

5 8 12 17

2

6 10

13
18

1
7 11 16 19

15
14

9
3

20

4

Idea Observation

1 Connect all the nodes
together.

Too many edges.
99.9% of edges are ≤ 2 plane apart.

2 Connect nodes in
plane 𝒌 to all the
nodes in plane 𝒌 + 𝟏
and 𝒌 + 𝟐

Still too many edges

3

Goal

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Idea

Stage 1: Graph Building 28

Idea

Idea Observation

1 Connect all the nodes
together.

Too many edges.
99.9% of edges are ≤ 2 plane apart.

2 Connect nodes in
plane 𝒌 to all the
nodes in plane 𝒌 + 𝟏
and 𝒌 + 𝟐

Still too many edges
Edges tend to be:
• Forward
• Away from 𝑧-axis more tilted

3

𝑝 = 10 𝑝 = 11 𝑝 = 12

Hit coordinates

5 8 12 17

2

6 10

13
18

1
7 11 16 19

15
14

9
3

20

4

Goal

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Stage 1: Graph Building 29

Idea

Hit coordinates

5 8 12 17

2

6 10

13
18

1
7 11 16 19

15
14

9
3

20

4

Goal

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Idea Observation

1 Connect all the nodes
together.

Too many edges.
99.9% of edges are ≤ 2 plane apart.

2 Connect nodes in
plane 𝒌 to all the
nodes in plane 𝒌 + 𝟏
and 𝒌 + 𝟐

Still too many edges
Edges tend to be:
• Forward
• Away from 𝑧-axis more tilted

3 Use a Neural Network
to capture this trend.

𝑝 = 10 𝑝 = 11 𝑝 = 12

Stage 1: Graph Building 30

𝑝 = 10 𝑝 = 11 𝑝 = 12

Example of edges drawn in the rough graph.
Only 1 true edge out of ~15 edges.

All the true edges

𝑝 = 10 𝑝 = 11 𝑝 = 12

Idea

Hit coordinates

5 8 12 17

2

6 10

13
18

1
7 11 16 19

15
14

9
3

20

4

Goal

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Stage 1: Graph Building 31

Hit coordinates

Goal

Let’s focus on connecting hits from plane 𝑝 to plane 𝑝 + 1 and 𝑝 + 2

7
4

1

9
6

5 8
2

3

7
4

1

9
6

5 8
2

3

With an Embedding Network

𝒆𝒌 =

𝑒𝑘1

𝑒𝑘2

𝑒𝑘3

Stage 1: Graph Building 32

Hit coordinates

Goal

Let’s focus on connecting hits from plane 𝑝 to plane 𝑝 + 1 and 𝑝 + 2

7
4

1

9
6

5 8
2

3

7
4

1

9
6

5 8
2

3

1

7
4

1

9
6

5 8
2

3

74

1

5

8

6

9

2

3

Embedding space

𝑥𝑘 =

𝑟𝑘

𝜙𝑘

𝑧𝑘

Embed each hit 𝑥𝑘 → 𝒆𝒌 so that,
between nodes 𝑣𝑖 and 𝑣𝑗:

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
< 𝟏: edge is likely

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
> 𝟏: edge is unlikely

MLP
251 parameters

1

With an Embedding Network

𝒆𝒌 =

𝑒𝑘1

𝑒𝑘2

𝑒𝑘3

Stage 1: Graph Building 33

Hit coordinates

Goal

Let’s focus on connecting hits from plane 𝑝 to plane 𝑝 + 1 and 𝑝 + 2

7
4

1

9
6

5 8
2

3

7
4

1

9
6

5 8
2

3

1

7
4

1

9
6

5 8
2

3

74

1

5

8

6

9

2

3

Embedding space

𝑥𝑘 =

𝑟𝑘

𝜙𝑘

𝑧𝑘

2
Embed each hit 𝑥𝑘 → 𝒆𝒌 so that,
between nodes 𝑣𝑖 and 𝑣𝑗:

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
< 𝟏: edge is likely

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
> 𝟏: edge is unlikely

MLP
251 parameters

1

74

1

5

8

6

9

2

3

For each node 𝑣𝑖 in plane 𝑝,

find 𝒌𝐦𝐚𝐱 nearest nodes 𝑣𝑗

within sphere of radius 𝒅𝐦𝐚𝐱
𝟐

With an Embedding Network

𝒆𝒌 =

𝑒𝑘1

𝑒𝑘2

𝑒𝑘3

Stage 1: Graph Building 34

Hit coordinates

Goal

Let’s focus on connecting hits from plane 𝑝 to plane 𝑝 + 1 and 𝑝 + 2

7
4

1

9
6

5 8
2

3

7
4

1

9
6

5 8
2

3

1

7
4

1

9
6

5 8
2

3

74

1

5

8

6

9

2

3

Embedding space

𝑥𝑘 =

𝑟𝑘

𝜙𝑘

𝑧𝑘

2
Embed each hit 𝑥𝑘 → 𝒆𝒌 so that,
between nodes 𝑣𝑖 and 𝑣𝑗:

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
< 𝟏: edge is likely

• 𝒅𝒊𝒋
𝟐 = 𝒆𝒊 − 𝒆𝒋

𝟐
> 𝟏: edge is unlikely

MLP
251 parameters

1

74

1

5

8

6

9

2

3

For each node 𝑣𝑖 in plane 𝑝,

find 𝒌𝐦𝐚𝐱 nearest nodes 𝑣𝑗

within sphere of radius 𝒅𝐦𝐚𝐱
𝟐

a. Apply 𝐤𝐦𝐚𝐱-Nearest Neighbours (kNN)
from plane 𝑝 to planes 𝑝 + 1, 𝑝 + 2

b. Only keep edges for which 𝑑𝑖𝑗
2 < 𝒅𝐦𝐚𝐱

𝟐

Iℰ =
𝟏 𝟏 𝟐 𝟐 𝟐 𝟑 𝟑
4 7 4 5 8 6 9

2

With an Embedding Network

Stage 1: Graph Building 35

With an Embedding Network

Hit coordinates

Goal

5 8 12 17

2

6 10

13
18

1
7 11 16 19

15
14

9
3

20

4

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Recap’

Embedding Network1 𝑬 =

𝑒1,1 𝑒1,2 𝑒1,3

𝑒2,1 𝑒2,2 𝑒2,3

𝑒3,1 𝑒3,2 𝑒3,3

⋮ ⋮ ⋮
𝑒19,1 𝑒19,3 𝑒19,3

𝑒20,1 𝑒20,2 𝑒20,3

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟19 𝜙19 𝑧19

𝑟20 𝜙20 𝑧20

MLP

So that 𝑑 𝑣𝑖 , 𝑣𝑗
2

= 𝑒𝑖 − 𝑒𝑗
2

< 1

if 𝑣𝑖 , 𝑣𝑗 likely to be an edge

Train with hinge embedding loss (see annexe)

Stage 1: Graph Building 36

With an Embedding Network

Hit coordinates

Goal

5 8 12 17

2

6 10

13
18

1
7 11 16 19

15
14

9
3

20

4

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Recap’

Embedding Network1 𝑬 =

𝑒1,1 𝑒1,2 𝑒1,3

𝑒2,1 𝑒2,2 𝑒2,3

𝑒3,1 𝑒3,2 𝑒3,3

⋮ ⋮ ⋮
𝑒19,1 𝑒19,3 𝑒19,3

𝑒20,1 𝑒20,2 𝑒20,3

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟19 𝜙19 𝑧19

𝑟20 𝜙20 𝑧20

MLP

kNNs plane by plane 2

So that 𝑑 𝑣𝑖 , 𝑣𝑗
2

= 𝑒𝑖 − 𝑒𝑗
2

< 1

if 𝑣𝑖 , 𝑣𝑗 likely to be an edge

a) Apply every plane 𝑝 ∈ 1, … , 𝑛planes − 1 ,

apply 𝒌𝐦𝐚𝐱NN from plane 𝑝 to next 2 planes 𝑝 + 1 and 𝑝 + 2

b) Only keep edges for which 𝑑 𝑣𝑖 , 𝑣𝑗 < 𝒅𝐦𝐚𝐱
𝟐

⇒ 2 parameters to choose for inference: 𝒌𝐦𝐚𝐱 and 𝒅𝐦𝐚𝐱
𝟐 (in annexe)

Train with hinge embedding loss (see annexe)

Use faiss library

https://github.com/facebookresearch/faiss

Stage 1: Graph Building 37

Siamese Network for One-Shot Face Recognition

Embedding network seen earlier can be used for face recognition

Convolutional
Neural

Network

Embedding space

Trained with
hinge embedding loss

⇒ save only 1 picture / person in database Paper (2015)

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

Stage 1: Graph Building 38

Choice of 𝑘max and 𝑑max
2

Stage 2: Graph Neural Networks 39

Definition

• Graph Neural Network (GNN): Neural Network architecture that operates on graphs
→ Problem needs to be formulated with a graph.

• MANY GNN architectures exist
• List of GNNs implemented in PyTorch Geometric

Graph neural networks: A review of methods and applications (2020)

https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/gnn_cheatsheet.html
https://www.sciencedirect.com/science/article/pii/S2666651021000012

Stage 2: Graph Neural Networks 40

Definition

• Graph Neural Network (GNN): Neural Network architecture that operates on graphs
→ Problem needs to be formulated with a graph.

• MANY GNN architectures exist
• List of GNNs implemented in PyTorch Geometric

Graph neural networks: A review of methods and applications (2020)

• GNN we used was described from this paper (2021)
• Used by the Exa.TrkX collaboration
• Follows the Interaction Network (IN)

architecture
• Can be described by the Message Passing

Neural Network (MPNN) framework

https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/gnn_cheatsheet.html
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://link.springer.com/article/10.1007/s41781-021-00073-z
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212

Task
level

Example Graph Task

Node AlphaFold 2 (2020)
Input: protein = amino acid sequence
Target: 3D structure of folded protein

Graph = proteine
• Node: amino acid
• Edge: if in proximity

Predict node
coordinates.

Edge

Graph
or
subgraph

Stage 2: Graph Neural Networks 41

Examples of GNNs

Description of these example cases are oversimplified.

https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/

Stage 2: Graph Neural Networks 42

Examples of GNNs

Task
level

Example Graph Task

Node AlphaFold 2 (2020)
Input: protein = amino acid sequence
Target: 3D structure of folded protein

Graph = proteine
• Node: amino acid
• Edge: if in proximity

Predict node coordinates.

Edge Decagon (2018)
Input: side effects between various
drug combinations
Target: (unknown) side effect
between a 2 drug combinations

Graph of side effects
• Node: drug
• Edge: side effect

Predict probability
that an edge
corresponds to a
given side effect.

Graph
Or
subgraph

Description of these example cases are oversimplified.

https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770

Stage 2: Graph Neural Networks 43

Examples of GNNs

Task
level

Example Graph Task

Node AlphaFold 2 (2020)
Input: protein = amino acid sequence
Target: 3D structure of folded protein

Graph = proteine
• Node: amino acid
• Edge: if in proximity

Predict node coordinates.

Edge Decagon (2018)
Input: side effects between various drug combinations
Target: (unknown) side effect between a 2 drug
combinations

Graph of side effects
• Node: drug
• Edge: side effect

Predict probability that an
edge corresponds to a given
side effect.

Graph
Or
subgraph

Google Maps (2020)
Input: road network
Target: travel time of a chunk of road

Graph = road network
• Node: route segment
• Edge: if route segments

are consecutive

Predict travel time
of a supersegment
= multiple adjacent
segments.

Description of these example cases are oversimplified.

https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/

Stage 2: Graph Neural Networks 44

Examples of GNNs

Task
level

Example Graph Task

Node AlphaFold 2 (2020)
Input: protein = amino acid sequence
Target: 3D structure of folded protein

Graph = proteine
• Node: amino acid
• Edge: if in proximity

Predict node
coordinates.

Edge Decagon (2018)
Input: side effects between various
drug combinations
Target: (unknown) side effect
between a 2 drug combinations

Graph of side effects
• Node: drug
• Edge: side effect

Predict probability
that an edge
corresponds to a
given side effect.

Graph
Or
subgraph

Google Maps (2020)
Input: road network
Target: travel time of a chunk of road

Graph = road network
• Node: route segment
• Edge: if route segments

are consecutive

Predict travel time
of a supersegment
= multiple adjacent
segments.

Description of these example cases are oversimplified.

https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/

Stage 2: Graph Neural Networks 45

Examples of GNNs

Task
level

Example Graph Task

Node AlphaFold 2 (2020)
Input: protein = amino acid sequence
Target: 3D structure of folded protein

Graph = proteine
• Node: amino acid
• Edge: if in proximity

Predict node
coordinates.

Edge Decagon (2018)
Input: side effects between various
drug combinations
Target: (unknown) side effect
between a 2 drug combinations

Graph of side effects
• Node: drug
• Edge: side effect

Predict probability
that an edge
corresponds to a
given side effect.

Graph
Or
subgraph

Google Maps (2020)
Input: road network
Target: travel time of a chunk of road

Graph = road network
• Node: route segment
• Edge: if route segments

are consecutive

Predict travel time
of a supersegment
= multiple adjacent
segments.

Other applications: recommender system (e.g., PinSage (2018)), fraud detection, novel molecule
generation with desirable properties, physics simulation with many particles, weather forecasting
[2023], etc.

https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
https://arxiv.org/abs/1806.01973
https://www.sciencedirect.com/science/article/abs/pii/S0957417423026581
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558534/
https://arxiv.org/abs/2002.09405
https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/

Hit coordinates

Goal

Stage 2: Graph Neural Networks 46

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Input: rough graph Output: edge scores

Input

𝑋 =

𝑟1 𝜙1 𝑧1

𝑟2 𝜙2 𝑧2

𝑟3 𝜙3 𝑧3

⋮ ⋮ ⋮
𝑟19 𝜙19 𝑧19

𝑟20 𝜙20 𝑧20

Hit coordinates

Edge indices Iℰ =
1 1 1 1 1 1 2 2 2 2 2 ⋯ 17 17
3 4 5 6 7 8 4 5 6 7 8 ⋯ 19 20

𝑆 =

𝑠1→3

𝑠1→4

𝑠1→5

𝑠1→6

𝑠1→7

𝑠1→8

𝑠2→4

𝑠2→5

𝑠2→6
𝑠2→7

𝑠2→8

⋮
𝑠17→19

𝑠17→20

=

0
1
0
0
0
0
0
0
1
0
0
⋮
0
0

Edge scores

5 8 12 17

2

6 10

13
18

1
7 11 16 19

20

3
14

9

154

Build graph Filter edges with GNN Find connected components

Problem Formulation

Stage 2: Graph Neural Networks 47

𝑣𝑖 𝑣𝑗

Typical graph
around edge 𝑖 → 𝑗

Explanation

𝒔𝒊𝒋

Stage 2: Graph Neural Networks 48

𝑣𝑖 𝑣𝑗

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

Typical graph
around edge 𝑖 → 𝑗

Explanation

𝒔𝒊𝒋

Stage 2: Graph Neural Networks 49

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

Typical graph
around edge 𝑖 → 𝑗

Explanation

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Stage 2: Graph Neural Networks 50

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

Typical graph
around edge 𝑖 → 𝑗

Explanation

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Stage 2: Graph Neural Networks 51

GNNHit coordinates 𝑿 =
𝒙𝟏

𝑻

⋮

𝒙𝑵
𝑻

Edge indices 𝑰𝓔

Idea: work with intermediate « edge encoding »

Edge score 𝒔𝒊𝒋 ∈ 𝟎, 𝟏

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
ෞ𝒚𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Trained with binary cross entropy loss or sigmoid focal loss

https://pytorch.org/vision/main/generated/torchvision.ops.sigmoid_focal_loss.html

Stage 2: Graph Neural Networks 52

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗 Edge encoder

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Update
edge

encodings

Updated edge
encodings

𝑒𝑖𝑗
final ∈ ℝ128

Concatenated node
features

Edge classifier

Intermediate 128-dimensional edge encoding representation

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

Stage 2: Graph Neural Networks 53

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Update
edge

encodings

Updated edge
encodings

𝑒𝑖𝑗
final ∈ ℝ128

Goal: update edge encoding 𝑒𝑖𝑗
0 according to edge encodings of connected edges

Stage 2: Graph Neural Networks 54

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

1. Build message for 𝒗𝒊:
Aggregate neigbhour information
▪ Node-ordering invariant
▪ Separate incoming/outgoing nodes

𝑚𝑖 =
𝑒𝐴→𝑖

0 + 𝑒𝐵→𝑖
0 + +𝑒𝐶→𝑖

0

𝑒𝑖→𝐹
0 + 𝑒𝑖→𝑗 + 𝑒𝑖→𝐺

0

incoming

outgoing

Stage 2: Graph Neural Networks 55

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

1. Build message for 𝒗𝒊:
Aggregate neigbhour information
▪ Node-ordering invariant
▪ Separate incoming/outgoing nodes

2. Build message for 𝒗𝒋:

in a similar fashion

𝑚𝑗 =
𝑒𝐷→𝑗

0 + 𝑒𝑖→𝑗
0 + +𝑒𝐸→𝑗

0

𝑒𝑗→𝐻
0 + 𝑒𝑗→𝐼 + 𝑒𝑗→𝐽

0

incoming

outgoing

𝑚𝑖 =
𝑒𝐴→𝑖

0 + 𝑒𝐵→𝑖
0 + +𝑒𝐶→𝑖

0

𝑒𝑖→𝐹
0 + 𝑒𝑖→𝑗 + 𝑒𝑖→𝐺

0

incoming

outgoing

Stage 2: Graph Neural Networks 56

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

𝑚𝑖 =
𝑒𝐴→𝑖

0 + 𝑒𝐵→𝑖
0 + +𝑒𝐶→𝑖

0

𝑒𝑖→𝐹
0 + 𝑒𝑖→𝑗 + 𝑒𝑖→𝐺

0

𝑚𝑗 =
𝑒𝐷→𝑗

0 + 𝑒𝑖→𝑗
0 + +𝑒𝐸→𝑗

0

𝑒𝑗→𝐻
0 + 𝑒𝑗→𝐼 + 𝑒𝑗→𝐽

0

incoming

outgoing

incoming

outgoing

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

𝒆𝒊→𝒋
𝐟𝐢𝐧𝐚𝐥

This is called message passing.

1. Build message for 𝒗𝒊:
Aggregate neigbhour information
▪ Node-ordering invariant
▪ Separate incoming/outgoing nodes

2. Build message for 𝒗𝒋:

in a similar fashion

3. Infer 𝒆𝒊→𝒋
𝐟𝐢𝐧𝐚𝐥 from 𝑚𝑖, 𝑚𝑗 and 𝑒𝑖→𝑗

0 using a MLP

Stage 2: Graph Neural Networks 57

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Update
edge

encodings

Updated edge
encodings

𝑒𝑖𝑗
final ∈ ℝ128

Goal: update edge encoding 𝑒𝑖𝑗
0 according to edge encodings of connected edges

Stage 2: Graph Neural Networks 58

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Updated edge
encodings

𝑒𝑖𝑗
final ∈ ℝ128

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

Neigbour
aggregation

Goal: update edge encoding 𝑒𝑖𝑗
0 according to edge encodings of connected edges

Stage 2: Graph Neural Networks 59

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Updated edge
encodings

𝑒𝑖𝑗
final ∈ ℝ128

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

Neigbour
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗 Edge encoder
Concatenated node
features

Edge classifier

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

Stage 2: Graph Neural Networks 60

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Updated edge
encodings

𝑒𝑖𝑗
final ∈ ℝ128

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

Neigbour
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗

Edge encoder
Concatenated
node features

Edge classifier

message passing

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

Stage 2: Graph Neural Networks 61

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

However, edge encoding only updated w.r.t. immediate neighbours.
→ How to update edge encoding as a function of indirect neighbours?

Just repeat
message passing

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Updated edge
encodings

𝑒𝑖𝑗
final ∈ ℝ128

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

Neigbour
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗

Edge encoder
Concatenated
node features

Edge classifier

message passing

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

Stage 2: Graph Neural Networks 62

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
0 ∈ ℝ128

Updated edge
encodings

𝑒𝑖𝑗
final ∈ ℝ128

𝑚𝑖

𝑚𝑗

𝑒𝑖→𝑗
0

Edge network

Neigbour
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗

Edge encoder
Concatenated
node features

Edge classifier

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

However, edge encoding only updated w.r.t. immediate neighbours.
→ How to update edge encoding as a function of indirect neighbours?

Just repeat
message passing

message passing

Stage 2: Graph Neural Networks 63

Typical graph

Explanation

𝑣𝑖 𝑣𝑗
𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Edge encodings

𝑒𝑖𝑗
𝑘−1 ∈ ℝ128

Updated edge
encodings

𝑒𝑖𝑗
k ∈ ℝ128

𝑚𝑖
𝑘−1

𝑚𝑗
𝑘−1

𝑒𝑖→𝑗
𝑘−1

Edge network

Neigbour
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗

Edge encoder
Concatenated
node features

Edge classifier

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

However, edge encoding only updated w.r.t. immediate neighbours.
→ How to update edge encoding as a function of indirect neighbours?

Just repeat
message passing

message passing, repeat for 𝒌 ∈ 𝟏, … , 𝟓

Stage 2: Graph Neural Networks 64

Explanation

Message 𝑚𝑖

• Is node-related
• Does not contain any node information!

Combine it with
node encodings.

Edge encodings

𝑒𝑖𝑗
𝑘−1 ∈ ℝ128

Updated edge
encodings

𝑒𝑖𝑗
k ∈ ℝ128

𝑚𝑖
𝑘−1

𝑚𝑗
𝑘−1

𝑒𝑖→𝑗
𝑘−1

Edge network

Neigbour
aggregation

Edge features

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗
=

𝑟𝑖

𝜙𝑖

𝑧𝑖

𝑟𝑗

𝜙𝑗

𝑧𝑗

Edge encoder
Concatenated
node features

Edge classifier

message passing, repeat for 𝒌 ∈ 𝟏, … , 𝟓

Typical graph
𝑣𝑖 𝑣𝑗

𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Stage 2: Graph Neural Networks 65

Explanation

Edge encodings

𝑒𝑖𝑗
𝑘−1 ∈ ℝ128

Updated edge
encodings

𝑒𝑖𝑗
k ∈ ℝ128

ℎ𝑖
𝑘

ℎ𝑗
𝑘

𝑒𝑖→𝑗
0

Edge network

Neigbour
aggregation

𝑓𝑖𝑗 =
𝑥𝑖

𝑥𝑗

Edge encoder
Edge classifier

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

message passing, repeat for 𝒌 ∈ 𝟏, … , 𝟓

𝑥𝑙 =

𝑟𝑙

𝜙𝑙

𝑧𝑙

Node encodings

ℎ𝑙
𝑘−1 ∈ ℝ128

𝑚𝑙
𝑘

ℎ𝑙
𝑘−1

Node encoder

Updated node
encodings

ℎ𝑙
k ∈ ℝ128

Typical graph
𝑣𝑖 𝑣𝑗

𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Stage 2: Graph Neural Networks 66

Explanation

Edge encodings

𝑒𝑖𝑗
𝑘−1 ∈ ℝ128

Updated edge
encodings

𝑒𝑖𝑗
k ∈ ℝ128

ℎ𝑖
𝑘

ℎ𝑗
𝑘

𝑒𝑖→𝑗
0

Edge network

Neigbour
aggregation

𝑓𝑖𝑗 =
ℎ𝑖

0

ℎ𝑗
0

Edge encoder

Concatenated
node encodings

Edge classifier

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

message passing, repeat for 𝒌 ∈ 𝟏, … , 𝟓

𝑥𝑙 =

𝑟𝑙

𝜙𝑙

𝑧𝑙

Node encoder

Node encodings

ℎ𝑙
𝑘−1 ∈ ℝ128

𝑚𝑙
𝑘

ℎ𝑙
𝑘−1

Node encoder

Updated node
encodings

ℎ𝑙
k ∈ ℝ128

Typical graph
𝑣𝑖 𝑣𝑗

𝒔𝒊𝒋

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐻

𝑣𝐼

𝑣𝐽

𝑣𝐷 𝑣𝐹

𝑣𝐺𝑣𝐸

Shared hits 67

Electron Performance

But if you do this… track efficiency on long electrons is terrible!

Metric Default GPU algorithm ETX4VELO

Efficiency 98.17% 46.23%

(evaluated on 1000 events)

Graph Building GNN to filter edges Build tracks from graph

Shared hits 68

Electron Performance

• ∼ 55 % electrons share hits with another electron
• The 2 electrons share ≥ 1 hit(s) before splitting up

Observations

⇒ the connected component algorithm consider the 2 electron tracks as a single track

Example 1: share the first hit only Example 2: share several hits before splitting up

Shared hits 69

Other Tracks With Shared Hits

• Tracks crossing (> 524 in 1000 events) • Track starts on a shared hit

• Track ends on a shared hit
• The last hit of a track is the first hit of

another track
(>141 in 1000 events)

Shared hits 70

Edge-Edge Connections

Hit-hit connection is not enough
⇒ need edge-edge connections

In this case, one cannot even guess that there are
possibly 2 tracks!

Shared hits 71

Edge-Edge Connections

3 kind of edge-edge connections (or triplets) are possible

Articulation

Left elbow

Right elbow

Could be a shared hit

A
B

C

Shared hits 72

Updated Pipeline

Goal

New simplified example to take into account shared hits

Track Finding

First 2 steps are the same as before

Shared hits 73

Updated Pipeline

Goal

New simplified example to take into account shared hits

Track Finding

First 2 steps are the same as before

1 Build a “rough” graph

2 Classify the edges as
genuine or fake

Embedding Network + kNN

Graph Neural Network

Shared hits 74

Updated Pipeline

Goal

Handle Shared Hits

Shared hits 75

Updated Pipeline

Goal

Handle Shared Hits

3 Build edge-edge connections
(or triplets)
Use dataframes with Pandas
(CPU) or cudf (GPU)

Articulation

Elbow

https://github.com/rapidsai/cudf

Shared hits 76

Updated Pipeline

Goal

Handle Shared Hits

4
Classify the triplets with the GNN
Filter out the fake triplets

3 Build edge-edge connections
(or triplets)
Use dataframes with Pandas
(CPU) or cudf (GPU)

Articulation

Elbow

https://github.com/rapidsai/cudf

Shared hits 77

Updated Pipeline

Goal

Handle Shared Hits

4

5 Build tracks from triplets

Classify the triplets with the GNN
Filter out the fake triplets

3 Build edge-edge connections
(or triplets)
Use dataframes with Pandas
(CPU) or cudf (GPU)

Articulation

Elbow

https://github.com/rapidsai/cudf

ETX4VELO 78

• Pipeline has become

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge
classifier

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

Triplet
classifier

Filter
triplets

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

Build rough graph Filter out fake edges Filter out fake triplets

Updated
edge
encoding

ETX4VELO 79

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge
classifier

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

Triplet
classifier

Filter
triplets

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

• Last step of the GNN edge classifier was Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

Edge classifier

𝑒𝑖𝑗
𝑛

Concatenated edge
encodings

Updated
edge
encoding

ETX4VELO 80

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge
classifier

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

Triplet
classifier

Filter
triplets

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

• Last step of the GNN edge classifier was

• DO NOT REPEAT THE GNN

• Instead, re-use directly the very same edge encodings!

• Training with sum of edge and triplet classification losses:
ℒtot = ℒedges + ℒtriplets

Edge score
𝒔𝒊𝒋 ∈ 𝟎, 𝟏

Edge classifier

𝑒𝑖𝑗
𝑛

Triplet score
𝒔𝑨→𝑪→𝑩 ∈ 𝟎, 𝟏

Triplet classifier

𝑒𝐴𝐶
𝑛

𝑒𝐶𝐵
𝑛

Shared hits 81

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge
classifier

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

Triplet
classifier

Filter
triplets

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

Goal

In annexe.

Performance 82

Physics performance

⇒ can reach better physics performance than default algorithm at LHCb.

However, need to consider throughput ≡ # bunch crossings processed / s

Proportion of… Default GPU algorithm ETX4VELO

Reconstructed particles 99.08% 99.33%

Duplicate tracks 2.65% 1.09%

Fake tracks 2.51% 0.71%

For particles reconstructible in the VELO and the SciFi.

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge
classifier

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

Triplet
classifier

Filter
triplets

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

• Choice of 𝑠edge,min and 𝑠triplet,min : vary them and choose the one leading to best performance.

Performance 83

Throughput

• Goal: implement GNN-based pipeline on C++/CUDA inside Allen .

• Optimization: To optimize throughput
(PyTorch slower than C++/CUDA implementation)

• Integration: can be used with other reconstruction algorithms.

Performance 84

Throughput

• Goal: implement GNN-based pipeline on C++/CUDA inside Allen .

• Optimization: To optimize throughput
(PyTorch slower than C++/CUDA implementation)

• Integration: can be used with other reconstruction algorithms.

• Pipeline: no triplet for the moment

• Detailed view:

Embedding Neural Network kNN GNN edge classifier Filter edges
Weakly connected component

algorithm

Graph Building GNN to filter edges Build tracks

Performance 85

Throughput

• Goal: implement GNN-based pipeline on C++/CUDA inside Allen .

• Optimization: To optimize throughput
(PyTorch slower than C++/CUDA implementation)

• Integration: can be used with other reconstruction algorithms.

• Pipeline: no triplet for the moment

• Detailed view:

• There are deep learning model to export and algorithms to implement in C++/CUDA.
• Deep learning model inference in C++:

1. Export model in ONNX open-source format.
2. Inference in C++ using either ONNXRuntime or NVIDIA TensorRT libraries.

Embedding Neural Network kNN GNN edge classifier Filter edges
Weakly connected component

algorithm

Graph Building GNN to filter edges Build tracks

https://onnx.ai/
https://onnxruntime.ai/
https://developer.nvidia.com/tensorrt-getting-started

Performance 86

Throughput

• So far

• But we still have ideas to increase the throughput.

Throughput: # bunch crossings processed / s

ETX4VELO with ONNXRuntime 310

ETX4VELO with TensorRT 730

Allen (default) 540k

Conclusion 87

• First-level trigger at LHCb on GPU

• ETX4VELO:
• New GNN-based pipeline for track-finding in the Velo at LHCb.
• Repository and documentation.

• Can meet Allen physics performance.

• Ongoing work:
• Run the full ETX4VELO pipeline in C++/CUDA inside Allen.
• Optimise ETX4VELO throughput.
• Adapt the pipeline to other LHCb tracking detectors (e.g., SciFi detector).

https://gitlab.cern.ch/gdl4hep/etx4velo/-/tree/main
https://etx4velo.docs.cern.ch/

Thank you!

88

Track Finding in the Velo 89

Search by Triplet on GPU
arXiv:2207.03936

Noise

In Allen : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936

Track Finding in the Velo 90

Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936

Track Finding in the Velo 91

Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936

Track Finding in the Velo 92

Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936

Track Finding in the Velo 93

Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936

Track Finding in the Velo 94

Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936

Track Finding in the Velo 95

Search by Triplet on GPU

a

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

Seeding:
Find compatible triplets of hits

arXiv:2207.03936

Noise

In Allen : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936

Track Finding in the Velo 96

Search by Triplet on GPU

a Seeding:
Find compatible triplets of hits

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

arXiv:2207.03936

Noise

In Allen : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936

Track Finding in the Velo 97

Search by Triplet on GPU

a Seeding:
Find compatible triplets of hits

Following:
a.1. Extrapolate the track
a.2. Find compatible hits

Iterate from the last to the first plane:1

b

2 Filter triplets

arXiv:2207.03936

Noise

In Allen : search by triplet algorithm

Goal

https://arxiv.org/abs/2207.03936

Stage 1: Graph Building 98

1

For a random given set of hits, build a dataset of genuine edges and fake edges.
Compute the distances between their hits in the embedding space:

𝑑genuine,𝑖
2 , ∀𝑖 and 𝑑fake,𝑗

2 , ∀𝑗

2

Embed all the hits using the network DNN Ԧ𝑒 = 𝑒1, 𝑒2, 𝑒3, e4𝑟, 𝜙, 𝑧, plane

3 Minimise hinge loss ℒtotal = 8ℒgenuine + ℒfake where

ℒgenuine =
1

𝑛genuine
෍

𝑖

𝑑genuine,𝑖
2 ℒfake =

1

𝑛fake
෍

𝑗

max 1 − 𝑑fake,𝑗
2 , 0

Minimise 𝑑genuine,𝑖 Maximise 𝑑fake,𝑗

hyperparameter

hyperparameter

T
r
a
in

in
g

s
te

p

• Hard Negative Mining: edges built by a kNN (→ “hard” negatives)
• True edges
• Random edges

Training
dataset

Graph Building GNN to filter edges Build tracks from graph

• After training, we choose maximal number of neighbours 𝒌𝐦𝐚𝐱 = 𝟓𝟎 (not optimised)

• To choose maximal squared distance 𝑑max
2 , for various values for 𝑑max

2 :
1. Build the rough graph using 𝑑max

2

2. Remove all fake edges in the rough graph and build the tracks from this purified graph
3. Compute track-finding performance ⇒ correspond to the best performance given 𝒅𝐦𝐚𝐱

𝟐

Performance if all the fake edges are discarded(≡ best performance)

Graph Building GNN to filter edges Build tracks from graph

⇒ Choose 𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟗 (evaluated on 200 events)

Stage 1: Graph Building 99

Rough graph with 𝑘max = 50 and 𝑑max
2 = 0.010

Even though 𝟏% of genuine edges are 2-plane apart,
the rough graph needs to contain almost 𝟓𝟎% of such
edges

⇒ 𝒌𝐦𝐚𝐱 could probably be reduced to increase throughput

Stage 1: Graph Building 100

Interlude on Graph Neural Networks 101

Graph Neural Networks

• Graph Neural Network (GNN): Neural Network architecture that operates on graphs
→ Problem needs to be formulated with a graph.

Resource Description Opinion

Stanford online videos Series of lectures
recorded in Youtube.

• Clear explanations
• Quite complete
• Notebooks without solution

Introduction to Graph Neural Networks
Zhiyuan Liu, Lie Zhou

Book • Clear, quite complete
• Succinct

PyTorch Geometric Tutorials Videos & notebooks • Notebooks
• Use of PyTorch Geometric
• Not very clear
• Self-advertisement

Graph Neural Networks: Foundations,
Frontiers, and Applications
Lingfei Wu, Peng Cui, Jian Pei, Liang
Zhao

Book • Extremely complete
• Not so good for just learning

Probably other learning resources out there!

http://web.stanford.edu/class/cs224w/
http://web.stanford.edu/class/cs224w/
https://link.springer.com/book/10.1007/978-3-031-01587-8
https://github.com/AntonioLonga/PytorchGeometricTutorial/tree/main
https://link.springer.com/book/10.1007/978-981-16-6054-2
https://link.springer.com/book/10.1007/978-981-16-6054-2

Shared hits 102

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN edge
classifier

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

Triplet
classifier

Filter
triplets

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

Goal

1
Connect left and right elbows
and remove duplicate edge-edge
connections

Apply connected components,
excluding splitting edge-edge
connections

2

Each remaining link
correspond to a new track

3

103

	Slide 1: Optimisation and Deployment of an AI pipeline based on a Graph Neural Network (GNN) for Track Finding at LHCb
	Slide 2: Problem Formulation
	Slide 3: Problem Formulation
	Slide 4: Problem Formulation
	Slide 5: Problem Formulation
	Slide 6: Problem Formulation
	Slide 7: Problem Formulation
	Slide 8: Problem Formulation
	Slide 9: Problem Formulation
	Slide 10: Problem Formulation
	Slide 11: Problem Formulation
	Slide 12: Problem Formulation
	Slide 13: Problem Formulation
	Slide 14: Problem Formulation
	Slide 15: Problem Formulation
	Slide 16: Interlude on Neural Network
	Slide 17: Interlude on Neural Network
	Slide 18: Interlude on Neural Network
	Slide 19: Interlude on Neural Network
	Slide 20: Interlude on Neural Network
	Slide 21: Interlude on Neural Network
	Slide 22: Stage 1: Graph Building
	Slide 23: Stage 1: Graph Building
	Slide 24: Stage 1: Graph Building
	Slide 25: Stage 1: Graph Building
	Slide 26: Stage 1: Graph Building
	Slide 27: Stage 1: Graph Building
	Slide 28: Stage 1: Graph Building
	Slide 29: Stage 1: Graph Building
	Slide 30: Stage 1: Graph Building
	Slide 31: Stage 1: Graph Building
	Slide 32: Stage 1: Graph Building
	Slide 33: Stage 1: Graph Building
	Slide 34: Stage 1: Graph Building
	Slide 35: Stage 1: Graph Building
	Slide 36: Stage 1: Graph Building
	Slide 37: Stage 1: Graph Building
	Slide 38: Stage 1: Graph Building
	Slide 39: Stage 2: Graph Neural Networks
	Slide 40: Stage 2: Graph Neural Networks
	Slide 41: Stage 2: Graph Neural Networks
	Slide 42: Stage 2: Graph Neural Networks
	Slide 43: Stage 2: Graph Neural Networks
	Slide 44: Stage 2: Graph Neural Networks
	Slide 45: Stage 2: Graph Neural Networks
	Slide 46: Stage 2: Graph Neural Networks
	Slide 47: Stage 2: Graph Neural Networks
	Slide 48: Stage 2: Graph Neural Networks
	Slide 49: Stage 2: Graph Neural Networks
	Slide 50: Stage 2: Graph Neural Networks
	Slide 51: Stage 2: Graph Neural Networks
	Slide 52: Stage 2: Graph Neural Networks
	Slide 53: Stage 2: Graph Neural Networks
	Slide 54: Stage 2: Graph Neural Networks
	Slide 55: Stage 2: Graph Neural Networks
	Slide 56: Stage 2: Graph Neural Networks
	Slide 57: Stage 2: Graph Neural Networks
	Slide 58: Stage 2: Graph Neural Networks
	Slide 59: Stage 2: Graph Neural Networks
	Slide 60: Stage 2: Graph Neural Networks
	Slide 61: Stage 2: Graph Neural Networks
	Slide 62: Stage 2: Graph Neural Networks
	Slide 63: Stage 2: Graph Neural Networks
	Slide 64: Stage 2: Graph Neural Networks
	Slide 65: Stage 2: Graph Neural Networks
	Slide 66: Stage 2: Graph Neural Networks
	Slide 67: Shared hits
	Slide 68: Shared hits
	Slide 69: Shared hits
	Slide 70: Shared hits
	Slide 71: Shared hits
	Slide 72: Shared hits
	Slide 73: Shared hits
	Slide 74: Shared hits
	Slide 75: Shared hits
	Slide 76: Shared hits
	Slide 77: Shared hits
	Slide 78: ETX4VELO
	Slide 79: ETX4VELO
	Slide 80: ETX4VELO
	Slide 81: Shared hits
	Slide 82: Performance
	Slide 83: Performance
	Slide 84: Performance
	Slide 85: Performance
	Slide 86: Performance
	Slide 87: Conclusion
	Slide 88: Thank you!
	Slide 89: Track Finding in the Velo
	Slide 90: Track Finding in the Velo
	Slide 91: Track Finding in the Velo
	Slide 92: Track Finding in the Velo
	Slide 93: Track Finding in the Velo
	Slide 94: Track Finding in the Velo
	Slide 95: Track Finding in the Velo
	Slide 96: Track Finding in the Velo
	Slide 97: Track Finding in the Velo
	Slide 98: Stage 1: Graph Building
	Slide 99: Stage 1: Graph Building
	Slide 100: Stage 1: Graph Building
	Slide 101: Interlude on Graph Neural Networks
	Slide 102: Shared hits
	Slide 103

