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Problem Formulation

LHCb Detector

- 2 bunches of ~ 10! protons cross every ~30 ns
— =~ 30 MHz bunch crossing rate
« ~ 5 proton-proton collisions / bunch crossing
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LHCb Detector

- 2 bunches of ~ 10! protons cross every ~30 ns
— =~ 30 MHz bunch crossing rate

« ~ 5 proton-proton collisions / bunch crossing
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Problem Formulation 4

3 Tracking Detectors

Velo uT SciFi
Vc_artex_ _Locatc_)r Upstre_a_m Trac_ker With Scintillating Fibres
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3 Tracking Detectors

Velo uT SciFi
Vertex Locator Upstream Tracker With Scintillating Fibres
With silicon pixels With silicon strips
Magnet stations
N X
Long track
26 planes Reconstructible in the \Lelo and SciFi
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\\ @ Magnetic field B \
Velo track

Reconstructible in the Velo
No momentum measurement

\%
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Track Finding in the Velo

Track finding: find tracks from hits
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Track Finding in the Velo

Track finding: find tracks from hits

Plane number
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P. C. Tsopelas, ‘A Silicon Pixel Detector for LHCb’, PhD Thesis, Vrije

U., Amsterdam, 2016.



https://inspirehep.net/literature/1645999
https://inspirehep.net/literature/1645999
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Track Finding in the Velo

Track finding: find tracks from hits
Plane number
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Problem Formulation
What is Track Finding?

Input: Velo Hits 18 Output: Velo tracks

« Everything in GPU
« = needs to be as much parallelised as possible (NOT sequential)



Problem Formulation
What is Track Finding?

Input: Velo Hits 18 Output: Velo tracks

List of connected components

{1,4,7, 11, 15, 16, 19}
| | {2, 6,10, 13, 18}
Hit coordinates  x =| : {3}

\7‘15 ¢.15 Z15 15, 8,12, 17}
6 P16 Z16/ %?4}1}

120}

« Everything in GPU
« = needs to be as much parallelised as possible (NOT sequential)



Problem Formulation
A GNN-Based Pipeline

« GNN-based pipeline is based on the work of Exa.Trkx (Eur. Phys. J. C 81, 876 (2021)).

- With PyTorch O PyTorch


https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas

Problem Formulation
A GNN-Based Pipeline
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Build a rough graph
e.g., link every hits to hits on the next 2 planes.
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Score every edge between 0 (fake) and 1 (genuine)
using a Graph Neural Network (GNN)

Discard fake edges
by requiring edge score > sqqgemin (fOr instance)




Problem Formulation
A GNN-Based Pipeline

Build a rough graph
e.g., link every hits to hits on the next 2 planes.

Score every edge between 0 (fake) and 1 (genuine)
using a Graph Neural Network (GNN)

Discard fake edges
by requiring edge score > seqge min

Find connected components
using a weakly connected component algorithm
Use of cugraph (GPU) or SciPy (CPU)



https://docs.rapids.ai/api/cugraph/stable/api_docs/api/cugraph/cugraph.connected_components/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html

Problem Formulation 15

Build graph Filter edges with GNN Find connected components

Build a rough graph
e.g., link every hits to hits on the next 2 planes.

Score every edge between 0 (fake) and 1 (genuine)
using a Graph Neural Network (GNN)

Discard fake edges
by requiring edge score > seqge min

Find connected components
using a weakly connected component algorithm
Use of cugraph (GPU) or SciPy (CPU)



https://docs.rapids.ai/api/cugraph/stable/api_docs/api/cugraph/cugraph.connected_components/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html

Interlude on Neural Network

Input x - Output y
o i Predict y from x? - ,
. ] : Polynomial model [ .
Y. * e . 5 parameters
. ! S J=ax*+bx3+cx*+dx+e il Pt




Interlude on Neural Network

Input x ] Output y
” . Predict y from x? -
. ! ) Polynomial model |
Y 1 . 5 parameters
12 ) L . . ° 5; — ax4 + bx3 + CXZ +dx+e iz . -. .'
X

Probability of being a cat? 04 x

Deep Learning model

Many parameters 06 J
y = Model(x) -




Interlude on Neural Network

Output y
0 Input x . Predict y from x? “ put ¥

yzo [ ] L]

15 ® )

Polynomial model

5 parameters .
Y J=ax*+bx3+cx?+dx+e N S

10 ® ®

0 2 4 6 8 10 12 14 16

X Fit a, b, ¢, d, e by minimising Mean Squared Distance L 0SS

Lysg = Z()’i — 91)?
i=1

Probability of being a cat?
0.4 x
Deep Learning model
Many parameters 0.9 J
y = Model(x) '
Fit parameters by minimising Binary Cross Entropy Loss 05 x
N .
_Z(yi log(P:) — (1 — y;) log(1 — ¥;))*
=1



https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

Interlude on Neural Network

NB: For a picture, you should rather use a Convolutional Neural Network (CNN)

N pixels Probability of being a cat?
Target
Y11 " XN Multi-Layer Perceptron o 0.4 0
S s =(oo) | ,_ (1)
X31 X3N 0.2 0

NB: Input features
should be normalised.




Interlude on Neural Network

NB: For a picture, you should rather use a Convolutional Neural Network (CNN)

N pixels Probability of being a cat?
Target
X110 XN Multi-Layer Perceptron 5 0.4 0
X31 X3N 0.2 0
NB: Input features
should be normalised. 1 layer
Xo =X q V= &

X1 =0(XoW; + by)
/ “T—==_ Matrices W, and b, containing the

Sigmoid function so that result € [0,1] parameters to fit



Interlude on Neural Network

NB: For a picture, you should rather use a Convolutional Neural Network (CNN)

N pixels Probability of being a cat?
Target
X11 Multi-Layer Perceptron 7= 0.4 0
Xp1 (MLP) ={09 Y = <1>
oy o 0.2 0
3 layers
XO _x q ? = X3
Activation functlon = ReLU(X,W{ + b,)
(typically non-linear) Xz = ReLU(X,W, + b)

X3 = o(X; W3 + bs)
Fit w,, b,, W,, b,, W5 and b; by minimising binary cross entropy loss
N

~ > ilog®) — (1 - y) log(1 — 7))’
i=1


https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Stage 1: Graph Building

Graph Representation

Graph G is defined as :(V, €)
« Set of nodes / vertices V = {v,,v,,v3,v,, Vs, ..., Uy}
« Set of edges £ = connection between nodes

« Features / attributes:
« Node features: node coordinates X

 Edge features:
concatenated node coordinates F



Graph G is defined as :(V, €)

Stage 1: Graph Building

Graph Representation

Set of nodes / vertices V = {v,,v,,v3,v,, Vs, ..., V19, Vsp}
Set of edges £ = connection between nodes

I=(1245 6 7 8 10 11 11 12 13 15 16
€”\4 6 7 8 10 11 12 13 15 16 17 18 19 19

&1
Features / attributes: /rz
- Node features: node coordinates X v | 7
\7‘19
720
/7”1 b1 z1 N
. ¢ Zp T
| P oz 7
- Edge features: Xe=1| .
concatenated node coordinates F \7”15 b1 Zis  Tio
e P16 Z16 T20




Stage 1: Graph Building

Problem Formulation

Input: hits
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Build graph Filter edges with GNN Find connected components




Stage 1: Graph Building

Problem Formulation

Input: hits

18 Output: Edges of the roughlgraph

o o 13 . :
19 6L 10 ig e 2 7
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o gl 1 ¥ 20

7

Formally....
Hit coordinates Edge indices
T ¢ Z
/r;gblzl\ ~I=(11111122222.--1717)
€7 \3 45 6 78 456 7 8 - 19 20

\7”;9 ¢:19 2;9/

20 P20 Z20

Build graph Filter edges with GNN Find connected components




Stage 1: Graph Building
Idea
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Stage 1: Graph Building
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# Idea Observation

1 Connect all the nodes Too many edges. @

together.

Stage 1: Graph Building

Idea

99.9% of edges are < 2 plane apart.

2 Connect nodes in
plane k to all the
nodes in plane k+ 1
and k+ 2

Still too many edges &

Edges tend to be:

« Forward

« Away from z-axis < more tilted

50

x [mm]

p=10 p=11 p=12
%
40t LHCDb Run 3 Simulation

20t

of

X (cm)

80 100 120




# Idea Observation

Stage 1: Graph Building

Idea

. o 133 1°
3.4 %] i )
2 7f 11} 169 1°

5 8 12 17 20

plane k to all the

1 Connect all the nodes Too many edges. @
together. 99.9% of edges are < 2 plane apart.
2 Connect nodes in Still too many edges &

Edges tend to be:

to capture this trend.

nodes in plane k+ 1 « Forward
and k + 2 « Away from z-axis < more tilted
3 Use a Neural Network &
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LHCb Run 3 Simulation
40t . e :

20t

60 80 100 120



Stage 1: Graph Building
Idea
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Example of edges drawn in the rough graph.
Only 1 true edge out of ~15 edges.
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Stage 1: Graph Building
With an Embedding Network
Let’s focus on connecting hits from plane p to plane p +1 and p + 2




Stage 1: Graph Building
With an Embedding Network

Let’s focus on connecting hits from plane p to plane p +1 and p + 2

Embed each hit x;; - ¢, so that,

@g @ | between nodes v; and v;:
dj; = e - €| < 1: edge is likely

di; = |le; - ej||° > 1: edge is unlikely

Embedding space

Tk €k1
x, = | b« el e, = | ek
K 251 parameters k

€3




Stage 1: Graph Building
With an Embedding Network

Let’s focus on connecting hits from plane p to plane p +1 and p + 2

Embed each hit x;; - ¢, so that,

© @\ between nodes v; and v

>

¢« dji= e - €| < 1: edge is likely
di; = |le; - ej||° > 1: edge is unlikely

For each node v; in plane p,
find k., nearest nodes {v;}
within sphere of radius d2,,,

Embedding space

4% E

€k1
x, = | b« el e, = | ek
K 251 parameters k

€3




Stage 1: Graph Building
With an Embedding Network

Let’s focus on connecting hits from plane p to plane p +1 and p + 2

Embed each hit x;; - ¢, so that,

between nodes v; and v;: ¢

¢« dji= e - €| < 1: edge is likely

For each node v; in plane p,
find k., nearest nodes {v;}
within sphere of radius d2,,,

© 9

di; = |le; - ej||° > 1: edge is unlikely

Embedding space

o a. Apply k,,.x-Nearest Neighbours (kNN)

Tk €K1 from plane p to planes {p + 1,p + 2} (1 1 2 2 2 3 3
= (o MLP — (. le = ( )
Yk =\ k)| 251 parameters [ €k T | K2 ¢ 7 458609

Z €x3/ | b. Only keep edges for which df; < df,.x




Stage 1: Graph Building
With an Embedding Network

Recap’

e Embedding Network

So that d(v;, ;)" = | —g" <1
if (v;,v;) likely to be an edge
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Train with hinge embedding loss (see annexe)
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Stage 1: Graph Building
With an Embedding Network
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Recap’ o Pz / €11
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Embedding Network X=| '3 *3 -3 =
So that d(vi'vj)z = ”?{ - ?]3”2 <1 \T19 $19 Z19/ \619,1
20 $20 Z20 €201

if (v;,v;) likely to be an edge

Train with hinge embedding loss (see annexe)

kNNS plane by plane a) Apply every plane P € {1, ...,nplanes — 1},

Use faiss library b) Only keep edges for which d(v;, v;) < d%.x

= 2 parameters to choose for inference: k., and d2_., (in annexe)

€1,2
€22
€32

€19,3
€20,2

apply k,.xNN from plane p to next 2 planesp+1 and p + 2

€1,3
€23
€33

€19,3
€20,3



https://github.com/facebookresearch/faiss

Stage 1: Graph Building

Siamese Network for One-Shot Face Recognition
" Embedding network seen earlier can be used for face recognition

Convolutional
Neural
Network

Trained with
hinge embedding loss

Embedding space

= save only 1 picture / person in database Paper (2015)


https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

Stage 1: Graph Building

Choice of k., and d3 .«




Stage 2: Graph Neural Networks

Definition

 Graph Neural Network (GNN): Neural Network architecture that operates on graphs M@
— Problem needs to be formulated with a graph.

.......... ‘ Speceral \ ChebNet  GON J
S poonsmanoennos
. DGON WA
« MANY GNN architectures exist EE==31 S [y [pea] (5% (Lo
1 : . - | T ! Basic 4: / : > ‘
« List of GNNs implemented in PyTorch Geometric | | |~ e
{spatal 1 —
T e -] (RGN
< ----------- | - ]
Moos S.c.les 8 B B
o N [ Convegence Fo- GNN || GrphSEN SSE | LGN
Operator + | . ; . . ey ey
{_ome F--{ (GONN | | Tesistd | | Gmmistd | | SGNS
B s Do [t [an | oot
[ Nede -1 GuphSAGE | | VRGON | | PmsAGE |
Sampling | J ,ecccaccaca-
Module | ) --__Lfv_ei__-’-{ FastGCN 'I LADIES l
S Fro Ch@GON | GraphSAINT |

...........

...........

- —
{:-;;;,:;h:;“:{{ gt | oo ]
|

lePoolng | SAGPool

Graph neural networks: A review of methods and applications (2020)



https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/gnn_cheatsheet.html
https://www.sciencedirect.com/science/article/pii/S2666651021000012

Stage 2: Graph Neural Networks

Definition

Graph Neural Network (GNN): Neural Network architecture that operates on graphs
— Problem needs to be formulated with a graph.

MANY GNN architectures exist

« GNN we used was described from this paper (2021<

List of GNNs implemented in PyTorch Geometric

Used by the Exa.TrkX collaboration

Follows the Interaction Network (IN)

architecture

Can be described by the Message Passing

Neural Network (MPNN) framework

Spectral
----------- ChebNet
Spectral po=sscssosmTen Network ‘ ' B
DGCN GWNN
" Convolution
Operato e O S 3 Neural FPs DCNN
"""""" | Basic ! .
GraphSAGE
L Spatial E< i 7 :
| Atentonal F--  GAT GAAN
\: Framework MoNet MPNN
---------- :'-Eo:\:e-l;e-n::e- A GNN GraphSEN
Lo R — L =Tl
Operat )
| Gae - GGNN Tree LSTM
R T Highway |
Connection 1 JKN
Node GraphSAGE ’ VR-GCN PinSAGE
f Layer k - FastGCN l\ LADIES
| Subgash  F-- ClusterGON | GraphSAINT
""" P Simple | | 3
et + Pooling | Sesa ‘ Sarbaolns
’ Coarsening | ‘ ECC 1 . DiffPool gPool

‘,. EigenPooling “ SAGPool ‘

GCN

PATCHY-
SAN

NLNN
SSE
Graph LSTM

CLN

AGCN

LGCN

GN

LP-GNN

Sentence
LSTM

Graph neural networks: A review of methods and applications (2020)



https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/gnn_cheatsheet.html
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://link.springer.com/article/10.1007/s41781-021-00073-z
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212

Stage 2: Graph Neural Networks
Examples of GNNs

Task Example Graph Task

level

Node AlphaFold 2 (2020) Graph = proteine Predict node
Input: protein = amino acid sequence |+ Node: amino acid coordinates.
Target: 3D structure of folded protein |+ Edge: if in proximity

Edge

Graph

or

subgraph

Pleated
sheet

helix

Alpha

ADescription of these example cases are oversimplified. ]



https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/

Stage 2: Graph Neural Networks
Examples of GNNs

Task Example Graph Task
level
Node AlphaFold 2 (2020) Graph = proteine Predict node coordinates.
Input: protein = amino acid sequence + Node: amino acid
Target: 3D structure of folded protein « Edge: if in proximity
Edge Decagon (2018) Graph of side effects Predict probability
Input: side effects between various « Node: drug that an edge
drug combinations - Edge: side effect corresponds to a
Target: (unknown) side effect given side effect.
between a 2 drug combinations
Gra ph B polypharmacy B
O r A Doxycycline A side effects Simvastatin
‘ A r By
subgraph ~ X =
9 r1——AMupi‘rocin
A Drug © Protein E Node feature vector .. . o/
ry Gastrointestinal bleed side effect A—@ Drug-protein interaction Description of these example cases are oversimplified.
I'> Bradycardia side effect ©—0O Protein-protein interaction



https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770

Stage 2: Graph Neural Networks
Examples of GNNs

Task Example Graph Task

level

Node AlphaFold 2 (2020) Graph = proteine Predict node coordinates.
Input: protein = amino acid sequence * Node: amino acid
Target: 3D structure of folded protein « Edge: if in proximity

Edge Decagon (2018) Graph of side effects Predict probability that an
Input: side effects between various drug combinations * Node: drug edge corresponds to a given
Target: (unknown) side effect between a 2 drug - Edge: side effect side effect.
combinations

Graph Google Maps (2020) Graph = road network Predict travel time

Or Input: road network - Node: route segment of a supersegment

subgraph | Target: travel time of a chunk of road |+ Edge: if route segments | = multiple adjacent

are consecutive

segments.

ADescription of these example cases are oversimplified. ]



https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/

Stage 2: Graph Neural Networks
Examples of GNNs

Task Example Graph Task

level

Node AlphaFold 2 (2020) Graph = proteine Predict node
Input: protein = amino acid sequence |+ Node: amino acid coordinates.
Target: 3D structure of folded protein |+ Edge: if in proximity

Edge Decagon (2018) Graph of side effects Predict probability
Input: side effects between various  Node: drug that an edge
drug combinations - Edge: side effect corresponds to a
Target: (unknown) side effect given side effect.
between a 2 drug combinations

Graph Google Maps (2020) Graph = road network Predict travel time

Or Input: road network - Node: route segment of a supersegment

subgraph | Target: travel time of a chunk of road |+ Edge: if route segments | = multiple adjacent

are consecutive segments.

ADescription of these example cases are oversimplified. ]



https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/

Stage 2: Graph Neural Networks
Examples of GNNs

Task Example Graph Task

level

Node AlphaFold 2 (2020) Graph = proteine Predict node
Input: protein = amino acid sequence |+ Node: amino acid coordinates.
Target: 3D structure of folded protein |+ Edge: if in proximity

Edge Decagon (2018) Graph of side effects Predict probability
Input: side effects between various  Node: drug that an edge
drug combinations - Edge: side effect corresponds to a
Target: (unknown) side effect given side effect.
between a 2 drug combinations

Graph Google Maps (2020) Graph = road network Predict travel time

Or Input: road network - Node: route segment of a supersegment

subgraph | Target: travel time of a chunk of road |+ Edge: if route segments | = multiple adjacent

are consecutive

segments.

Other applications: recommender system (e.g., PinSage (2018)), fraud detection, novel molecule
generation with desirable properties, physics simulation with many particles, weather forecasting

[2023], etc.


https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
https://arxiv.org/abs/1806.01973
https://www.sciencedirect.com/science/article/abs/pii/S0957417423026581
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558534/
https://arxiv.org/abs/2002.09405
https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/

Stage 2: Graph Neural Networks

Problem Formulation

Input: rough graph
P 99P18

tnput (N [

o 1 21\ 515 0

(o & = R I

Hit coordinates x =| ' ¢:3 “3 S1-8 0
\7”19 b19 Z19/ Z:: N 8

20 $20 Z20 ::‘z:s (1)

S 111111 2 2 2 2 2 17 17 528 0
Edgeindices 1:=(; , 5 ¢ 7 5 4 56 7 g - 19 20 AN I
\517—>20) \0/

Build graph i Filter edges with GNN Find connected components
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Explanation

Typical graph H‘
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around edge i — j Vv, ij v,



Stage 2: Graph Neural Networks

Explanation

Typical graph
around edge i — j




Stage 2: Graph Neural Networks

Explanation

Typical graph
around edge i — j




Stage 2: Graph Neural Networks

Explanation

Typical graph
around edge i — j




Stage 2: Graph Neural Networks

Explanation

Typical graph

—T
X1
Hit coordinates X = ( : ) Edge score s;; € [0, 1]

N
Edge indices I

Trained with binary cross entropy loss or sigmoid focal loss

Idea: work with intermediate « edge encoding »


https://pytorch.org/vision/main/generated/torchvision.ops.sigmoid_focal_loss.html

Stage 2: Graph Neural Networks

Explanation

Typical graph

Edge features

Updated edge

- P Edge encodings Update di Edge score
=l o0 € R128 edge e;“f’ Ings [0,1]
v g encodings nal e R128
z; Edge encoder Edge classifier
Concatenated node
features \

|
Intermediate 128-dimensional edge encoding representation



Stage 2: Graph Neural Networks

Explanation

Typical graph

Edge encodings Update Updated edge
0 < 128 edge encodings
e;; €ER g -
/ encodings efinal ¢ 128

ij

—
€;

Goal: update edge encoding ‘; according to edge encodings of connected edges
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Explanation
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= Node-ordering invariant e teited, ) T outgoing

= Separate incoming/outgoing nodes



Stage 2: Graph Neural Networks

Explanation

1. Build message for v;:

Aggregate neigbhour information
= Node-ordering invariant

= Separate incoming/outgoing nodes

2. Build message for v;:
in a similar fashion

—

m; =

—

o | «— outgoing

0 0 0 ) «— incomin
{eA_)l- + €p i + +QC—>1} g
0o, —— 0

0 0 0o }<+<—— incomin

epsjtel;t+ep | «— : 9

— , —— (<+<— outgoing
0 0



Stage 2: Graph Neural Networks

Explanation

1. Build message for v;:

Aggregate neigbhour information
= Node-ordering invariant

= Separate incoming/outgoing nodes

2. Build message for v;:
in a similar fashion

—>

final ;
3. Infer e;” from m;, m; and eH] using a MLP

This is called message passing.

0 0 0 ) «— incomin
— _ €4 - €p i - +eC_>l- g
0 o | «— outgoing

0 =5 0

"0 J+«— incomin
eD_,] + el_,] + +eE_)] g

=) o0 —— ( +<— outgoing

flnal
l—>]

Edge network



Stage 2: Graph Neural Networks

Explanation

Typical graph

Edge encodings Update Updated edge
0 < 128 edge encodings
e;; €ER g -
/ encodings efinal ¢ 128

ij

—
€;

Goal: update edge encoding ‘; according to edge encodings of connected edges



Stage 2: Graph Neural Networks

Explanation

Typical graph

Neigbour
aggregation

m; Updated edge
m; encodlngs
eT) flnal = ]R128
—=j
Edge network

Goal: update edge encoding e - according to edge encodings of connected edges



Stage 2: Graph Neural Networks

Explanation

Typical graph

Neigbour

Edge features

" aggregation -
¢ Edge encodings i Updated edge Edge score
= %) | # — 198 m; encodlngs € [0,1]
R (7];1 €ij ER — flnal c R128
. e, l]
Z]{ Edge encoder i>] Edge network Edge classifier

Concatenated node
features



Stage 2: Graph Neural Networks

Explanation

Typical graph

Edge features Neigbour

r, aggregation
KL Edge encodings m; Updated edge dge score
={a- el € 128 m encodings /€0,
Xj ¢] Y — lf]mal c R128
Ji e; .
Concatenated\ Zj e Edge network Edge classifier

node features Edge encoder

message passing
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Explanation

Typical graph

Edge features Neigbour

) aggregation
ok Edge encodings

—  (x Zj

7-{)-| 0 € mies
o

Concatenated\ Zj

node features Edge encoder

m; Updated edge dge <core
m; encodings € [0,1]
?_)J’ flnal c R128

Edge network Edge classifier

message passmg

Just repeat
message passing
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Explanation

Typical graph

Edge features Neigbour

) aggregation
ok Edge encodings

—  (x Zj

7-{)-| 0 € mies
o

Concatenated\ Zj

node features Edge encoder

m; Updated edge dge <core
m; encodings € [0,1]
?_)J’ flnal c R128

Edge network Edge classifier

message passmg

Just repeat
message passing




Stage 2: Graph Neural Networks

Explanation

Typical graph

Edge features Neigbour

aggregation

Ti
bi Edge encodings

= _ (x| 4 K—1 128

fif‘{fj’}‘ T ejj ER —
b;

Concatenated\ Zj

node features Edge encoder

1) Updated edge dge score
encodlngs € [0,1]

i e ER128

s Edge network Edge classifier

message passing, repeat for ke {1, ..

Just repeat
message passing




Stage 2: Graph Neural Networks

Typical graph

Edge features

Edge encodings

T —,\
bi i mk~1
e L1 B k=1 ¢ R128 —
f”_{fj}_ T ej €ER \m]kl
b; —
Concatenated\ Zj \ek_l Edge network

node features Edge encoder

Explanation

Neigbour
aggregation

Updated edg

encodlngs

i=j )
message passing, repeat for ke {1, ..

Message m;
« Is node-related

« Does not contain any node information!

| “->
Edge classifier

Combine it with
node encodings.



Stage 2: Graph Neural Networks

Explanation

Typical graph

B (;l> Node encodings
1= L T k—1
z, hl 1 = R128
Neigbour

aggregation

Updated node
encodings
h_%é c R128

Node encoder

Edge encodings ( Rk hﬁ‘ ) Updated edge Edge score
fiy = ok—1 ¢ pi28 < ﬁ encodlngs sij €10,1]
€ij \ j e € R128
20 . E Edge classifier

Ci>j ) dge network
Edge encoder
message passing, repeat for k€ {1, ..




Stage 2: Graph Neural Networks

Explanation

Typical graph

. Node encodings Updated node
X = ﬁ c R128 encodings
Neigbour hi € R128
der

Node enco Sl Node encoder

Edge encodings ( Rk hﬁ‘ ) Updated edge Edge score
k 1 = ]R128 —k) enCOdlngs Sij € [O, 1]
€ij T hj e c R128

Concatenated 0 E ifi

node encodmgﬁdge encoder Eis)) dge network Edge classifier
message passing, repeat for k€ {1, ..




Shared hits

Electron Performance

Graph Building GNN to filter edges Build tracks from graph

But if you do this... track efficiency on long electrons is terrible!

Metric Default GPU algorithm | ETX4VELO

Efficiency

(evaluated on 1000 events)



Shared hits

Electron Performance

Observations

« ~ 55 9% electrons share hits with another electron
« The 2 electrons share > 1 hit(s) before splitting up

Example 1: share the first hit only Example 2: share several hits before splitting up

—10¢

— 12}

LHCb Run 3 Simulation

| LHCb Run 3 Simulation

60 80 100 120 140 160 180 100 200 300 400
z [mm] z [mm]

= the connected component algorithm consider the 2 electron tracks as a single track



Shared hits

Other Tracks With Shared Hits

« Tracks crossing (> 524 in 1000 events) - Track starts on a shared hit
22.07 407 LHCbH Run 3 Simulation
20.0¢ 35t
175 30t
Elao E%*
%12.5 =20
10.0 15t
75 10}
5-0[ LHCb Run 3 Simulation ‘ ‘ ‘ 25 50 75 100 135 130 175 200
—300 —250 —QOOZ {m;ﬂmo —100 =50 = [mm|
« The last hit of a track is the first hit of
 Track ends on a shared hit another track
(>141 in 1000 events)
351 LHCb Run 3 Simulation
351 LHCh Run 3 Simulation
30t
301
EQS—
Eo| ENl
B %20—
15}
15}
10}
| ‘ ‘ ‘ | 10}
100 200 300 100 500 ! ‘ | ‘ | ‘
z [mm] —50 0 50 100 150 200

z [mm]



Shared hits

Edge-Edge Connections

351 LHCh Run 3 Simulation 35+ LHCh Run 3 Simulation

30+ 30

In this case, one cannot even guess that there are
possibly 2 tracks!

251 25t

[mm]
[mum]

= 200 & 20}

15+ 15t

10+ 10}

55 00 25 50 75 100 125 50 0 50 100 50 200
y [mm] z [mm]

Hit-hit connection is not enough ’
= need edge-edge connections



Shared hits

Edge-Edge Connections

3 kind of edge-edge connections (or triplets) are possible

A C
Articulation ‘—>\‘B ‘ . . _N

Could be a shared hit

Left elbow ‘ o <)>: — z::
Right elbow :>), ) ::2



Shared hits

Updated Pipeline
New simplified example to take into account shared hits

=

First 2 steps are the same as before



Shared hits

Updated Pipeline
New simplified example to take into account shared hits

=

First 2 steps are the same as before

@ild a “'rough” graph

Embedding Network + kNN ‘
Classify the edges as
genuine or fake ‘

Graph Neural Network




N
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Shared hits

Updated Pipeline

Build edge-edge connections
(or triplets)

Use dataframes with Pandas
(CPU) or cudf (GPU)



https://github.com/rapidsai/cudf

Shared hits

Updated Pipeline

Build edge-edge connections
(or triplets)

Use dataframes with Pandas
(CPU) or cudf (GPU)

Classify the triplets with the GNN
Filter out the fake triplets



https://github.com/rapidsai/cudf

Build edge-edge connections
(or triplets)

Use dataframes with Pandas
(CPU) or cudf (GPU)

Classify the triplets with the GNN
Filter out the fake triplets

e Build tracks from triplets

Shared hits

Updated Pipeline

—)

)
)



https://github.com/rapidsai/cudf

ETX4VELO

« Pipeline has become

: Filter : : Filter :
Embedding GNN edge Build Triplet , Build

Build rough graph Filter out fake edges Filter out fake triplets



ETX4VELO

Filter F|Iter
Embedding GNN edge Build Tr|plet Build

- Last step of the GNN edge classifier was Updated Edge score
edge e’ i €1[0,1]
encoding

Edge classifier



: Filter F|Iter
Embedding GNN edge Bund Tr|plet Build

- Last step of the GNN edge classifier was Updated Edge score
edge ez}- Sij € [0, 1]
encoding

Edge classifier

DO NOT REPEAT THE GNN

e’

Concatenated edge
encodings (7 Triplet score
Instead, re-use directly the very same edge encodings! — Siscop € [0,1]

Triplet classifier

Training with sum of edge and triplet classification losses:
Liot = Ledges + Ltriplets



Shared hits

Embedding GNN edge Build Triplet
Network classifier triplets classifier

Filter
triplets

In annexe.



Performance
Physics performance

Filter Filter
Embedding GNN edge Build Triplet Build

Choice of seqgemin @Nd Stripletmin - Vary them and choose the one leading to best performance.

= can reach better physics performance than default algorithm at LHCb.

Proportion of... Default GPU algorithm
Reconstructed particles 99.08%

Duplicate tracks 2.65%

Fake tracks 2.51%

For particles reconstructible in the VELO and the SciFi.

However, need to consider throughput = # bunch crossings processed / s



Performance

5

’ﬁ‘, ' Throughput
IS

« Goal: implement GNN-based pipeline on C++/CUDA inside Allen . :

« Optimization: To optimize throughput
(PyTorch slower than C++/CUDA implementation)

« Integration: can be used with other reconstruction algorithms.



Performance

_ Throughput
IS

« Goal: implement GNN-based pipeline on C++/CUDA inside Allen . :

5

« Optimization: To optimize throughput
(PyTorch slower than C++/CUDA implementation)

« Integration: can be used with other reconstruction algorithms.
« Pipeline: no triplet for the moment

Graph Building GNN to filter edges Build tracks

« Detailed view:

Embedding Neural Networ GNN edge classifier Filter edges ey Coglr;eocrti?ﬁngomponent



. Performance
i Throughput

« Goal: implement GNN-based pipeline on C++/CUDA inside Allen . :

« Optimization: To optimize throughput
(PyTorch slower than C++/CUDA implementation)

« Integration: can be used with other reconstruction algorithms.

« Pipeline: no triplet for the moment

Graph Building GNN to filter edges Build tracks

« Detailed view:

Embedding Neural Networ GNN edge classifier Filter edges ey Coglngeoclici?ﬁngomponent

 There are deep learning model to export and algorithms to implement in C++/CUDA.
« Deep learning model inference in C++:

1. Export model in ONNX open-source format.

2. Inference in C++ using either ONNXRuntime or NVIDIA TensorRT libraries.



https://onnx.ai/
https://onnxruntime.ai/
https://developer.nvidia.com/tensorrt-getting-started

Performance
Throughput

« So far Throughput: # bunch crossings processed /s

/
¢~ to increase the throughput.

=
v

\
~

« But we still have ideas



Conclusion

» First-level trigger at LHCb on GPU

« ETX4VELO:
« New GNN-based pipeline for track-finding in the Velo at LHCb.
« Repository and documentation.

« Can meet AIIen. physics performance.

« Ongoing work:
* Run the full ETX4VELO pipeline in C++/CUDA inside Allen.
 Optimise ETX4VELO throughput.
« Adapt the pipeline to other LHCb tracking detectors (e.g., SciFi detector).



https://gitlab.cern.ch/gdl4hep/etx4velo/-/tree/main
https://etx4velo.docs.cern.ch/

o o
.........

°
]
® o0 ®

Thank you!

388



Track Finding in the Velo

arXiv:2207.03936 Search by Triplet on GPU

In Allen ' : search by triplet algorithm


https://arxiv.org/abs/2207.03936

Track Finding in the Velo

arXiv:2207.03936 Search by Triplet on GPU

In Allen V : search by triplet algorithm

G Iterate from the last to the first plane:

e Seeding:
Find compatible triplets of hits N ' ‘ ' ' I ‘
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Track Finding in the Velo
Search by Triplet on GPU

arXiv:2207.03936

In Allen V : search by triplet algorithm

G Iterate from the last to the first plane:

e Seeding:
Find compatible triplets of hits N ' ‘ | FH
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Track Finding in the Velo
Search by Triplet on GPU

arXiv:2207.03936

In Allen V : search by triplet algorithm

G Iterate from the last to the first plane:

L IHA

a.l. Extrapolate the track
a.2. Find compatible hits
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Track Finding in the Velo
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In Allen V : search by triplet algorithm

G Iterate from the last to the first plane:

e Seeding:
Find compatible triplets of hits N | ‘ %
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G Iterate from the last to the first plane:
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a.l. Extrapolate the track
a.2. Find compatible hits
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Track Finding in the Velo
Search by Triplet on GPU

arXiv:2207.03936

In Allen V : search by triplet algorithm

G Iterate from the last to the first plane:

e Seeding:
Find compatible triplets of hits N | F%


https://arxiv.org/abs/2207.03936

Track Finding in the Velo
Search by Triplet on GPU

arXiv:2207.03936

In Allen V : search by triplet algorithm

G Iterate from the last to the first plane:

Following:
a.l. Extrapolate the track
a.2. Find compatible hits


https://arxiv.org/abs/2207.03936

Track Finding in the Velo
Search by Triplet on GPU

arXiv:2207.03936

In Allen ' : search by triplet algorithm

a Filter triplets


https://arxiv.org/abs/2207.03936

Stage 1: Graph Building 98

Graph Building GNN to filter edges Build tracks from graph
G Embed all the hits using the network (., ¢,z plane) —*m—* € = (eq, €3, €3,€4)

For a random given set of hits, build a dataset of genuine edges and fake edges.
a Compute the distances between their hits in the embedding space:

. 2 .
{dgenume i VL} and {dfake,j; V]}
: hyperparameter
e Minimise hinge 10Ss Ligta1 = 8Lgcnuine T Lrake Where
hyperparameter

— Lgenuine = z dgenulnel —  Lrake = z max(l dfake J? O)
Ngenuine Nfake

Training
step

Minimise dgenuine,i

Maximise dfake,j

« Hard Negative Mining: edges built by a kNN (- “"hard” negatives)
True edges
« Random edges

Training
dataset



Stage 1: Graph Building 99

Graph Building GNN to filter edges Build tracks from graph

« After training, we choose maximal number of neighbours k., = 50 (not optimised)

« To choose maximal squared distance dZ2,.,, for various values for d2, ..:
1. Build the rough graph using dZ,.,
2. Remove all fake edges in the rough graph and build the tracks from this purified graph
3. Compute track-finding performance = correspond to the best performance given d2 .

—| Performance if all the fake edges are discarded(= best performance)

1.00f : ~ ~ ~ 140000}
T
//,,r",,J»A*~""*”———_—-__+______—___4 120000

0.98} ~ | | |
/////"’ £ 100000f

80000} ~ ]

| —— Velo only, no electrons - i
—— Velo only, only electrons S //
Long, no electrons 40000r
0.92r T
Long, only electrons 200004
—— Long, from strange

1 2 3 4
2
dmax

I
©
=

graph edge
2
S

Efficiency
2

= Choose d2,,, = 0.9 (evaluated on 200 events)



Stage 1: Graph Building

Rough graph with k., = 50 and d2., = 0.010

’

ion of hits

Proport

Proportion of edges

0.5¢

0.1}

0.0

0.06¢

0.05+

0.04r

0.037

0.02r

0.01r

0.00

LHCDb Run 3 Simulation

1 2
Plane difference

LHCbh Run 3 Simulation

10 20 30 40
Number of neighbours per hit

Even though 1% of genuine edges are 2-plane apart,
the rough graph needs to contain almost 50% of such
edges

= k,.x could probably be reduced to increase throughput



Interlude on Graph Neural Networks
Graph Neural Networks

 Graph Neural Network (GNN): Neural Network architecture that operates on graphs M@
— Problem needs to be formulated with a graph.

________ Resource | Description | Opinion ____

Stanford online videos

Series of lectures
recorded in Youtube.

Introduction to Graph Neural Networks Book

Zhiyuan Liu, Lie Zhou
PyvTorch Geometric Tutorials

Graph Neural Networks: Foundations,

Frontiers, and Applications

Lingfei Wu, Peng Cui, Jian Pei, Liang

Zhao

Videos & notebooks

Book

Probably other learning resources out there!

Clear explanations
Quite complete
Notebooks without solution

Clear, quite complete
Succinct

Notebooks

Use of PyTorch Geometric
Not very clear
Self-advertisement

Extremely complete
Not so good for just learning


http://web.stanford.edu/class/cs224w/
http://web.stanford.edu/class/cs224w/
https://link.springer.com/book/10.1007/978-3-031-01587-8
https://github.com/AntonioLonga/PytorchGeometricTutorial/tree/main
https://link.springer.com/book/10.1007/978-981-16-6054-2
https://link.springer.com/book/10.1007/978-981-16-6054-2

Shared hits

Embedding GNN edge Build Triplet
Network classifier triplets classifier

Filter
triplets

Connect left and right elbows

e and remove duplicate edge-edge
connections

Apply connected components,
excluding splitting edge-edge
connections

e Each remaining link @ !' @ o
correspond to a new track @ ‘.
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