Towards a new n2EDM measurement of the neutron EDM with n2EDM

LPC: G. Ban, D. Galbinski, D. Goupillères, <u>T. Lefort</u>, A. Lejuez, O. Navillat-Cuncic LPSC: J. Menu, K. Michielsen, P. Navon, <u>G. Pignol</u>, D. Rebreyend, S. Roccia IN2P3 Scientific Council, June 24, 2024

EDM = coupling between spin and E-field

>> PLAY >>

<< REWND <<

Violation of CP

If $d \neq 0$ the process and its time reversed version are different.

Violation of T CPT

EDM limits

Best limit from the nEDM experiment @PSI $|d_n| < 1.8 \times 10^{-26} e \text{ cm}$ Abel et al, PRL (2020)

Outline

- 1. Physics case for searching EDMs
- 2. How to measure nEDM: state of the art
- 3. Next generation nEDM experiments
- 4. The design of n2EDM
- 5. In2p3 contributions
- 6. Commissioning results
- 7. Perspectives until 2030 and beyond

the EDM from the point of view of a high energy theorist

Fermion-photon coupling

$$\mathcal{L} = \frac{1}{2} (\boldsymbol{\delta \mu} + i\boldsymbol{d}) \bar{f}_L \sigma_{\mu\nu} f_R F^{\mu\nu} + h.c.$$

Real part = anomalous magnetic moment Imaginary part = electric dipole moment

Non-relativistic limit: $\hat{H} = -\mu\sigma B - d\sigma E$

The neutron EDM is quasi-forbidden

CP violation and EDM in the SMEFT

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{D}=5} + \mathcal{L}_{\text{D}=6} + \cdots$

Figure A. Falkowski, Lectures on SMEFT EPJC (2023)

$$C_{\rm D=6} = \sum_{a=1}^{3045} \frac{c_a}{\Lambda^2} O_a^{(6)}$$

New physics at high scale would generate these new interactions, many of which are CP-violating and contribute to create EDMs.

nEDM probes $\Lambda = 10 \text{ PeV}$

Concrete model: modified Higgs couplings

Physics case to search for nEDM

1. Great puzzle.

New sources of CPV required to explain baryogenesis (Sakarov). A broad class of models "BSM electroweak baryogenesis" predict new CPV physics at the ~TeV scale

2. Great sensitivity.

nEDM probes new CPV physics at the scale $\Lambda = 10$ PeV. Next generation experiments will increase the reach by $\sqrt{10}$. Note: some concrete models predict $\frac{1}{\Lambda^2} \sim \frac{g^2}{(4\pi)^2} \frac{y_q}{M^2}$ $M \sim 1$ TeV $\leftrightarrow \Lambda \sim 10$ PeV

3. Complementarity.

Importance of measuring the EDMs in different systems (neutron, atoms, muons...) to cover the many different possible fundamental sources of CP violation.

outline

- 1. Physics case for searching EDMs
- 2. How to measure nEDM: state of the art
- 3. Next generation nEDM experiments
- 4. The design of n2EDM
- 5. In2p3 contributions
- 6. Commissioning results
- 7. Perspectives until 2030 and beyond

Basics of nEDM measurement

Larmor frequency ~ 30 Hz @ $B = 1 \mu T$ $2\pi f = \frac{2\mu_n}{\hbar} B \pm \frac{2d_n}{\hbar} |E|$

To detect such a minuscule coupling:

- Long interaction time
- High intensity/statistics
- Control the magnetic field

If $d_n \sim 10^{-26} e$ cm and $E \sim 10$ kV/cm **duration of one full turn** ~ **1 year**

- Long interaction time
- High intensity/statistics
- Control the magnetic field

Use Ultracold neutrons

Neutrons with velocity <5m/s can undergo total reflection and be stored in material "bottles"

Use big magnetic shielding

+ Use quantum magnetometry With mercury and cesium atoms

Abel et al, PRL (2020)

 $d_n = (0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}}) \times 10^{-26} \text{ ecm}$

Limited by the number of UCNs (~500 million counts)

Uniformity of the B-field

Ultracold neutrons

PSI UCN source, since 2011

Ramsey's method to measure precession frequency

nEDM data collected in 2015-2016

54,068 cycles recorded - one cycle every 5 min, grouped in 99 sequences, alternating E field polarity every 48 cycles 11,400 neutrons counted per cycle.

The rescue of the mercury comagnetometer

The comagnetometer pitfall: E x v $/c^2$

18

Budget of systematic errors

TABLE I. Summary of systematic effects in 10^{-28} e.cm. The first three effects are treated within the crossing-point fit and are included in d_{\times} . The additional effects below that are considered separately.

Effect	Shift	Error
Error on $\langle z \rangle$		7
Higher-order gradients \hat{G}	69	10
Transverse field correction $\langle B_T^2 \rangle$	0	5
Hg EDM [8]	-0.1	0.1
Local dipole fields		4
$v \times E$ UCN net motion		2
Quadratic $v \times E$		0.1
Uncompensated G drift		7.5
Mercury light shift		0.4
Inc. scattering ¹⁹⁹ Hg		7
TOTAL	69	18

Leading systematics associated with B-field uniformity

Field mapping, Quemener et al.

The result

PHYSICAL REVIEW LETTERS 124, 081803 (2020)

Editors' Suggestion Featured in Physics

Measurement of the Permanent Electric Dipole Moment of the Neutron

C. Abel,¹ S. Afach,^{2,3} N. J. Ayres,^{1,3} C. A. Baker,⁴ G. Ban,⁵ G. Bison,² K. Bodek,⁶ V. Bondar,^{2,3,7} M. Burghoff,⁸ E. Chanel,⁹ Z. Chowdhuri,² P.-J. Chiu,^{2,3} B. Clement,¹⁰ C. B. Crawford¹⁰,¹¹ M. Daum,² S. Emmenegger,³ L. Ferraris-Bouchez,¹⁰ M. Fertl⁽⁰⁾,^{2,3,12} P. Flaux,⁵ B. Franke,^{2,3,d} A. Fratangelo,⁹ P. Geltenbort,¹³ K. Green,⁴ W. C. Griffith,¹ M. van der Grinten,⁴ Z. D. Grujić⁽⁶⁾, ^{14,15} P. G. Harris⁽⁶⁾, ¹L. Hayen, ^{7,e} W. Heil, ¹² R. Henneck, ² V. Hélaine, ^{2,5} N. Hild, ^{2,3} Z. Hodge, ⁹ M. Horras, ^{2,3} P. Iaydjiev, ^{4,n} S. N. Ivanov, ^{4,0} M. Kasprzak, ^{2,7,14} Y. Kermaidic, ^{10,f} K. Kirch, ^{2,3} A. Knecht, ^{2,3} P. Knowles, ¹⁴ H.-C. Koch, ^{2,14,12} P. A. Koss, ^{7,g} S. Komposch, ^{2,3} A. Kozela, ¹⁶ A. Kraft, ^{2,12} J. Krempel, ³ M. Kuźniak, ^{2,6,h} B. Lauss, ² T. Lefort, ⁵ Y. Lemière, ⁵ A. Leredde,¹⁰ P. Mohanmurthy,^{2,3} A. Mtchedlishvili,² M. Musgrave,^{1,i} O. Naviliat-Cuncic,⁵ D. Pais,^{2,3} F. M. Piegsa,⁹ E. Pierre, ^{2,5,j} G. Pignol, ^{10,a} C. Plonka-Spehr,¹⁷ P. N. Prashanth,⁷ G. Quéméner,⁵ M. Rawlik,^{3,k} D. Rebreyend, ¹⁰
I. Rienäcker,^{2,3} D. Ries,^{2,3,17} S. Roccia,^{13,18,b} G. Rogel,^{5,1} D. Rozpedzik,⁶ A. Schnabel,⁸ P. Schmidt-Wellenburg⁰,^{2,c}
N. Severijns,⁷ D. Shiers,¹ R. Tavakoli Dinani,⁷ J. A. Thorne,^{1,9} R. Virot,¹⁰ J. Voigt,⁸ A. Weis,¹⁴ E. Wursten,^{7,m} G. Wyszynski,^{3,6} J. Zejma,⁶ J. Zenner,^{2,17} and G. Zsigmond² ¹Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BNI 90H, United Kingdom ²Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ³ETH Zürich, Institute for Particle Physics and Astrophysics, CH-8093 Zürich, Switzerland ⁴STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxon OX11 0OX, United Kingdom ⁵LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, 14000 Caen, France ⁶Marian Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Cracow, Poland ¹Instituut voor Kern- en Stralingsfysica, University of Leuven, B-3001 Leuven, Belgium ⁸Physikalisch Technische Bundesanstalt, D-10587 Berlin, Germany ⁹Laboratory for High Energy Physics and Albert Einstein Center for Fundamental Physics, University of Bern, CH-3012 Bern, Switzerland ¹⁰Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38026 Grenoble, France ¹¹University of Kentucky, 40506 Lexington, Kentucky, USA ¹²Institute of Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany ¹³Institut Laue-Langevin, CS 20156 F-38042 Grenoble Cedex 9, France ¹⁴Physics Department, University of Fribourg, CH-1700 Fribourg, Switzerland ¹⁵Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia ¹⁶Henryk Niedwodniczanski Institute for Nuclear Physics, 31-342 Cracow, Poland ¹⁷Department of Chemistry - TRIGA site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany ¹⁸CSNSM, Université Paris Sud, CNRS/IN2P3, F-91405 Orsay Campus, France

(Received 18 December 2019; accepted 3 February 2020; published 28 February 2020)

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a ¹⁹⁹Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is $d_n = (0.0 \pm 1.1_{erg} \pm 0.2_{vos}) \times 10^{-26} e.cm$.

Collaboration of 12 labs 20 PhD thesis in the period 2005 – 2020

IN2P3 labs (LPC and LPSC) contribute since 2004. Science output during 15 years (2005 – 2020)

- 12 articles with IN2P3 as main author
- 7 PhD thesis related to nEDM

	Physicist	topic	place and time
	Stéphanie Roccia (PhD)	Hg magnetometry + new physics	Grenoble, 2006-2009
	Guillaume Pignol (PhD)	Exotic new physics	Grenoble, 2006-2009
_	Gwendal Rogel (PhD)	UCN detection	Caen, 2006-2009
DN	Edgard Pierre (PhD)	UCN polarization	Caen, 2009-2012
nE	Victor Hélaine (PhD)	UCN spin analysis	Caen, 2011-2014
	Yoann Kermaidic (PhD)	Hg + data analysis	Grenoble, 2013-2016
	Laura Ferraris-Bouchez (PhD)	Magnetic field mapping	Grenoble, 2017-2020
	Arnaud Leredde (postdoc)	Hg magnetometry	Grenoble, 2017-2019

outline

- 1. Physics case for searching EDMs
- 2. How to measure nEDM: state of the art
- 3. Next generation nEDM experiments
- 4. The design of n2EDM
- 5. In2p3 contributions
- 6. Commissioning results
- 7. Perspectives until 2030 and beyond

Concept for the next generation nEDM

- + atomic co-magnetometry in the UCN cells
- + External magnetometers
- + Complex B0 coil
- + Magnetic Shield

Place	Neutron source	Concept	Stage/Readiness
TRIUMF	Spallation +	double Ramsey chamber with Hg	Source under construction,
	superfluid He UCN source	comagnetometers + Cs mag	experiment under construction
LANL	Spallation +	double Ramsey chamber with Hg	Source running,
	sD2 UCN source	comagnetometers + commertial OPMs	experiment under construction
ILL	Reactor + superfluid He UCN source	panEDM: double Ramsey chamber, no comagnetometers + Hg&Cs mag	Source (supersun) commissionning experiment under construction
PSI	Spallation +	n2EDM: large double Ramsey chamber with Hg	Source running,
	sD2 UCN source	comagnetometers + Cs mag	experiment almost running

Additional material

EDM metromap (Jordy De Vries)

theory bottleneck: Hadronic 1 GeV -> nEDM

$$d_n = -(1.5 \pm 0.7) \cdot 10^{-3} \ \bar{\theta} \ e \ \text{fm}$$

-(0.20 \pm 0.01)d_u + (0.78 \pm 0.03)d_d + (0.0027 \pm 0.016)d_s
-(0.55 \pm 0.28)e \tilde{d}_u - (1.1 \pm 0.55)e \tilde{d}_d + (50 \pm 40) \ \text{MeVe} \ \tilde{d}_G

Formula taken from the 2022 review: *Electric dipole moments and the search for new physics*

T-symmetry

E

Nonzero EDM Violates T symmetry

Nonzero MDM DOES NOT violate T

>> PLAY >>

<< REWND <<

quantum magnetometry with ¹⁹⁹Hg

The magnetic field is extracted from the precession frequency of mercury-199 atoms: $f_{\text{Hg}} = \frac{\gamma_{\text{Hg}}}{2\pi}B$

Principle of **optical reading** of the precession:

photon spin photon spin atom spin atom spin total spin absorption of light forbidden by angular momentum conservation

absorption of light allowed