

Towards a new measurement of the neutron electric dipole moment

The n2EDM experiment

Special Article - Tools for Experiment and Theory

The design of the n2EDM experiment

nEDM Collaboration

N. J. Ayres¹, G. Ban², L. Bienstman³, G. Bison⁴, K. Bodek⁵, V. Bondar^{1,a}, T. Bouillaud⁶, E. Chanel⁷, J. Chen², P.-J. Chiu^{1,4}, B. Clément⁶, C. B. Crawford⁸, M. Daum⁴, B. Dechenaux², C. B. Doorenbos^{1,4}, S. Emmenegger¹, L. Ferraris-Bouchez⁶, M. Fertl⁹, A. Fratangelo⁷, P. Flaux², D. Goupillière², W. C. Griffith¹⁰, Z. D. Grujic¹¹, P. G. Harris¹⁰, K. Kirch^{1,4}, P. A. Koss^{3,15}, J. Krempel¹, B. Lauss⁴, T. Lefort², Y. Lemière², A. Leredde⁶, M. Meier⁴, J. Menu⁶, D. A. Mullins⁷, O. Naviliat-Cuncic², D. Pais^{1,4}, F. M. Piegsa⁷, G. Pignol^{6,b}, G. Quéméner², M. Rawlik^{1,14}, D. Rebreyend⁶, I. Rienäcker^{1,4}, D. Ries¹², S. Roccia⁶, K. U. Ross¹², D. Rozpedzik⁵, W. Saenz², P. Schmidt-Wellenburg⁴, A. Schnabel¹³, N. Severijns³, B. Shen¹², T. Stapf⁴, K. Svirina⁶, R. Tavakoli Dinani³, S. Touati⁶, J. Thorne⁷, R. Virot⁶, J. Voigt¹³, E. Wursten³, N. Yazdandoost¹², J. Zejma⁵, G. Zsigmond⁴

¹ Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zurich, Switzerland

² Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France

- ³ Institute for Nuclear and Radiation Physics, KU Leuven, 3001 Leuven, Belgium
- ⁴ Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
- ⁵ Marian Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Cracow, Poland
- ⁶ LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble, France
- ⁷ Albert Einstein Center for Fundamental Physics, University of Bern, 3012 Bern, Switzerland
 ⁸ University of Kentucky, Lexington, USA
- ⁹ Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
- ¹⁰ Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, UK
- ¹¹ Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
- ¹² Department of Chemistry-TRIGA site, Johannes Gutenberg University, 55128 Mainz, Germany
- ¹³ Physikalisch Technische Bundesanstalt, Berlin, Germany

Collaboration of 12 institutes (mainly European) (25 permanents, 15 doc + post-doc)

Sensitivity goal: 10⁻²⁷ e cm

THE EUROPEAN

PHYSICAL JOURNAL C

From the measurement of two frequencies (parallel and antiparallel fields configurations)

$$d_n = \frac{\pi\hbar}{2|E|} (f_{n,\uparrow\downarrow} - f_{n,\uparrow\uparrow})$$

 \rightarrow Ramsey's method: required polarized neutrons

Two main challenges

neutron statistic & magnetic field uniformity and stability

Control of the magnetic field

Magnetically shielded Room (MSR): 6-layers mu-metal shield (suppression factor of 10⁵ for quasistatic field)

Magnetic field generation: internal coils system (64)

- 1 main B₀ coil + 63 correcting coils

Online measurements of the magnetic field:

- Hg comagnetometer (in situ): mag. field drift
- 112 Cs magnetometers : field non uniformities

n2EDM nEDM (2016) Chamber diameter 47 cm80 cm N(per cycle) 15.000120,000 180 sТ $180 \mathrm{s}$ E 11 kV/cm15 kV/cm0.750.8 α $11 \times 10^{-26} e \text{ cm}$ $2.6 \times 10^{-26} e \text{ cm}$ $\sigma(d_n)$ per day

Gain with respect to the nEDM experiment:

Based on 2016 UCN source performances

$$\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

T: storage time E: electric field intensity α: UCN polarization N: number of UCN

Sensitivity improvements: Number of UCN (x8): storage volume (x3) + optimized* connection source - apparatus Electric field intensity (+35 %): HV electrode better insulated /nEDM

Final sensitivity of $10^{-27} e \text{ cm} \rightarrow 500 \text{ days of data taking (4 years)}$

Systematics: mostly induced by the magnetic field non uniformities

Highly uniform and stable magnetic field (1 μ T) required

Field uniformity: $\sigma(B_z) < 170 \text{ pT}$ in the chambers Field stability : *30* fT/min Systematic effect $(10^{-28} e \text{ cm})$ Uncompensated gradient drift1Quadratic $v \times E$ 1Co-magnetometer accuracy1Phantom mode of order 33Phantom mode of order 53Dipoles contamination3Total6

*G. Zsigmond et al, Eur. Phys. J.A 56, 33 (2020).

French contributions to the n2EDM experiment

In2p3 hardware contributions

Spin analyser (LPC)

Neutron detectors + FASTER (LPC)

Conseil scientifique in2p3, 24/06/2024

ANR (570 k€, 2014-2019) + ERC (200 k€, 2016-2021):

- strong implication of the technical services (4 FTE / year between 2015 and 2022)

Components	Laboratory	Cost (k€)	Construction period	status
Vacuum vessel	LPC	130	2017 - 2021	operational
Switch $(\times 2)$	LPSC	110	2016 - 2023	operational
Internal coils system	LPC	80	2014 - 2022	operational
Mapping robot	LPSC	50	2017 - 2021	operational
UCN detectors $(\times 5)$	LPC	140	2013 - 2020	operational
Spin analyzers $(\times 2)$	LPC	90	2018 - 2021	operational
Hg polarizer	LPSC	100	2017 - 2024	installation ongoing
Data Monitoring	LPSC	2	2021 -	under development

+ data management (CCin2p3), data analysis, data blinding, systematic effects, strategy board

Commissioning results

UCN commissioning (2023)

First UCN in the apparatus in July 2023: number of neutrons too low by a factor 20 !!

Number of stored UCN end of 2023 (180 s): 24,000 (still a factor 5 missing / design goal)

Many tests performed during Fall 2023:

UCN transport: up to the chambers: OK ! during emptying phase: factor 2 too low / simulations

Storage capacity of the chambers:

- Insulator rings: redo the DPS coating \rightarrow increase of UCN statistic nEDM insulator ring \rightarrow increase of UCN statistic
- Electrodes : dummy copper electrodes \rightarrow increase of UCN statistic visual inspection : small spots peeled off

Electrode coating (DLC) and insulator coating (DPS): underperforming Two culprits: coating technique and surface roughness

Test chambers under construction (coating investigation during Fall 2024)

- new insulator ring (quartz instead of PS)
- new electrodes with exchangeable parts (test of coating procedures)

Magnetic field commissioning

Magnetic field characterization (2021-2022): close collaboration between LPC and LPSC

- internal coils system simulated, built and installed by LPC
- field characterization performed by LPSC

	Required	w/o optim.	w/ optim.
Statistical requirements			
Vertical uniformity $\sigma(B_z)$ (pT)	< 170	49.1 ± 1.5	34.7 ± 1.5
Systematical requirements			
$d_{n \leftarrow Hg}^{\text{false}}(\hat{G}_{30}\hat{H}_{30}) (10^{-28} e \text{cm})$	< 3	81.7 ± 2.9	2.3 ± 2.9
$d_{\rm n\leftarrow Hg}^{\rm false}(\acute{G}_{50}\acute{H}_{50}) (10^{-28} e{\rm cm})$	< 3	9.2 ± 0.7	0.7 ± 0.7
$d_{n \leftarrow Hg}^{\text{false}}(\acute{G}_{70}\acute{H}_{70}) (10^{-28} e \text{cm})$	< 3	0.3 ± 0.1	0.2 ± 0.1

Performances are excellent

Part of the systematics already below requirements

T. Bouillaud, P. Flaux, "An exceptionally uniform magnetic field for the n2EDM experiment" (LPC-LPSC); internal review.

Apparatus commissioning

Neutron frequency measurement:

Ramsey oscillating field method: operational ! neutron polarization, transport, storage and detection: OK !

Final polarization larger than in design goal (> 0.8) !!

Operational Performances Components $\sqrt{}$ Neutrons statistic 24,000 $\sigma(B_z) = 35 \text{ pT}$; systematics Magnetic field $\sqrt{}$ $\sqrt{}$ **High Voltage** +15 KV/cm $\sqrt{}$ Ramsey meas. $\alpha > 0.8$ $\sqrt{}$ Hg Comagnetometer $T_2 = 35 \text{ s} \rightarrow 100 \text{ s}$ Cs magnetometers

Run 3366, T = 180s, $t_{\pi/2} = 1.95s$ 1.00 0.75 0.50 Asymmetry A 0.25 0.00 -0.25 -0.50 $\alpha_{\rm TOP} = 0.80$ -0.75 $\alpha_{BOT} = 0.84$ -1.0027.470 27.475 27.480 27.485 27.460 27.465 $f_{\pi/2}$ (Hz)

2024 goal: first nEDM data

Current performances:

	N (per cycle)	Т	Е	α
06/2024	24,000	$180 \mathrm{~s}$	10 - $12.5~\mathrm{kV/cm}$	0.80 - 0.84

Sensitivity already better than in nEDM (1.9)

¹ 15 kV/cm last Wednesday !

Perspectives and conclusions

Perspectives and conclusions

Towards a final sensitivity of $10^{-27} e$ cm: two steps approach

Sensitivity already improved / nEDM (x1.9): new result is guaranteed

final sensitivity will depend on new chambers storage properties

Systematics : part of the systematics already under control (magnetic commissioning)

Second phase (2028-2030):

UCN source repair/upgrade (x3): D₂ container and UCN shutter exchanged, proton beam intensity, D₂ solid prod. final sensitivity will depend on UCN source performances (missing 2.2)

New operation mode: suppress the main systematic effect (false motional EDM) with magic B0 field (10 μ T)

Beyond 2030: nEDM measurement in superfluid Helium (SNS prototype move to Europe)?

UCN source (PSI)

Summary of our involvement since 2004:

There was always a French co-spoke (LPC or LPSC) person since 2004 (beside 2008-2012)

Project	Funding	$FTE \; (Tech. \; + \; Eng.)$	FTE (Phys)	PhD + Post.Doc
nEDM (2005-2020)	ANR (290 k€) in2p3 (250 k€)	1/year	2/year	7 PhD 1 Post-Doc
n2EDM (2015-2030)	ANR (570 k \in) ERC (200 k \in) in2p3 (430 k \in)	4/year (2015-2022) 3/year (2022-2024)	2,5/year	6 PhD 6 Post-Doc

French involvement in the n2EDM experiment: Budget : $\approx 20 \%$ Staff : $\approx 20 - 25 \%$

n2EDM experiment is the worldwide leader: UCN source operational + preliminary measurements ongoing

- sensitivity already better than for nEDM: any improvements bring us towards 10⁻²⁷ e cm

Strong involvement of the French teams in n2EDM ?

- The only CNRS staff is going to retire (LPSC) \rightarrow CR recruitment (LPC or LPSC)
- Keep on implying PhD & post-doc in the project
- Collaboration agreement (common funds) up to 2026: to be secured till 2030
- Support the mission to PSI for shift duty (3.5 weeks /year/person)
- L4M @ LPSC: magnetometry developments \rightarrow in2p3 support
- Maintenance of all French components (technical services: 1-2 FTE/year)

Merci

n2EDM

experiment

D2 crystal

(30 L @ 5 K, 4.5 kg)

Heavy water (300 K)

PSI UCN source: pulsed proton beam on a Deuterium crystal (5 K)

Production of ultracold neutrons (T < 300 neV) Can be stored in chambers for a few minutes

Pulsed UCN source

measurement performed every cycle (7 min)

UCN source improvements since 2016: Solid D2 improvements: x1.5 UCN source improvements in 2027: Flap repair: x1.3 D2 container lid: x1.8 Proton beam current intensity: x1.2 Source conditioning: x1.2

Pulsed proton beam (650 MeV, 2.2 mA)

Built at PSI for the nEDM project (start in 2011)

Pb spallation target

Control of the magnetic field

Magnetically shielded Room (MSR): 6-layers mu-metal shield (suppression factor of 10⁵ for quasistatic field) Active Magnetic Shield (AMS): suppress the ambient field variations around the MSR (a few μT) Thermo-house: controlled environment (temperature, humidity)

Storage chambers in the VT

Stringent magnetic requirements in the MSR:

- at the vacuum tank level: < nT @ 5 cm
- close to the precession chambers: < 20 pT @ 5 cm

Magnetic properties of every pieces installed are checked:

- small components : specific device (gradiometer developed at PSI)
- large pieces: at PTB Berlin (electrodes, vacuum tank ...)

Any magnetic dipole on the chambers walls must be removed (cleaning procedure)

A very large magnetically shielded room with an exceptional performance for fundamental physics measurements A large 'Active Magnetic Shield' for a high–precision experiment. *Eur.Phys.J.C*, 2023, 83 (11), pp.1061

Control of the magnetic field

Magnetic field generation: internal coils system (64)

- 1 main B₀ coil (optimized vertical solenoid)
- 56 squared correcting coils
- 7 gradients coils (G_{10} , G_{20} , G_{30} , G_{11} , G_{1-1} ...)

Online measurements of the magnetic field:

- Hg comagnetometer (in situ)
 - \rightarrow magnetic field drift + $\partial B_z / \partial z$ (G₁₀)
- 112 Cs magnetometers surrounding the chambers
 - \rightarrow field non uniformities (G_{30}, G_{50})

Offline measurements:

- magnetic field mapping (field non uniformities: G_{30} , G_{50} , G_{70})
- field mapping before and after the data taking
- offline corrections of some systematic effects (reproducibility)