

Patrice LEBRUN Maxime GOUZEVITCH

Wilfried da SILVA Luigi Del BUONO

Gilles BAN

Cristina CÂRLOGANU Nicolas CHADEAU (PhD) Thomas CLOUVEL (PhD) Geraldine FAURE Ana M. TEIXERA (TH)

@Y. Uchida

Fermion mixings in the SM

cLFV observed \Rightarrow New Physics in the lepton sector beyond minimally extended SM

© MJ Lee

OMET

 $6 \times 10^{24} \text{ kg}$

muon observables among the most sensitive to high scale new physics

European Particle Physics Strategy Update (2019)

	Collaboration	year	BR 90% C.L.
$\mu \rightarrow e \gamma$	PSI/MEG+MEG2	2023	4.2×10^{-13}
	PSI/MEG II	2026	6×10^{-14}
µ → eee	PSI/SINDRUM	1988	1×10^{-12}
	PSI/Mu3e	2026	$10^{-15} - 10^{-16}$
$\mu N \rightarrow eN (A,Z)$	PSI/SINDRUM	2006	7×10^{-12}
	FNAL/Mu2e Run I/ Run 2	2028 / 2030	$6.2 \times 10^{-16} / 3 \times 10^{-10}$
	JParc/COMET Phase I / Phase II	2028 / 20XX	$5 \times 10^{-15} / 7 \times 10^{-1}$

S. Davidson, B.Echenard, Eur. Phys. J. C 82 (2022) no.9, 836

Need to improve the SES by **10000** to reach **10** times higher in energy scale!

This requires:

Improve by a factor 10⁴ the present limit $R_{\mu e} < 7 \ 10^{-13}$

COMET, a 2 -stage experiment

C. Cârloganu, IN2P3 Scientific Council, 24.06.2024

COMET Phase 1

COMET Phase-I :: Electron Detectors (CyDet)

OMET

Cylindrical drift chamber (CDC)

1 Tesla magnetic

Muon stopping target

Four-hold

coincidence provides trigger and PID

4-rings of ultra fast scintillators read by optical fibres and SiPMs

Cylindrical trigger hodoscope (CTH)

Return yoke

C. Cârloganu, IN2P3 Scientific Courcil, 24.06.2024

COMET (JParc E21) Status :: Facility

0 10 20 30 40 50

Detection area

C. Cârloganu, IN2P3 Scientific Council, 24.06.2024

OMET

COMET (JParc E) Status :: Detectors

- CDC is currently taking cosmics at JParc
- 3 straw chamber modules already built
- Electron calorimeter prototype was successfully tested

Vacuum Pump

C. Cârloganu, IN2P3 Scientific Council, 24.06.2024

Vacuum gauge

ECAL 8x8 Prototype w/ test vacuum chamber

- Solenoid
- xy distribution)
- distribution

CY		20
	1	2
Cradle construction		
DS construction		
BS & DS installation and test		
Cradle installation test and alignment		
Cradle (CyDet) Setup		
StrEcal Construction		
CS construction		
CS installation		
CS stand alone test		
Magnet System Total test		
CS radiation shield construction		
CS radiation shield installation		
Primary target construction		
Primary target installation		
Beam line shield installation		
Muon Beam Monitor installation		
CyDet installation to DS		
Muon stopping target installation		
DAQ & Trigger installation		
CyDet test in DS		
Ge installation		
CRV installation		

French Contributions :: Computing @CCIN2P3

- CC-IN2P3 is the main MC data storage centre
- KEK and CCIN2P3 are foreseen to be the main COMET centres for storing raw data, with replication at further locations for safety

Year	Requested Hours*	Consumed Hours*	Consumed CPU*	Cores/year	Efficiency
2015	400 000	38 850	36 510	0	94 %
2016	12 000 000	10 318 205	8 901 264	94	86 %
2017	90 000 000	92 856 588	92 241 466	847	99 %
2018	140 000 000	58 994 582	52 069 092	538	88 %
2019	16 000 000	16 072 681	14 994 488	147	93 %
2020	180 000 000	34 716 729	29 360 699	317	85 %
2021	200 000 000	13 614 639	9 033 714	124	66 %
2022	140 000 000	2 844 466	2 157 021	26	76 %
2023	22 000 000	198 067 248	148 759 146	1 807	75 %
2024**	200 000 000	127 433 779	68 728 650	1 162	54 %
All	1 000 400 000	554 957 767	426 282 050	506	77 %

pbshoi (perma pbsthro

* in HS06.h. ** up to 21/04/2024 Significant increase of HTC CPU/h amount used by **comet.j-parc.jp VO** reported by the EGI Federation: In 2022: 2 426 000 HS06.h In 2023: 6 700 000 HS06.h

- CC-IN2P3 provides additional services :
 - Gitlab : management of all official packages. Currently more than 41 projects and 75 members.
 - Rocket.chat
 - iRods
 - JupyterLab
 - MariaDatabase

C. Cârloganu, IN2P3 Scientific Council, 24.06.2024

Туре	Media	Occupied Space	Quota
HPSS/iRods	Таре	160 TiB	300 TiB
iRods	disk	159 TiB	-
SPS	disk	76 TiB	120 TiB
Xrootd	disk	824 GiB*	3.5 PiB
pbshome	disk	208 GiB	1470 GiB
(permanent - backup)			(default: 20 GiB/
pbsthrong	disk	81 GiB	120 GiB
(permanent - backup)			

P Lebrun (IP2I-Lyon) W da Silva (LPNHE) P. Warrin-Charpentier (LPNHE)

Snapshot comparison (first half of 2023) Hadronic Physics at CCIN2P3: Belle2 : 86.52% COMET: 12.35%

... 4.35% of all HEP

Future needs: 200 M HS06.h per year number of GPU-equipped workstations needed for tracking under evaluation • only slight increase in storage until arrival of data

- 260 TB of data expected from COMET Phase I

Project : Improved track finding performance in high occupancy and study of Julia language performance with GPUs at CC-IN2P3

COMET (TDR) :

Track finding - occupancy 15 % (IC)

Reconstructed Drift Distance (Apollonius) \Rightarrow 4D Accumulator

(counting using interval arithmetic and divide and conquer method)

$$(x_i^{\text{Ax.}} - x_c)^2 + (y_i^{\text{Ax.}} - y_c)^2 - (R + \mathbf{d_i}^{\text{Ax.}})^2 = 0 \checkmark$$

$$\mathbf{d}_{\mathbf{i}}^{\mathbf{Ax.}} = f^{\mathbf{Ax.}} \left(d_{i}^{\mathrm{St.}}, \tan \tau_{i}, n_{i}^{\mathrm{Turn}}, \cdots, x_{c}, y_{c}, R, z_{0}, \lambda \right) \checkmark$$

Ideal case : hit efficiency ~ 99 %, purity ~ 99 % – COMET : occupancy 50 % (study ongoing)

DIO

Work by W da Silva (LPNHE) P Lebrun (IP2I-Lyon) JC Angélique (LPC Caen) L Del Buono (LPNHE) in collab. with IHEP (FCPPN/L), Osaka U, ICL

Signal electron

GPU-accelerated Interval Arithmetic to solve the Apollonius Problem applied to a Stereo Drift Chamber arXiv:2401.04576

French Contributions :: Tracking

Coupling machine learning (studies ongoing) with :

Apollonius Method on GPUs

Hough Transform on GPUs

Fixed Point Iteration Method on GPUs

Combinatorial Optimization

Persistent Homology

C. Cârloganu, IN2P3 Scientific Council, 24.06.2024

with Julia as external package in ICEDUST (study ongoing)

in order to run our Julia tracking package Apollonius.jl

Embedding Julia language in ICEDUST (C++ COMET Software)

Event (ResNet-18 + CO)

Triplets (FPIM)

GPU-Accelerated Finding Apollonius' Circle using Picard's iterations

French Contributions :: Mitigating the Atmospheric Background :: Simulations

Non analog simulation using Importance Sampling and Backward Monte Carlo

C. Cârloganu, IN2P3 Scientific Council, 24.06.2024

Rare muons and muon-induced electrons w/o CRV signals, undergoing high angle scattering before penetrating in the

detection volume

Very expensive to simulate with high accuracy with direct MC (G4), much better with a backward MC

French Contributions :: Mitigating the Atmospheric Background

Sneaking μ^+ with $p_{fit} = 101 \text{ MeV/c}$

Events	+ 4-fold + track(s)	$103.6 \le p_{\rm fit} \le 106.0$
l.0 × 10 ⁹	7259	640
l.4 × 10 ⁹	724	57

N Chadeau and G Faure (LPCA)

Mitigating the Atmospheric Background

(1) 105 MeV/c muons cannot be discriminated from electrons: \rightarrow Cosmic background > 2

(2) Only μ^+ can be discriminated from electrons:

 \rightarrow Cosmic background ~ 0.5

(3) Both μ + and μ - can be identified with 99% efficiency:

 \rightarrow Cosmic background < 0.1

CTH is the key detector for μ /e discrimination

OMET

N. Chadeau (LPCA) works currently on the CTH dE/dx discrimination power

- full detector response
- CTH occupancy / pileup

- attenuation in-between turns

- Phase-alpha detector efficiencies
- Cylindrical Triggering Hodoscope studies : response tested with electrons, muons and pions

Work continues @ JParc for Thomas and Nicolas (June, July 24)!

Qualification of the SiPMs Optimisation of their cooling system

C. Cârloganu, IN2P3 Scientific Council, 24.06.2024

OMET

French Contributions :: Proposal for GRPCs as possible technology for bridge-CRV in 2020

- layered PCB with x,y strips readout on opposite sides

Segmentation and number of chambers to be defined by physics simulations & measured performance

ASIC	# ASIC/ module	# ASIC / CRV 5 layers	# ASIC / CRV 7 layers
PETIROC	144	720	1008
LIROC	40	200	280
	Baselii	ne: 10 mm pito	ch

French Contributions :: Mitigating the Atmospheric Backaround :: Instrumentation

 \rightarrow Need to add a ground plane on the return lines.

French Contributions :: Mitigating the Atmospheric Background :: Instrumentation

C. Cârloganu, IN2P3 Scientific Council, 24.06.2024

Rate COMET Phase I :

Mars /Icedust : 8,64 10¹⁰ / 8 10⁹ neutrons

Beam	Ι(μΑ)	Total dose (µSv)	Total flux (n/cm2) i sample
16 0 8+	10	1.24 10 ¹⁴	6.211
⁴⁰ Ca ²⁰⁺	4	10 ¹⁴	5.02 1
36 Ar 18+	2	5.84 10 ¹⁴	2.921

French Contributions :: Radiation on Upstream CRV

Fluence over full operation \rightarrow integrity of the detectors

Instantaneous flux during operation \rightarrow Rate of hits \rightarrow significant loss of efficiency above 1.5 kHz/cm² \rightarrow fake vetoes \rightarrow dead time for COMET

C. Cârloganu, IN2P3 Scientific Council, 24.06.2024

Setup1: No hits (Hz/cm2) UShieldAllHitsProjHits (Hz/cm2) 2000 -1500 1000 -10³ Hit rate (Hz/cm²) 500 0E 10 cm shielding -500 -1000 -1500 -2000 E -2500 5000 5500 6000 8000 8500 6500 7000 7500 10^{-1} 10² 10 2000 -1500 -Testing shielding no 1: 3.5 cm Mg(BH4)2 after the BS 1000 E 10³ 500 E Hit rate (Hz/cm²) 0 E no shielding -500 --1000 E -1500 E -2000 -2500 -2500 -2500 -2500 5500 6000 6500 7000 7500 8000 8500 8500 9000 RPCs axis [mm]

French Contributions :: Radiation Studies Working group

Simulations with PHITs, ICEDUST, FLUKA, MCNPX, MARS

Rough design of shield

from KOTO

Poly shot(?) (granulated polyethylene

JC Angélique (LPC Caen) JL Gabriel (LPC Caen) K Ueno (Osaka U) Y. Fukao (KEK) et al

Conclusion

- COMET is a fixed target experiment \rightarrow the financial cost for the signatories is limited to the subsystems they contribute to the experiment
- High discovery potential, provided that it will have the foreseen luminosity in a timely manner
- COMET Phase I is expected to start data taking by end 2026
- COMET intends to improve by a factor 10⁴ the present limit $R_{\mu e} < 7 \ 10^{-13}$ in two running phases

