ASCARD

Assembly of SuperConducting Arrays for Radiation Detection

Leendert Hayen Conseil Scientifique de l'IN2P3 24 June 2024

Fundamental symmetries & RIBs

Fundamental symmetries: Precision measurements and symmetry tests of the Standard Model and Beyond

Fundamental symmetries & RIBs

Fundamental symmetries: Precision measurements and symmetry tests of the Standard Model and Beyond

Extremely rich field with connections to

- Nature of neutrino's
- Dark matter

- Big bang nucleosynthesis
- Cosmology

Three out of four fundamental forces (no gravity):

Standard Model

Three out of four fundamental forces (no gravity):

Standard Model

18 free parameters

Three out of four fundamental forces (no gravity):

Standard Model

18 free parameters

Great (annoyingly so), consistent with constraints at $\sim 10^{0-2}~\text{TeV}$

Three out of four fundamental forces (no gravity):

Standard Model

18 free parameters

Great (annoyingly so), consistent with constraints at $\sim 10^{0-2}~\text{TeV}$

Open questions: dark matter, gravity, neutrino masses, ...

What to do?

SM tests @ low energy: sensitive to off-shell exotic physics (footprints rather than actual beast)

What to do?

SM tests @ low energy: sensitive to off-shell exotic physics (footprints rather than actual beast)

Besides precision QED $(a_{e,\mu}, r_p, \ldots)$, weak interactions probe

- (C)P violation
- CKM unitarity
- Lorentz structure

What to do?

SM tests @ low energy: sensitive to off-shell exotic physics (footprints rather than actual beast)

Besides precision QED $(a_{e,\mu}, r_p, \ldots)$, weak interactions probe

- (C)P violation
- CKM unitarity
- Lorentz structure

All of these can be probed using (nuclear) β decay with RIBs!

Introduction: Weak interaction & CKM matrix

Cabibbo-Kobayashi-Maskawa matrix relates weak and mass eigenstates

$$\left(\begin{array}{c} d\\s\\b\end{array}\right)_{w} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb}\end{array}\right) \left(\begin{array}{c} d\\s\\b\end{array}\right)_{m}$$

Introduction: Weak interaction & CKM matrix

Cabibbo-Kobayashi-Maskawa matrix relates weak and mass eigenstates

$$\left(\begin{array}{c} d\\s\\b\end{array}\right)_{w} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb}\end{array}\right) \left(\begin{array}{c} d\\s\\b\end{array}\right)_{m}$$

Unitarity requires

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Introduction: Weak interaction & CKM matrix

Cabibbo-Kobayashi-Maskawa matrix relates weak and mass eigenstates

$$\left(\begin{array}{c} d\\s\\b\end{array}\right)_{w} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb}\end{array}\right) \left(\begin{array}{c} d\\s\\b\end{array}\right)_{m}$$

Unitarity requires

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

(nuclear) eta decay, meson decay (π , K), $|V_{ub}|^2 \sim 10^{-5}$

Violations are sensitive to TeV scale new physics!

SM has V-A structure, but more generally

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{G_{\text{F}}\,\tilde{V}_{ud}}{\sqrt{2}} \bigg\{ \bar{e}\gamma_{\mu}\nu_{L}\cdot\bar{u}\gamma^{\mu}[c_{V}-(c_{A}-2\epsilon_{R})\gamma^{5}]d + \epsilon_{\text{S}}\,\bar{e}\nu_{L}\cdot\bar{u}d \\ &-\epsilon_{P}\,\bar{e}\nu_{L}\cdot\bar{u}\gamma^{5}d + \epsilon_{\text{T}}\,\bar{e}\sigma_{\mu\nu}\nu_{L}\cdot\bar{u}\sigma^{\mu\nu}(1-\gamma^{5})d \bigg\} + \text{h.c.}, \end{split}$$

at the quark level

SM has V-A structure, but more generally

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{G_{\text{F}}\,\tilde{V}_{ud}}{\sqrt{2}} \bigg\{ \bar{e}\gamma_{\mu}\nu_{L}\cdot\bar{u}\gamma^{\mu}[c_{V}-(c_{A}-2\epsilon_{R})\gamma^{5}]d + \epsilon_{S}\,\bar{e}\nu_{L}\cdot\bar{u}d \\ &-\epsilon_{P}\,\bar{e}\nu_{L}\cdot\bar{u}\gamma^{5}d + \epsilon_{T}\,\bar{e}\sigma_{\mu\nu}\nu_{L}\cdot\bar{u}\sigma^{\mu\nu}(1-\gamma^{5})d \bigg\} + \text{h.c.}, \end{split}$$

at the quark level

All ϵ_i are proportional to $(M_W/\Lambda_{BSM})^2$, change kinematics $\epsilon_i \lesssim 10^{-4} \rightarrow \Lambda_{BSM} \gtrsim 15$ TeV assuming natural couplings

CKM unitarity: V_{ud} precision

Nuclear sandbox \rightarrow make hadronic theory easy

- Pion
- Neutron

- $\bullet~$ Superallowed $0^+ \rightarrow 0^+$
- T = 1/2 mirrors

CKM unitarity: V_{ud} precision

Nuclear sandbox \rightarrow make hadronic theory easy

• Pion

 $\bullet~$ Superallowed $0^+ \rightarrow 0^+$

• T = 1/2 mirrors

L.H. arXiv:2403.08485

 $\pi^+ \to \pi^0 e^+ \nu_e$ very hard (BR $\sim 10^{-8})$, SA new nuclear corrections!

Exotic currents

Competitive searches for scalar (ε_S) and tensor (ε_T) currents

Falkowski et al., JHEP 2021(4):126

Progress in nuclear ab initio theory

H. Hergert, Frontiers in Physics (2020)

Nuclear theory impact

Major advances in last decade, Effective Field Theory come into its own

Quantifiable theory uncertainties are game-changer for precision FS: paradigm shifts are strong driver of progress in the field

Nuclear theory impact

Major advances in last decade, Effective Field Theory come into its own

Quantifiable theory uncertainties are game-changer for precision FS: paradigm shifts are strong driver of progress in the field

Benefit from 'rigorous' theory overlap at low masses (NCSM, GFMC, QMC)

- $0^+ \rightarrow 0^+$:¹⁰C & ¹⁴O
- Promising isotopes: ⁶He, ¹¹C, ...

to confidently go higher (CC, IM-SRG, IM-GCM, ...)

Path forward for $0^+ \rightarrow 0^+$ & Mirror V_{ud}

V_{ud} and mirror extraction

If mixing ratio ρ is known, get V_{ud}

$$V_{ud}^2(1+
ho^2)=K imes(1+\delta_{
m corr})$$

Typically, need to measure angular correlations.

Either

- Polarized nuclei (A_{β})
- measure 2 final states $(a_{\beta
 u})$

but significant experimental difficulties (backscattering, cuts, ...)

L.H. arXiv:2403.08485

Fierz interference: Spectrum shape

Allowing exotic interactions (ϵ_S, ϵ_T) modifies β spectrum

$$P(E_e) = \text{Standard Model} \times \left(1 + \frac{b_F}{E_e}\frac{m_e}{E_e}\right)$$

Fierz interference

$$b_{F} = \pm 2\gamma \frac{1}{1+\rho^{2}} \operatorname{Re}\left\{\frac{g_{S}\epsilon_{S}}{g_{V}(1+\epsilon_{L}+\epsilon_{R})} + \rho^{2} \frac{4g_{T}\epsilon_{T}}{-g_{A}(1+\epsilon_{L}-\epsilon_{R})}\right\}$$

Fierz interference: Spectrum shape

Allowing exotic interactions (ϵ_S, ϵ_T) modifies β spectrum

$$P(E_e) = \text{Standard Model} \times \left(1 + \frac{b_F}{E_e}\frac{m_e}{E_e}\right)$$

Fierz interference

$$b_{F} = \pm 2\gamma \frac{1}{1+\rho^{2}} \operatorname{Re}\left\{\frac{g_{S}\epsilon_{S}}{g_{V}(1+\epsilon_{L}+\epsilon_{R})} + \rho^{2} \frac{4g_{T}\epsilon_{T}}{-g_{A}(1+\epsilon_{L}-\epsilon_{R})}\right\}$$

Promising to directly measure spectra, but also tricky

- Detector linearity, energy losses, pile-up,...
- Theory spectrum calculation

Naviliat-Cuncic, Gonzalez-Alonso PRC 94, 035503

LH et al., RMP 90 015008

Recoil spectroscopy

Measuring recoil kinetic energies has substantial benefits

- Strong spectral dependence on $a_{\beta\nu}$ in β^{\pm}
- Mono-energetic lines in electron capture

Recoil spectroscopy

 V_{ud} from mirrors

Measuring recoil kinetic energies has substantial benefits

- Strong spectral dependence on $a_{\beta\nu}$ in β^{\pm}
- Mono-energetic lines in electron capture

Fierz with counting experiment

$$rac{\lambda_{EC}}{\lambda_{eta^+}} = \sum_{x=K,L,\dots} rac{f_x}{f_{eta^+}} \left[rac{1+b_F m_e/E_x}{1-b_F m_e/\overline{E}}
ight]
onumber \ imes (1+0.001 imes \delta_{ ext{theory}})$$

Need novel technology

Quantum sensors

Many kinds of quantum-based sensors developed and in-use

Low-gap materials \rightarrow high (eV-scale) resolution

Meet superconducting tunnel junctions

- Two electrodes separated by a thin insulating tunnel barrier
- Superconducting energy gap ∆ is of order ~meV
 → High Energy Resolution (~1 eV)
- Timing resolution on the order of 10 μs making it among the fastest high-resolution quantum sensors available

 Ideal for RIB experiments at ISAC

Superconducting tunnel junctions

STJ performance and characterization

Adiabatic Demagnetization

Refrigerator (Base Temperature ~70 mK)

> Pulsed laser (3.5 eV) fed through optical fiber to 0.1 K stage of the ADR

 Illumination of STJs provides a comb of peaks at integer multiples of 3.5 eV

 $\hfill \sqsubseteq$ can be used as the in-situ calibration source

• Intrinsic resolution of our Ta-based devices:

1-2.5 eV FWHM @ 10-200 eV

• Stable response and small quadratic non-linearity

BeEST@TRIUMF

⁷Be electron capture

Measure recoil + Auger electrons

PRL 126 (2021) 021803; PRL 125 (2020), 032701

SALER@FRIB: First STJ online measurements

- Acceptance testing complete
- Commissioning started
- Will continue through 2024

ASCARD

SALER will be very useful prototype, but several challenges

- Complicated energy deposits from e^{\pm} in Ta-STJs
- Complex material-dependent effects for electron capture in Ta
- Awkward implantation scheme

ASCARD

SALER will be very useful prototype, but several challenges

- Complicated energy deposits from e^{\pm} in Ta-STJs
- Complex material-dependent effects for electron capture in Ta
- Awkward implantation scheme

Introducing

Assembly of SuperConducting Arrays for Radiation Detection

AI-STJs

Move from Nb/Ta-based STJs to Al

- Much larger electron MFP & well-known material response
- Increased resolution (lower $T_c \propto \Delta$)
- Simplified material effects in electron capture

Basic Al-STJ configuration functional

but figuring out poor resolution, wiring, ...

Superconducting tunnel junctions

Concept to couple to beam line

Investigate eliminating thermal windows (cryogenic beam line?)

ASCARD statistical sensitivity

Assuming **10⁸ decays**, recoil spectroscopy on <u>all mirrors</u> (except ³H) achieves

<u>δa/a ~ 10-4</u>

Species	$\mathcal{F}t^{\mathrm{mirror}}$	$\delta a_{\beta\nu} [10^{-4}]$	$\delta V_{ud}[10^{-4}]$
n	1043.58(67)	2.6	3.6
^{3}H	1130.9(10)	49	96
¹¹ C	3916.9(19)	2.0	2.8
^{13}N	4681.3(49)	1.6	5.0
^{15}O	4402.5(59)	1.5	6.7
17 F	2291.2(19)	1.9	4.8
¹⁹ Ne	1721.5(10)	1.9	4.0

- Can reach 10⁸ decays in 1 day with ~128 pixels
- Systematics budget in progress

L. Hayen and A. Marino (2023)

Many possibilities at DESIR!

Nuclear Physics Precision structure and decay measurements of beta decaying "rare" isotopes Quantum Engineering and Low-Temperature Physics Superconductors operated at mK-scale temperatures and optical control and manipulation of fg masses Atomic Physics eV-scale atomic screening and rearrangement effects that result from nuclear transmutations Materials Imaging and Quantum Simulation In-medium effects of the electronic states generate a need for an "atom-by-atom" map of superconductors **Particle Physics** Science Precision laboratory searches for new physics and interactions in the sub-GeV domain

Auger spectroscopy for medical use

Sadaf Aghevliana, Amanda J. Boyle, Raymond M. Reilly, Advanced Drug Delivery Reviews 109, 102-118 (2017)

Transition Edge Sensor (TES)

Magnetic Microcalorimeter (MMC)

thermal link

thermal bath

Superconducting Tunnel Junction (STJ)

Fundamental symmetries lives at the interface, connections to many different fields

Nuclear β decay searches provide crucial input through variety of experiments, quantum sensors very exciting

ASCARD can become Europe's first STJ@RIB experiment, learn lessons from emerging technology

Highly competitive new physics searches using new measurement schemes

Superconducting tunnel junctions (Slide by Kyle Leach)

- Pulsed 355 nm (3.49965(15) eV) laser at 5 kHz fed through optical fiber to 0.1 K stage
- Illumination of STJ provides a comb of peaks at integer multiples of 3.5 eV
- Intrinsic resolution of our Ta-based devices is between ~1.5 and ~2.5 eV FWHM at ~10 – 200 eV
- Stable response and small quadratic nonlinearity (10⁻⁴ per eV)

The BeEST experiment (Slide by Kyle Leach)

∂TRIUMF

Rare-isotope implantation at TRIUMF-ISAC

A. Samanta et al., Phys. Rev. Mat. (in press) (2022) S. Friedrich et al., J. Low Temp. Phys. (in press) (2022) C. Bray et al., J. Now Temp. Phys. (in press) (2022) K.G. Leach and S. Friedrich, J. Low Temp. Phys. (in press) (2022) S. Friedrich et al., Phys. Rev. Lett. **126**, 021803 (2021) S. Friedrich et al., Phys. Rev. Lett. **127**, 032701 (2020) S. Friedrich et al., J. Low Temp. Phys. **200**, 200 (2021)

Ta, Al, and Nb-based STJ Sensors

BeEST implantation

SALER implantation

11 MeV ¹¹C Beam w/ 8µm Al foil

For a given energy, initial beam from <u>ReA</u> can be +/- a few % in spread

- 1% spread gives ~50 nm width in the depth profile
 - Total ¹¹C⁺ to achieve goal: ~10⁷ (< 2 days of beam @ 100 pps)
 - Purity: 1 part in 10⁶

11.1 MeV ¹¹C Beam

10.9 MeV ¹¹C Beam

