


Fundamental symmetries & RIBs

Fundamental symmetries: Precision measurements and

symmetry tests of the Standard Model and Beyond

Extremely rich field with connections to

• Nature of neutrino’s

• Dark matter

• Big bang nucleosynthesis

• Cosmology
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Meet the Standard Model

Three out of four

fundamental forces (no gravity):

Standard Model

18 free parameters

Great (annoyingly so), consistent

with constraints at ∼ 100−2 TeV

Open questions: dark matter,

gravity, neutrino masses, . . .
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Introduction: Standard Model

What to do?

SM tests @ low energy: sensitive to off-shell exotic physics

(footprints rather than actual beast)

Besides precision QED (ae,µ, rp, . . .), weak interactions probe

• (C)P violation

• CKM unitarity

• Lorentz structure

All of these can be probed using (nuclear) β decay with RIBs!
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Introduction: Weak interaction & CKM matrix

Cabibbo-Kobayashi-Maskawa matrix relates weak and mass

eigenstates d

s

b


w

=

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 d

s

b


m

Unitarity requires

|Vud |2 + |Vus |2 + |Vub|2 = 1
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Introduction: Weak interaction & CKM matrix

Cabibbo-Kobayashi-Maskawa matrix relates weak and mass

eigenstates d

s

b


w

=

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 d

s

b


m

Unitarity requires

|Vud |2 + |Vus |2 + |Vub|2 = 1

(nuclear) β decay, meson decay (π, K), |Vub|2 ∼ 10−5

Violations are sensitive to TeV scale new physics!
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What would new physics look like?

SM has V -A structure, but more generally

Leff = −GF Ṽud√
2

{
ēγµνL · ūγµ[cV − (cA − 2ϵR)γ

5]d + ϵS ēνL · ūd

− ϵP ēνL · ūγ5d + ϵT ēσµννL · ūσµν(1− γ5)d

}
+ h.c.,

at the quark level

All ϵi are proportional to (MW /ΛBSM)2, change kinematics

ϵi ≲ 10−4 → ΛBSM ≳ 15 TeV assuming natural couplings
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CKM unitarity: Vud precision

Nuclear sandbox → make hadronic theory easy

• Pion

• Neutron

• Superallowed 0+ → 0+

• T = 1/2 mirrors
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L.H. arXiv:2403.08485
π+ → π0e+νe very hard (BR ∼ 10−8), SA new nuclear corrections!
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Exotic currents

Competitive searches for scalar (εS) and tensor (εT ) currents

Falkowski et al., JHEP 2021(4):126 9



Progress in nuclear ab initio theory

H. Hergert, Frontiers in Physics (2020)
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Nuclear theory impact

Major advances in last decade, Effective Field Theory come into its

own

Quantifiable theory uncertainties are game-changer for precision

FS: paradigm shifts are strong driver of progress in the field

Benefit from ‘rigorous’ theory overlap at low masses (NCSM,

GFMC, QMC)

• 0+ → 0+ :10C & 14O

• Promising isotopes: 6He, 11C, . . .

to confidently go higher (CC, IM-SRG, IM-GCM, . . .)

Path forward for 0+ → 0+ & Mirror Vud
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Vud and mirror extraction

If mixing ratio ρ is known, get Vud

V 2
ud(1 + ρ2) = K × (1 + δcorr)

Typically, need to measure angular

correlations.

Either

• Polarized nuclei (Aβ)

• measure 2 final states (aβν)

but significant experimental

difficulties (backscattering, cuts,

. . .)

L.H. arXiv:2403.08485
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Fierz interference: Spectrum shape

Allowing exotic interactions (ϵS , ϵT ) modifies β spectrum

P(Ee) = Standard Model×
(
1 + bF

me

Ee

)
Fierz interference

bF = ±2γ
1

1 + ρ2
Re

{
gSϵS

gV (1 + ϵL + ϵR)
+ ρ2

4gT ϵT
−gA(1 + ϵL − ϵR)

}

Promising to directly measure spectra, but also tricky

• Detector linearity, energy losses, pile-up,. . .

• Theory spectrum calculation

Naviliat-Cuncic, Gonzalez-Alonso PRC 94, 035503

LH et al., RMP 90 015008
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Recoil spectroscopy

Measuring recoil kinetic energies has substantial benefits

• Strong spectral dependence on aβν in β±

• Mono-energetic lines in electron capture

Vud from mirrors Fierz with counting experiment

λEC

λβ+
=

∑
x=K ,L,...

fx
fβ+

[
1 + bFme/Ex

1− bFme/E

]
× (1 + 0.001× δtheory)

Need novel technology
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Quantum sensors

Many kinds of quantum-based sensors developed and in-use

Low-gap materials → high (eV-scale) resolution 15



Meet superconducting tunnel junctions

16



Superconducting tunnel junctions

17



STJ performance and characterization
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BeEST@TRIUMF

7Be electron capture

Measure recoil + Auger electrons

PRL 126 (2021) 021803; PRL 125 (2020), 032701

19



SALER@FRIB: First STJ online measurements

20



ASCARD

SALER will be very useful prototype, but several challenges

• Complicated energy deposits from e± in Ta-STJs

• Complex material-dependent effects for electron capture in Ta

• Awkward implantation scheme

Introducing

Assembly of SuperConducting Arrays for Radiation Detection
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Al-STJs

Move from Nb/Ta-based STJs to Al

• Much larger electron MFP & well-known material response

• Increased resolution (lower Tc ∝ ∆)

• Simplified material effects in electron capture

22



Al-STJ challenges

Basic Al-STJ configuration functional

but figuring out poor resolution, wiring, . . .

23



Superconducting tunnel junctions

Concept to couple to beam line

Investigate eliminating thermal windows (cryogenic beam line?) 24



ASCARD statistical sensitivity

25



Many possibilities at DESIR!
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Auger spectroscopy for medical use

27



Summary & Outlook

Fundamental symmetries lives at the interface, connections to

many different fields

Nuclear β decay searches provide crucial input through variety of

experiments, quantum sensors very exciting

ASCARD can become Europe’s first STJ@RIB experiment, learn

lessons from emerging technology

Highly competitive new physics searches using new measurement

schemes
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Superconducting tunnel junctions (Slide by Kyle Leach)
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The BeEST experiment (Slide by Kyle Leach)
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BeEST implantation

31



SALER implantation
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