

bSTILED b:Search for Tensor Interactions in nucLear bEta Decay

IN2P3 Scientific Council June 24-25 2024

Strasbourg, France

Context and motivations

- Description of the project
- Genesis, Resources and Time Line
- Summary and outlook

Scientific Context : search for BSM Physics in beta decay

- Search for ϵ_S , ϵ_T exotic contributions of weak interaction Dominant Vector - Axial vector (V – A) form established in SM but no fundamental reason to exclude Scalar (S) and Tensor (T) contributions \rightarrow search window for BSM physics
- Search at low energy, in β -decay

Precision measurements of Ft-values, β -spectrum shape, correlations between leptons momenta, spin, and nuclear spin

(linear dependence, impact β -spectrum)

Scientific Context : search for BSM Physics in beta decay

- Search for ϵ_S , ϵ_T exotic contributions of weak interaction Dominant Vector - Axial vector (V - A) form established in SM but no fundamental reason to exclude Scalar (S) and Tensor (T) contributions \rightarrow search window for BSM physics
- Search at low energy, in β -decay

Precision measurements of Ft-values, β -spectrum shape, correlations between leptons momenta, spin, and nuclear spin

(linear dependence, impact β -spectrum)

• Search at High energy colliders (LHC)

Channels $pp \rightarrow e + MET + X$ interpreted with the effective field theories (EFTs)

V. Cirigliano, M.J. Ramsey-Musolf, Prog. Part. Nucl. Phys. 71 (2013)

• EFTs input:

Provides the energy scale probed for the BSM Physics $\epsilon_i \sim 10^{-3} \rightarrow \Lambda_{BSM} \sim 5 TeV$

Compare constraints obtained at high and at low energy

M. Gonzalez-Alonso, et al. Prog. Part. Nucl. Phys. 104 (2019)

A. Falkowski, et al., J. High Energ. Phys. 2021 (2021)

Scientific context: constraints on new physics (S and T couplings)

• Complementarity of searches at High and Low energy

90% CL constraints assuming left-handed neutrinos (higher sensitivity for β -decay)

Pion decay

Ft-values from $0^+ \rightarrow 0^+$ transitions $\rightarrow b_F$

All neutron and nuclear beta decay (correlations and *Ft*-values) LHC pp \rightarrow e + MET + X

Scientific context: goal of bSTILED

• Complementarity of searches at High and Low energy

X. FLECHARD

Context and motivations

- Description of the project
- Genesis, Resources and Time Line
- Summary and outlook

Principle of the bSTILED project

• Extract the Fierz term b_{GT} from the precise measurement of the β -spectrum in ⁶He decay

Phase I: $\Delta b_{GT} = 4 \times 10^{-3}$ Phase II: $\Delta b_{GT} = 1 \times 10^{-3}$

The choice of ⁶He

- Pure GT transition (GS to GS) only sensitive to tensor currents
- Endpoint energy providing high sensitivity to b_{GT}
- Theoretical corrections known with high precision
- Convenient half-life for implantation-decay cycles, copiously produced at GANIL

⁶He

Phase I: bSTILED experiments at GANIL

- Use 4π detection setups to suppress backscattering Use implantation-decay cycles 3 s - 12 s (cst BKGD subtraction)
- Test two techniques (different systematic effects)
 - Low energy implantation \rightarrow LIRAT/GANIL
 - High energy implantation \rightarrow LISE/GANIL

IN2P3 Scientific Council, Strasbourg June 24 2024

⁶He⁺

25 keV

Use implantation-decay cycles 3 s - 12 s (cst BKGD subtraction)

- Test two techniques (different systematic effects)
 - Low energy implantation \rightarrow LIRAT/GANIL ٠
 - High energy implantation \rightarrow LISE/GANIL

YAP

LIRAT experiment

2 detectors under vacuum, light cross talk between PMTs

Phase I: bSTILED experiments at GANIL

IN2P3 Scientific Council, Strasbourg June 24 2024

2 detectors under vacuum,

light cross talk between PMTs

YAP

Phase I: bSTILED experiments at GANIL

- Use 4π detection setups to suppress backscattering
 Use implantation-decay cycles 3 s 12 s (cst BKGD subtraction)
- Test two techniques (different systematic effects)
 - Low energy implantation \rightarrow LIRAT/GANIL
 - High energy implantation \rightarrow LISE/GANIL

X. FLECHARD

²⁴¹Am

source

YAP

• LISE experiment: implant ⁶He nuclei 10 mm deep in the YAP detector (max β-range 4mm)

LISE experiment

Background due to nuclear reactions during implantation phase

<image>

• Phase II: push the most promising technique to gain a factor 4 (if possible)

Choice of the detectors

Use YAP:Ce as main scintillator → fast, linear, less Bremsstrahlung escape coupled with plastic scintillator (veto) and ²⁴¹Am source (gain monitoring)

Context and motivations

- Description of the project
- Genesis, Resources and Time Line
- Summary and outlook

• Collaborative effort between three French institutions (2020):

- Detector design & characterization, DAQ, data analysis and systematic effects (X. Fléchard, E. Liénard, G. Quémener, O. Naviliat-Cuncic & technical staff)
- Production of ⁶He beams at low- and high-energy with sufficient intensity and purity (J-Ch. Thomas & technical staff)
- Production of calibration sources for the detectors calibration (X. Mougeot & S. Leblond)

500 nm thick sources

GANI

Laboratoire National

Henri Becquere

Genesis and resources

- Collaborative effort between three French institutions (2020):
 - Detector design & characterization, DAQ, data analysis and systematic effects (X. Fléchard, E. Liénard, G. Quémener, O. Naviliat-Cuncic & technical staff)
 - Production of ⁶He beams at low- and high-energy with sufficient intensity and purity (J-Ch. Thomas & technical staff)
 - Production of calibration sources for the detectors calibration (X. Mougeot & S. Leblond)
- Project submitted to ANR and GANIL PAC in 2020
 - Both experiments accepted by the GANIL PAC with high priority
 - Approved for funding by ANR (290k€ for 4 years, extended to 2026)
 - PhD of M. Kanafani (2020-2023) funded by Region Normandie
 - PhD of R. Garreau (2023-2026) funded by IN2P3
 - Anticipate no request for funding until 2026

X. FLECHARD

IN2P3 Scientific Council, Strasbourg June 24 2024

X. FLECHARD

• Work on *b_{GT}* extraction and Systematic errors still ongoing...

	Systematic effect	Δb_{GT}	
ſ	Resolution function (adding a second coefficient)	$< 2 \times 10^{-3}$	G4 simulations
	<i>b</i> _{WM} Theoretical	2.6×10^{-4}	500000 -
	Radiative corrections	3.7×10^{-4}	400000 -
	Bremsstrahlung escape (5% error on G4) Cerenkov (10% error on G4)	$2.5 \times 10^{-3} \longrightarrow 5 \times 10^{-4}$	200000 - 200000 - 100000 - -Initial energy
			-Deposited energy

Need dedicated measurements

Enerav (keV)

studied

• Work on *b_{GT}* extraction and Systematic errors still ongoing...

	Systematic effect	Δb_{GT}	
	Resolution function (adding a second coefficient)	$< 2 \times 10^{-3}$	G4 simulations
died	b_{WM}TheoreticalRadiativecorrections	2.6×10^{-4} 3.7×10^{-4}	Source of the second
stu	Bremsstrahlung escape (5% error on G4) Cerenkov (10% error on G4)	2.5×10^{-3} 5×10^{-4}	
യ	Pile-up (preliminary)	$< 1 \times 10^{-3}$	
	Events selections (to be refined)	6×10^{-3}	
o	Calibration slope for BKGD run	2×10^{-3}	
	Detector non proportionality (preliminary)	~10-2	Most of the work to come
	Total	?	

M. Kanafani, PhD Thesis, UniCaen (2023)

Phase I - step 2: high energy experiment at LISE/GANIL

- May 2023: ~ 3 days, 4 sets of measurements, 1.1 10⁸ good events
 2 crystal sizes, 2 distances, 2 beam intensities
- Collected statistics $\rightarrow \Delta b_{GT(stat)} = 1.2 \ 10^{-3}$
- Beam characteristics analysis:

Hodoscope \rightarrow ~ 99% implantation in the center of the YAP (r<6 mm) Implantation energy spectrum \rightarrow no potential beam contaminants (<10⁻⁵)

• Induced BKGD study:

Work in progress...

Phase I : byproducts

• Bremsstrahlung escape characterization: using MTAS detector @ FRIB (April 2024)

Work in progress...

IN2P3 Scientific Council, Strasbourg June 24 2024

X. FLECHARD

- Context and motivations
- Description of the project
- Genesis, Resources and Time Line
- Summary and outlook

- No difficulty to reach requested statistics for the two techniques - $\Delta b_{GT(stat)} < 1.10^{-3}$ can be reached in 1 week (for the 2 experiments)
- No dramatic systematic effect (yet) that could prevent to reach the goal of phase I

 Error due to potential YAP detector non proportionality ~ 1% → to be improved
- Several significant byproducts associated to phase I
- Too early to choose between low & high energy techniques
 - Need to progress on analysis of both experiments (PhD Romain Garreau, post-doc A. Kadyan in fall 2024)
 - Redo experiment at LIRAT with shielding and reduced implantation on collimator?
- Focus now on YAP detector characterization (non-proportionality)
 - Detector studies with sources from LNHB (β and CE) (PhD G. Craveiro & post-doc A. Kadyan)
 - Detector studies with γ sources combined with scintillation light propagation simulations (internship H. Azakaye, post-docs A. Kadyan & S. Vanlangendonck)
 - Measurements with electron beam ? (ATRON, Cherbourg 0.2 MeV 3.8 MeV)

Collaboration

PhD & Postdoc technical support

D. Etasse

X. Fléchard

- R. Garreau
- L. Hayen
- M. Kanafani
- F. Lebourgeois
- E. Liénard
- J. Lory
- O. Naviliat-Cuncic
- J. Perronnel
- Ch. Vandamme

X. Mougeot S. Leblond G. Craveiro

J.C. Thomas V. Morel F. Marie-Saillenfest

MICHIGAN STATE UNIVERSITY

T.E. Haugen O. Naviliat-Cuncic

O. Naviliat-Cuncic

S. Vanlangendonck