
Physically informed neural 
networks for surrogate 
models of gravitational 

wave signal
ANR Ricochet - Lille - 13/06/2024

Thomas Barreira, Pierre Palud
Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France 1



Table of contents

1. gravitational waves models and surrogates

2. physics-informed neural networks

3. Application : damped harmonic oscillator

Disclaimer: work in progress

Thomas Barreira, Pierre Palud 2



Gravitational wave models and uses
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MergerInspiral Ringdown

3 approaches in modelling :

● Numerical relativity
● Phenomenological
● Effective One Body (EOB)

Numerical solvers: slow for parameter inference

→ Use of PINNs

For now: model the BH dynamics 
- major part for the GW generation
- simple models. Precession and consequences 

on polarization will come next



EOB : center of mass frame
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Inspiral phase

BH 1

BH 2

Trajectory of an effective body 
in the center mass frame

Equivalent metric leads 
to a Hamiltonian



Hamiltonian definition: levels of complexity
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High PN order GW 
emission modelling

Non-aligned spinning 
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PN order up to 6 or 7

spin-aligned BHs

Simple flux model



First simple Hamiltonian
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Hamiltonian for non-spinning BHs 

radius

phase

conjugate moment of radius

conjugate moment of phase

total mass and reduced mass



First simple Hamiltonian (with adimensionalisation)

7

Hamiltonian for non-spinning BHs 

radius

phase

conjugate moment of radius

conjugate moment of phase
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Using



Machine learning approach 

Context: numerical models and surrogates
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Physical 
model Numerical 

model
Dataset

Surrogate 
modelfinite elements, etc.

typically slow the more points, the 
better interpolation / 

regression problem

For efficient surrogate models: 
exploitation of physics knowledge

e.g., Schmidt, Cano, Palud



Machine learning approach 

Context: Physics informed neural networks
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Physical 
model Numerical 

model
Dataset

Surrogate 
modelfinite elements, etc.

typically slow the more points, the 
better

For efficient surrogate models: 
exploitation of physics knowledge

e.g., Schmidt, Cano, Palud

Proposition with PINNs: 
derive a surrogate model 

directly from the physical model
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time

initial conditions

PDE parameters
defined on cartesian 
product of intervals

Physics-informed neural networks
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Physics-informed neural networks
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Physics-informed neural networks
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PINN applied to a hydrodynamics PDE (Burger’s eq.).
Figure from Raissi et al. (2017).

PINN applied to The Schrödinger equation.
Figure from Raissi et al. (2017).

Easier problem than introduced. Introduce a spatial variable, 
but solves for fixed initial conditions and eq. parameters 
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Physics-informed neural networks
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Equation 
adimensionalisationLoss balancingCausal loss

Curriculum 
learning

Fourier layers 
(Random, sine 

activation, etc.)

Random Weight 
Factorization

Output 
structuring

ResNet / 
DenseNet / 

standard 
feedforward

Architecture Training Others

Self-adapted
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Pre-training / 
use of solver 

data



Physics-informed neural networks
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Causal loss and Fourier features
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Causal loss
Fourier layers 
(Random, sine 

activation, etc.)

How to efficiently learn oscillations? How to enforce first learning for low t, close to IC ?

for at least first layer: use a sine activation function

questions (each addressed in the literature) :
● initialize weights at random, with which distribution?
● train weights or not



Application: damped harmonic oscillator
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Neural network 1 :

Fixed parameters (k = 16, beta = 0,1,4)
Input initial conditions (from -1 to 1)

Neural network 2 :

Input parameters (k = 10 to 16, beta = 0 to 4)
Fixed initial conditions (y(0) = 1, yp(0) = 0)

Neural network 0 :

Input time only



Application: damped harmonic oscillator
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3 architectures 2 learning strategies

causal loss VS non-causal loss
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Application 0 : input t only, Losses



Beta small = harder

Causal >> NonCausal

using Causal: critical for 
small beta.

LinSin > LinTanh
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Application 0 : input t only, squared error
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Application 1 : input (t,ic), Losses



Application 1 : input (t,ic), MSE(ic)
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Application 1 : input (t,ic), MSE(t)
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averaged 
over ic

illustration 
on some 
specific ic

(1, 0)

(0.5, 0.25)

(1, -1)

(0, 0)



Application 2 : input (t, param) Losses
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linTanh less 
efficient



Application 2 : input (t, param) MSE(param)
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Beta small = harder

k big = harder only 
for Causal

NonCausal 
independent of k

Causal not better 
than NonCausal !

LinTanh worse



Application 2 : input (t, param) MSE(t)
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Conclusions
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Overall regarding PINNs:
● In SciML community: big hype, but application not straightforward. Lots of handcrafting 

and tests.

● But PINNs struggle to capture high frequency oscillations.

● Currently: multiple papers with several methods, hard to keep up with literature

In our project for GW generation: 
● difficulties with simple cases

● requires further study of PINNs, future steps on Hamiltonian are ready.



Thank you for your attention
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