Rare Kaon Decays: Opportunities at CERN

Augusto Ceccucci/CERN

Marseille, November 15, 2004

15/11/2004 MARSEILLE

Why study Rare Kaon Decays

- Search for explicit violation of Standard Model
 - **Lepton Flavour Violation**
- Probe the flavour sector of the Standard Model
 - FCNC
- Test fundamental symmetries
 - CP,CPT
- Study the strong interactions at low energy

- Chiral Perturbation Theory, Form Factors

CP-Violation in SM

A phase in the CKM matrix leads to CP-Violation

$$\begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} N_g = 2 \quad N_{phase} = 0 \Rightarrow \text{No CP-Violation}$$

$$N_g = 3 \quad N_{phase} = 1 \Rightarrow \text{CP-Violation Possible}$$

Predictions:

- Direct-CP Violation: ε ' / $\epsilon \neq 0$ NA48, KTeV
- CP violation in the B meson sector: $A_{CP}(J/\psi K_s)$, BaBar, Belle

Paradigm shift:

Look for inconsistencies (i.e. New Physics) in SM using observables with small theoretical errors

Kaon Rare Decays and the SM

15/11/2004 MARSEILLE

- These rare kaon decays are second order weak interactions mediated by Z pinguins that could be sensitive to new physics
- A deviation from the predicted rates of SM would be a clear indication of new physics
- When/if new physics will appear at the LHC, the rare decays may help to understand the nature of it

Kaons @ CERN

Past:

NA48: Direct CP Violation Established !

NA48/1: First Observations of K_s^o ? π^o ee ($\mu \mu$)

• Mixing CP-Violation in K_{L}^{o} ? π^{o} ee ($\mu \mu$) measured !

Present:

NA48/2: K⁺ / K⁻ Taken data in 2003/2004

Search for Direct CP-Violation

• Inspiration to study K^+ ? $\pi^+ \nu^- \nu^-$ in flight Future Opportunities:

Short to medium term (? 2010)

NA48/3 K⁺ ? π + ν ν TODAY MAIN FOCUS

Longer term

NA48/4 K_{L}^{o} ? π^{o} ee ($\mu \mu$)

NA48/5 $K_{L}^{0} ? \pi^{0} v v$ 15/11/2004 MARSEILLE A. Cec

NA48 Data Taking so far...

Direct CP-Violation established

15/11/2004 MARSEILLE

NA48 Vacuum Tank

NA48 Detector

15/11/2004 MARSEILLE

NA48:Direct CP-Violation Re ϵ ' / ϵ =14.7 ± 2.2 ×10⁻⁴

Top "down-loaded" articles from Physics Letters B:

- 1. The hierarchy problem and new dimensions at a millimeter http://dx.doi.org/10.1016/S0370-2693(98)00466-3 Physics Letters B, Volume 429, Issues 3-4, 18 June 1998, Pages 263-272 Nima Arkani-Hamed, Savas Dimopoulos and Gia Dvali
- 2. A precision measurement of direct CP violation in the decay of neutral kaons into two pions http://dx.doi.org/10.1016/S0370-2693(02)02476-0 Physics Letters B, Volume 544, Issues 1-2, 19 September 2002, Pages 97-112 J. R. Batley et al. (NA48 Collaboration)
- 3. Has the GZK suppression been discovered? http://dx.doi.org/10.1016/S0370-2693(03)00105-9
 Physics Letters B, Volume 556, Issues 1-2, 13 March 2003, Pages 1-6, John N. Bahcall and Eli
 Waxman
- 4. Testable scenario for relativity with minimum length http://dx.doi.org/10.1016/S0370-2693(01)00506-8 Physics Letters B, Volume 510, Issues 1-4, 21 June 2001, Pages 255-263 Giovanni Amelino-Camelia
- 5. Role of effective interaction in nuclear disintegration processes http://dx.doi.org/10.1016/S0370-2693(03)00801-3 Physics Letters B, Volume 566, Issues 1-2, 24 July 2003, Pages 90-97 D. N. Basu
- 6. Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande-I data http://dx.doi.org/10.1016/S0370-2693(02)02090-7 Physics Letters B, Volume 539, Issues 3-4, 18 July 2002, Pages 179-187 S. Fukuda et al.

15/11/2004 MARSEILLE

NA48/1: *K*⁰_s?π ⁰*e*⁺*e*⁻ and *K*⁰_s?π ⁰μ ⁺μ ⁻

Direct CPV

e⁺⁻e⁺⁻ (Same Sign) DATA

SUMMARY OF BACKGROUNDS:

Source	Control Region	Signal region
Κ_s? π ⁰ _D π ⁰ _D	0.03	0.007
Κ_{L.S} ? ee γγ	0.11	0.075
π e ν +2 π ^o (π ^o)	0.19	0.069
Total	0.33 ^{+0.18} -0.11	0.15 ^{+0.05} -0.04

- Many other sources investigated and found to be negligible (e,g neutral cascade decays)
- Blind analysis: Control and signal region remained masked until the study of the background was finished

15/11/2004 MARSEILLE

PL B576 (2003); hep-ex/0309075

 $BR(K_s?\pi^{0}ee, m_{ee}>165 \text{ MeV/c}^2) = (3.0^{+1.5}_{-1.2}(stat) \pm 0.2(syst)) \times 10^{-9}$

• Assuming vector interaction:

 $BR(K_{s}?\pi^{0}ee) = (5.8 + 2.8) \pm 0.8(syst) \times 10^{-9}$

- See for the Theory:
 - Sehgal, NP B19 (1970)
 - Ecker, Pich, De Rafael, NP B 291 (1987)
 - Ecker, Pich, De Rafael, NP B 303 (1988)
 - Bruno, Prades ZP C57 (1993) 15/11/2004 A. Ceccucci, CERN MARSEILLE

ΝΑ48/1: *K***_s ?π^ομμ**

•Study of backgrounds from K_L ? $\pi^0\pi^+\pi^-$? $\pi^0(\mu\nu)(\mu\nu)$ •MC = 22 times the data

ΝΑ48/1: *K***_s ?π^ομμ**

$BR(K_{s}?\pi^{0}\mu \mu) \times 10^{9} = 2.9^{+1.4}_{-1.2}(stat) \pm 0.2(syst)$

First Observation!

6 events Expected back. 0.22⁺⁰¹⁹-0.12

599 (2004) 15/11/2004 MARSEILLE

Interference between K_{L}^{0} ? π^{0} ee and K_{s}^{0} ? π^{0} ee

Two independent theoretical analyses find that the interference term is constructive:

• Buchalla, Isidori, D' Ambrosio: hep-ph/0308008, NP B 672 (2003)

• Friot, Greynat, de Rafael: hep-ph/0404136, PL B 595 (2004)

K⁰_L?π ^oee (μ μ): SM Branching Ratios

Thank to the NA48/1 measurements, the K_ BR can now be predicted(Isidori, Unterdorfer, Smith, $Br(K_L \rightarrow \pi^0 \mu^+ \mu^-)$ (×10⁻¹²)EPJC36 (2004))Constructive

$$B_{e^+e^-} = 3.7_{-0.9}^{+1.1} \times 10^{-11}$$
$$B_{\mu^+\mu^-} = 1.5_{-0.3}^{+0.3} \times 10^{-11}$$

now favored by two independent analyses*

Destructive

 $B_{e^+e^-} = 1.7_{-0.6}^{+0.7} \times 10^{-11}$ $B_{\mu^+\mu^-} = 1.0_{-0.2}^{+0.2} \times 10^{-11}$

*G. Buchalla, G. D' Ambrosio, G. Isidori, Nucl.Phys.B672,387 (2003)

*S. Friot, D. Greynat, E. de Rafael, hep-ph/0404136, PL B 595 15/11/2004 A. Ceccuc

*K*⁰, π ⁰ee (μ μ): Sensitivity to New Physics Isidori, Unterdorfer, Smith: $Br(K_{I} \rightarrow \pi^{0}\mu^{+}\mu^{-}) \quad (\times 10^{-12})$ Fleischer et al*: Enhanced EWP 50 Ratios of B_{d} ?K π modes could be explained by enhanced electroweak 40 penguins which, in turn, would enhance the K_i 30 BR's: $B_{a^+a^-}^{NP} = 9.0^{+1.6}_{-1.6} \times 10^{-11}$ 20 $B_{\mu^+\mu^-}^{NP} = 4.3^{+0.7}_{-0.7} \times 10^{-11}$ Standard Model 10 • A. J. Buras, R. Fleischer, S. Recksiegel, 120 20 100 40 60 80 F. Schwab, hep-ph/0402112, NP B697 (2004) $Br(K_{I} \rightarrow \pi^{0}e^{+}e^{-}) \quad (\times 10^{-12})$ 15/11/2004 A. Ceccucci, CERN 23 MARSEILLE

NA48/2 : K+/K⁻

A. Ceccucci, CERN

15/11/2004 MARSEILLE

NA48/2: Aim

Direct CP violation

in
$$K^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp}$$
, $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$
 $M(u) \propto 1 + g \cdot u$, $u = f(\Xi_{\pi-odd}^{*})$

 $\delta(A_g) < 2 \cdot 10^{-4}$

In addition:

- Study of $\pi \pi$ scattering using Ke4 (and $\pi \pm \pi^0 \pi^0$) events
- Study of medium-rare charged kaon decays
- Study of semi-leptonic decays

A. Ceccucci, CERN 15/11/2004 NA48/3: Subset of 2003 data MARSEILLE

2

4

X, cm

P, GeV/c

X,cm

A Ceccucci CERN

15/11/2004

LLE

$\mathbf{K}^{\pm} \pi^{\pm} e^{+} e^{-} \mathbf{\&} \mathbf{K}^{\pm} \pi^{\pm} \mu^{+} \mu^{-}$ selection

(preliminary)

- low background (1-2%)
- expected data sample in 2003-2004 comparable to the World best sample

0.49

 $m_{\pi\mu\mu}$

0.5

0.51

(GeV)

0.48

8.46

0.47

0.52

A. Ceccucci. CERN

15/11/2004

EILLE

The Near Future: NA48/3 *K*⁺ ? $\pi^+ \nu \nu$ at the CERN-SPS

SPSC-2004-029 SPSC-1229 Cambridge, CERN, Dubna, Ferrara, Firenze, Mainz, Perugia, Pisa, Saclay, Torino, + ??

Work inspired by:

High Quality NA48/2 charged Kaon beams
 and Beam Spectrometers

• Outstanding Progress by BNL E787/E949

• In flight technique with separated beam (FNAL CKM, not ratified by P5)

"CERN Director General Outlines Sevenpoint Strategy for European Laboratory"

18.6.2004 Official CERN Press Release

Geneva 18 June 2004. "At the 128th session of **CERN** Council, held today under the chairmanship of Professor Enzo Iarocci, CERN Director General, Robert Aymar, outlined a seven-point scientific strategy for the Organization. Top of the list was completion of the Large Hadron Collider (LHC) project with start-up on schedule in 2007. This was followed by consolidation of existing infrastructure at **CERN** to guarantee reliable operation of the LHC, with the third priority being an examination of a possible future experimental programme apart from the LHC."

^{15/11/2004} MARSEILLE possible Future Programme was reviewed in Villars ³³

K⁺?π⁺νν : Theory

- The hadronic matrix element can be extracted from the well measured $K^+?\pi^0 e^+\nu$
- No long distance contributions

Prediction (CKM Workshop): $BR(K^+ ? \pi^+ \vee \vee) = 8.0 \pm 1.1 \times 10^{-11}$ Expect improvements NNLO calculation + reduction parametric uncertainty 4 % error (Buras)

15/11/2004 MARSEILLE

Main K^+ decay modes competing with $K^+?\pi^+\nu\nu$

Decay	BR	Suppression:
μ +ν	63 %	μ PID, kinematics
π + π 0		γ veto, kinematics
π + π + π -	21 %	CHV, kinematics
π + π $^{0}\pi$ 0	6 %	γ veto, kinematics
$\pi^{0}\mu^{+}\nu$	2 %	γ veto, μ PID
$\pi^{0} \mathbf{e}^{+} \mathbf{v}$	3 % (called K+_{µ 3})	γ veto, E/P
	5 % (called K+ _{e3}) BR(K+?π + ∨ ∨)~10 ⁻¹⁰ !!

State of the art: AGS-E787/E949 *K*⁺**?**π ⁺ ν ν

 K^+ ? $\pi^+ \nu \nu$: State of the art

• Twice the SM, but only based on 3 events...

15/11/2004 MARSEILLE

NA48/3: Framework

- So far K^+ ? $\pi^+ \nu \nu$ only studied with kaon decays at rest
 - This limits the statistics to a few events
- NA48/3 can collect ~100 events at the SPS by 2010
- Employ high energy kaons has the following advantages:
 - The larger cross section increases the kaon content in the beam
 - The rejection of backgrounds from K^+ ? $\pi^+\pi^0$ is simplified
 - Tens of GeV of EM energy is deposited in the photon vetoes!
 - Accidental background are minimised (muons ~ 7 MHz)
 - The use of unseparated beam becomes a possibility
- 2/3 of the final state is invisible !!
 - The kaon and the pion must be redundantly measured to keep backgrounds under control
 - Muon and photon vetoes are essential

15/11/2004 MARSEILLE

Kinematics

NA48/3: Beam Layout

Acceptance

 $P_{K} = 75 \, GeV \, / \, c \qquad P_{\pi} < 40 \, GeV \, / \, c$ Assume Acceptance (Region I+II) ~ 10%

New high-intensity *K*⁺ beam for NA48/3

	Present K12	New HI K⁺	Factor
Beam:	(NA48/2)	> 2006	wrt 2004
SPS protons per pulse on T10	$1 \chi 10^{12}$	$3 \chi 10^{12}$	3.0
Duty cycle (s./s.)	4.8 / 16.8		1.0
Solid angle (µ sterad)	<i>≈ 0.40</i>	≈ <i>16</i>	40
Av. K ⁺ momentum <p<sub>K> (GeV/c)</p<sub>	60	75	<i>Total</i> : 1.35
Mom. band RMS: ($\Delta p/p$ in %)	<i>≈</i> 4	≈1	~0.25
Area at Gigatracker (cm²)	<i>≈ 7.0</i>	≈ <i>20</i>	≈ 2.8
Total beam per pulse (χ 10 ⁷)	5.5	250	~45 (~27)
per Effective spill length (MHz)	18	800	~45 (~27)
//cm²(KABES) (MHz)	2.5	40	~16 (~10)
Eff. running time / yr (pulses)	$3^{*}\chi 10^{5}$	3.1 * 10 ⁵	1.0
K⁺ decays per year	$1.0\chi 10^{11}$	4.0x10 ¹²	$ ightarrow \approx 40$

15/11/2004 MARSEILLE A. Ceccucci, CERN

Already

NA48/3: Aim

- Collect 80 K⁺?π⁺νν events in about two years of data taking for:
 - -4×10^{12} Kaon decays/SPS year
 - **BR(K⁺?**π⁺νν) ~**10**⁻¹⁰

– Acceptance ~ 10%

Detectors

- CEDAR
 - To tag positive kaon identification
- GIGATRACKER
 - To Track secondary beam before it enters the decay region
- ANTI
 - Photon vetoes surrounding the decay tank
- WC
 - Wire chambers to track the kaon decay products
- CHOD
 - Fast hodoscope to make a tight K-pi time coincidence
- LKR
 - Forward photon veto and e.m. calorimeter
- MAMUD
 - Hadron calorimeter, muon veto and sweeping magnet
- SAC and CHV
 - Small angle photon and charged particle vetoes

15/11/2004 MARSEILLE

GIGATRACKER

• Specifications:

- Momentum resolution to ~ 0.5 %
- Angular resolution ~ 10 μ rad
- Time resolution ~ 100 ps
- Minimal material budget
- Perform all of the above in
 - 800 MHz hadron beam, 40 MHz / cm^2
- Hybrid Detector:
 - SPIBES (Fast Si micro-pixels)
 - Momentum measurement
 - Facilitate pattern recognition in subsequent FTPC
 - Time coincidence with CHOD
 - FTPC (NA48/2 KABES technology with FADC r/o)
 - Track direction

15/11/2004 MARSEILLE

Can we do w/o beampipe?

Simulation: Geometry **Standard** >

Testrun 2004 (beatch file) NA48/3 (beatch file)

15/11/2004 MARSEILLE

- Set of ring-shaped photon vetoes surrounding the decay tank
- Specification: inefficiency to detect photons above 100 MeV < 10⁻⁴
- The NA48 ANTI's (AKL) need to be replaced
- Extensive R&D Performed by American and Japanese groups
- Claims that inefficiency as low as 10⁻⁵ can be achieved
- Baseline solution: Lead/ Plastic scintillator sandwich (1-2 mm lead / 5 mm plastic scintillator)
- Cost driver of NA48/3

LKR

- The NA48 Liquid Krypton Calorimeter
- Must achieve inefficiency < 10⁻⁵ to detect photons above 1 GeV
- Advantages:
 - It exists
 - Homogeneous (not sampling) ionization calorimeter
 - Very good granularity (~2 ×2 cm²)
 - Fast read-out (Initial current, FWHM~70 ns)
 - Very good energy (~1%, time ~ 300ps and position (~1 mm) resolution
- Disadvantages
 - $_$ 0.5 % $X_{\scriptscriptstyle 0}$ of passive material in front of active LKR
 - The cryogenic control system needs to be updated

15/11/2004 MARSEILLE

MAMUD

- To provide pion/muon separation and beam sweeping.
 - –Iron is subdivided in 150 2 cm thick plates (260 \times 260 cm $^2\,$)
- Four coils magnetise the iron plates to provide a
- 1.3 T dipole field in the beam region
- Active detector:
 - -Strips of extruded polystyrene scintillator
 - (1 x 4 x130 cm³)
 - Light is collected by WLS fibres 1.2 mm diameter

Coils cross section 15cm x 25cm

Pole gap is 11 cm V x 30 cm H

15/11/2004 MARSEILLE

Where are we?

- September 26-27, 2004
 - Our presentations at Villars were well received
- October 7, 2004
 - John Dainton, SPSC Chairman reported the conclusions from Villars at CERN in a seminar at CERN
 - Verbally: "The SPSC looks forward to receive a proposal"
- October 18, 2004
 - Letter of Intent officially submitted.

SPSC-2004-029

SPSC-I229

We are establishing sub-working groups aiming to submit a proposal by mid 2005:

New Collaborators are welcome

15/11/2004 MARSEILLE

From J. Dainton (SPSC Chair)

new rare decay frontier in K physics at CERN new experiments planned for $K \rightarrow important$ support R&D now for $K^+ \rightarrow + results \leq 2010$ - no competition ...yet!

longer term opportunity for $\mathcal{K} \rightarrow {}^{\circ}$ - direct competition (decay at rest) synergy with energy frontier @ LHC . . @ CERN - B-physics - LF violation

2004 Test beam

- It was of the utmost importance to test in 2004 the performance of the NA48 detectors at intensities comparable to NA48/3 (no SPS in 2005!)
- This was a unique opportunity to collect data to validate our –simulated- understanding to quantify the necessary effort (technical and financial) to transform NA48 into an experiment capable to address $K^+ 2\pi^+ \nu \nu$.
- Thank to the extension granted by CERN we could test:
 - WC: raise intensity to about 30 times NA48/2
 - GIGATRACKER
 - Tested a state-of the-art ALICE SPD assembly in our beam
 - Use a thinner 25 micron MICROMEGAS amplification gap
 - Read out KABES with 480 MHz FADC (former NA48 tagger FADC)
 - Read KABES at ~14 times the NA48/2 rate
 - LKR: Complement the photon coverage with extra LKr electronics and a Small Angle Calorimeter SAC (CMS RCAL prototype)
 - CHOD test of prototypes

Time Schedule

• 2004

- Launch GIGATRACKER R&D
- Vacuum tests
- Evaluate straw tracker
- Start realistic cost estimation
- Complete analysis of beam-test data
- **2005**
 - Complete of the above
 - Complete Specifications
 - Submit proposal to SPSC
- **2006-2008**
 - Costruction, Installation and beam-tests
- 2009-2010
 - Data Taking

Conclusions

- We have found a fortunate combination where a compelling physics case can be addressed with an existing accelerator, employing the infrastructure (i.e. civil engineering, hardware, some sub-systems) of an existing experiment
- We stress that this initiative in not a mere continuation of NA48
- We are seeking new Collaborators!