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Hydrodynamic fluctuations



Theory vs Experiment
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Theory vs BES-II data
(universal EOS) critical �n :

(irreducible correlations) FCn[Np] ⇠ �n (Pradeep, MS 2211.09142), !n ⌘ FCn/FC1

Bzdak et al review 1906.00936

Expected signatures: bump in !2 and !3, dip then bump in !4

for CP at µB > 420 MeV

M. Stephanov QCD EOS and Critical Point Theory SQM 2024 4 / 15

Theory vs BES-II data
(universal EOS) critical �n : (irreducible correlations) FCn[Np] ⇠ �n (Pradeep, MS 2211.09142), !n ⌘ FCn/FC1

Bzdak et al review 1906.00936
Expected signatures: bump in !2 and !3, dip then bump in !4

for CP at µB > 420 MeV

M. Stephanov QCD EOS and Critical Point Theory SQM 2024 4 / 15

Theory vs BES-II data
(universal EOS) critical �n : (irreducible correlations) FCn[Np] ⇠ �n (Pradeep, MS 2211.09142), !n ⌘ FCn/FC1

Bzdak et al review 1906.00936
Expected signatures: bump in !2 and !3, dip then bump in !4

for CP at µB > 420 MeV

M. Stephanov QCD EOS and Critical Point Theory SQM 2024 4 / 15

• BES-II data seems to advocate the intriguing hint of the QCD critical point 
from BES-I analysis, in a qualitative level based on equilibrium theory.      
STAR, 2112.00240; Stephanov, 1104.1627, SQM24

QCD critical point

Where on the QCD phase boundary is the CP?
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What to do next
• Caveat:

4

Experiment results between 3-5 GeV.

Calibration of the non-critical baseline.

Dynamic modeling with hydro fluctuations and ME freezeout.

Idealization Reality

• Global equilibrium

• Static & homogeneous

• One common frame

• Local equilibrium

• Dynamic & inhomogeneous

• Many local rest frames

• Establish quantitative connection between the EOS and experiment, and use 
BES-II data in turn to constrain the EOS and transport coefficients.



Stochastic hydrodynamics as an EFT
• Hydrodynamics + fluctuation & noise (source):
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Top-down:

e.g., Schwinger-Keldysh

Bottom-up:

e.g., Langevin / Fokker-Planck

integrating out 

UV DOFs

emergence of: 
short-range


stochastic noises

&


long-range 
conserved quantities

UV

IR The scale hierarchy ensures: 

1) local thermalization ( ); 

2) small Knudsen number ( );

3) separation of fluctuation and background ( ).

ℓmic ≪ b
ℓmic ≪ L

ℓ ≪ L



Langevin equation          
Newton’s equation + noise
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∂t ψ̆ = F [ψ̆] + η[ψ̆]

⟨η(x1) η(x2)⟩ = 2Q δ(4)(x1 − x2)

Brownian motion

Langevin

Fokker-Planck equation     
probability evolution equation

∂t P[ψ] = ∂ψ (flux[ψ])
flux[ψ] = − FP + ∂ψ(QP)

(Wikipedia)

PlanckFokker

One sample, Millions of equations

cutoff-independent, analytically controllable

One equation, Millions of samples

cutoff-sensitive, multiplicative noise

Stochastic Deterministic

Bottom-up approach

Landau



Pushing to non-Gaussian regime
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∂t Gn = ℱ [⟨ψ⟩, G2, G3, …, Gn ] + Gn ∼ εn−1, Fi ∼ 1, Qij ∼ ε .where𝒪(εn)

loop-expansion parameters: ε ∼ (ξ/ℓ)3 ∼ 1/N

NB:    (CLT)ϕ ≡ ψ − ⟨ψ⟩ ∼ 1/ N
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for OM talk

1-pt equation including leading loop

• The deterministic approach provides the truncated evolution equations for 
the fluctuation correlators . XA et al, 2212.14029Gn = ⟨ϕ…ϕ⟩

This is important for the 5th and 6th cumulants that are currently measured by STAR!

: number of correlated volumesN

diagram ingredients:



Pushing to relativistic formulation
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• Goal: deal with relativity/covariance as if one knows nothing about relativity 
(i.e., like how one deals with non-relativistic theories in the lab).

∂t ψ̆ = F [ψ̆, ∇ψ̆] + η[ψ̆, ∇ψ̆] u ⋅ ∂ ψ̆ = F [ψ̆, Δμν∂νψ̆] + η[ψ̆, Δμν∂νψ̆]

Π̆μν = −
1
β̆

(2η̆Δμνλκ+ζ̆ΔμνΔλκ)∂λ(β̆ŭκ)

ŭμ = ŭa ea
μ+γ̆ uμ

4-velocity fluctuation  is measured in 
terms of its independent 3-components 

 in the LRF of , (comoving “LF” of )

ŭμ

ŭa uμ ŭμ

γ̆ ≡ γ(ŭa) = (1 + ŭ2
a)1/2

NB:  while .⟨ŭa⟩ = ua ⟨ŭμ⟩ ≠ uμ

uμ

ŭμ

γ̆

LRF of 

 (comoving “LF” of ) 

uμ
ŭμ

e.g.,

• 1-pt: covariantize Langevin equations

Tμνuν = − ϵuμ

T̆μνŭν = − ϵ̆ŭμ

spatial triad ea
μuμ = 0



Pushing to relativistic formulation
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• Entropy is measured in the non-fluctuating LRF of  in terms of fluctuating 
variables measured in the LRF of  (related by boost ).

uμ
ŭμ γ̆

uμ

equal-time surface

S(ϵ̆, n̆, ŭa) = ∫x
γ̆s̆ + αγ̆n̆ − β(γ̆2w̆ − p̆) ,  ,


 and : Lagrange multipliers
w̆ = ϵ̆ + p̆ p̆ = p(ϵ̆, n̆)
α β

• n-pt: relative motion to the midpoint in the equal-time hypersurface needs to 
be described by 1-pt-like EOM along .uμ



Confluent formulation: correlator and derivative
• Confluent formulation: covariant description for the comoving fluctuations 

(as if you are in the lab frame). See XA et al, 2212.14029 for more details
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Λ(x2-x)

Λ(x1-x) Λ(xn-x) u(xn)
u(x1)

u(x2)

u(x)

x

x2

x1
xn

-

Confluent correlator Ḡ

e1

e2

e1

e2

u(x)

u(x+Δx)

u(x)
φ(x+Δx)

u(x+Δx)

Λ(Δx)φ(x+Δx)

Λ(Δx)

φ(x)
Λ(Δx)   y-1

Λ(Δx)

u(x) u(x)

Λ(Δx)  -1
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2

e2

e1(x+Δx)Λ(Δx)φ

e1

e
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o

o

o

Confluent derivative ∇̄

boost all fields (measured at their own 
local rest frame) to one same frame 

(chosen at their midpoint)

compare the difference of a given field along the time 
direction in one same frame, with the equal-time 

constraint preserved

Ḡi1…in = Λ j1
i1

(x − x1)…Λ jn
in

(x − xn)

boost

Gj1…jn
∇̄μḠi1…in = ∂μḠi1…in − n (ω̄ j1

μi1
Ḡj1…in+ω̊a

μb yb
1∂(y1)

a Ḡi1…in)perm.

connections



Confluent formulation: Wigner function
• Confluent -pt Wigner transform between 3-vectors  and  (as if you are 

dealing with non-relativistic theories).  XA et al, 2212.14029

n ya qa
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Wn(x; qa
1 , …, qa

n) = ∫
n

∏
i=1

(d3ya
i e−iqiaya

i ) δ(3) ( 1
n

n

∑
i=1

ya
i )

x independent integration kernal

Ḡn(x + eaya
1

x1

, …, x + eaya
n

xn

)

= 0+

x-space

q1x1

x2

xn

q2

qn

q-space

q1 q2 qn+

x

x1 x2+ +x = n
xn+ +

x≡ yn+

y-space

x1

x2

xn
x

x≡ yn+

= 0+

q1

q2

qn

q-space

q1 q2 qn++

u(x)

(a) (b)
= 0+y1 y2 yn++

u(x)

x

u(x) = 0yi u(x) = 0qi& &

.⑧k ⑧É

☒

•

.⑧k

⑧dd ④É

•

.⑧k

•
•

“While the bottom-up approach is useful in order to calculate two-point correlation functions, it is not immediately 
obvious how it should be generalized for the calculation of n-point correlation functions.” Romatschke, 2019



Confluent fluctuation evolution equations
• Fluctuation evolution equations in the impressionistic form:
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of which the solutions match results determined from entropy .          
: entropy per baryon;      : pressure;      : three-velocity

S(m̆, p̆, ŭa)
m p ua

ℒWn = iqWn − γq2(Wn − …) − ∂ψWn + … where ℒ = u ⋅ ∇̄x + f ⋅ ∇q
sound/advection dissipation background

ℒWab(q1, q2) = − γη(q2
1 + q2

2)(Wab − Weq
ab) + …;

ℒWabc(q1, q2, q3) = − γη(q2
1 + q2

2 + q2
3)Wabc + …; …

Weq
ab = − (βw)−1δab

Weq
abc = 0

Weq
abcd ∼ − 3(βw)−3δabδcd



Rotating wave approximation
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• We further introduce a local spatial dyad perpendicular to each , such that 
longitudinal velocity fluctuations decouple from their transverse partners.

q

Φ =
Φm

Φ±

Φ(i)

=
δm

δp ± cswq̂aδua

ta
(i)δua

(i) = 1, 2ϕ =
ϕm

ϕp

ϕa

=
δm
δp
δua

• In the “sound-front” basis RWA says
n

∑
i=1

λΦi
(qi) { = 0 ⟶ slow mode (kept)

≠ 0 ⟶ fast mode (averaged)if

the “sound-front” basis with 5 eigenvalues

 λ±(q) = ± cs |q | , λm(q) = λ(i)(q) = 0

ℒWΦ1…Φn
= (

n

∑
i=1

λΦi
(qi)) WΦ1…Φn

+ …

a significant reduction of independent dynamic DOFs: !𝒪(102) → 𝒪(10)



Non-hydrodynamic perturbations



Non-hydro modes in holographic liquid
• Incorporate vector mesons as spontaneously broken gauge bosons of 

hidden local symmetry.
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horizon cutof AdS boundary

IR modes UV modes (source of IR theory)

A0

A1 A2 AK−1

AKϕIR

r

ℒUV =
1
2 ∫ d4x

K

∑
n=0

( Σ−2
t,n F2

n0 − Σ−2
s,nF2

ni + κF2
i0 − κ′￼F2

ij)

ϕ1 ϕ2 ϕKϕK−1ϕ3

Fnμ = ∂μϕn − An,μ + An+1,μ ∼ Jn,μ Fμν = ∂μAν − ∂νAμ

Σt,0 = D/σ
Σs,0 = τR/σ



Equation of motion
• EoM features a tower of conservation laws for :J = ( J0

0 , J0
1 , Jz

1, …, J0
K, Jz

K )
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∂t

J0
0

J0
1

Jz
1

J0
2

Jz
2

⋮
J0

K

Jz
K

=

(− 1
κ1

+ Σt,0k2) σ σ
κ1

0 0 0 … 0 0

0 0 −ik 0 0 … 0 0

i
Σs,1κ1k

−
i( 1

κ1
+ 1

κ2
+ Σt,1k2)

Σs,1k
0 i

Σs,1κ2k 0 … 0 0

0 0 0 0 −ik … 0 0

0 i
Σs,2κ2k 0 −

i( 1
κ2

+ 1
κ3

+ Σt,2k2)
Σs,2k 0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮ … ⋮ ⋮
0 0 0 0 0 … 0 −ik

0 0 0 0 0 … −
i( 1

κK
+ Σt,Kk2)
Σs,Kk 0

J0
0

J0
1

Jz
1

J0
2

Jz
2

⋮
J0

K

Jz
K

.

∂t J = HJ

 modes2K + 1



Hydro and non-hydro modes
• Hydro modes do not appear alone, they interact non-hydro modes in the 

complex frequency plane above critical value of . Hydrodynamics (attractor) 
works well as long as non-hydro modes can be neglected.

kc
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Attractor
• In dynamical systems, an attractor is a set of states toward which a system 

tends to evolve, for a wide variety of initial conditions. 

18

Examples:


1. Aristotle’s law of motion, albeit wrong, implies a 
dissipative attractor.


2. Inflation of the Universe at its early time implies a 
slow-roll attractor.

v

x

·ϕ

ϕ



Hydrodynamic attractor
• Hydrodynamic attractor: a robust phenomenon in various models for fluids

19
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FIG. 1. Numerical results for energy density evolution as a function of inverse gradient strength ⌧T for conformal Bjorken
flow in three di↵erent microscopic theories. Note that for Boltzmann and AdS/CFT, the numerical solutions shown are low
dimensional projections from an infinite dimensional space of initial conditions. See text for details.

such that the ambiguity in the Borel transform of the
transseries part with m = m0 is exactly canceled by
⌦m0+1(⌧T ) for the part with m = m0 + 1. This pro-
gram has successfully been performed for rBRSSS in
Ref. [15, 34]. The final result for the Borel trans-
form of ⌧@⌧ ln ✏ can be written in the form ⌧@⌧ ln ✏ =
(⌧@⌧ ln ✏)att + (⌧@⌧ ln ✏)non�hydro, consisting of a non-
analytic “attractor” solution defined for arbitrary ⌧T
to which the non-hydrodynamic part decays to on a
timescale ⌧T ' z�1

0 .

Note that obtaining non-analytic solutions from diver-
gent perturbative series’ has recently generated consider-
able interest under the name of “resurgence” [15, 16, 34].

Finding Hydrodynamic Attractors Identifying
the hydrodynamic attractor solution from the Borel re-
summation program of the hydrodynamic gradient series
is possible, but somewhat tedious. Fortunately, it is pos-
sible to obtain the same attractor solution more directly
from the equations of motion via the analogue of a slow-
roll approximation, cf. Refs. [15, 35] (see Supplemental
Material for details). In Fig. 1, results from solving the
rBRSSS equations of motions for a range of initial con-
ditions (“numerical”) are as shown together with zeroth,
first and second order hydrodynamic gradient series re-
sults from Eq. (2). It can be observed that the numerical
solutions converge to the hydrodynamic results for mod-
erate gradient strength. One also observes from Fig. 1
that the numerical results trend to the unique attractor

solution even before matching the gradient series results.
This attractor solution is nothing else but the result of
the Borel transformation of the divergent transseries as
reported in Ref. [15].
Hydrodynamic Attractor in Kinetic Theory It

is tempting to look for hydrodynamic attractors in other
microscopic theories, such as kinetic theory in the relax-
ation time approximation. This theory is defined by a
single particle distribution function f(t,x,p) obeying

pµ@µf � ��
µ⌫p

µp⌫
@

@p�
f = �f � f eq

⌧⇡
, (3)

where here ��
µ⌫ are the Christo↵el symbols associated

with the Bjorken flow geometry and the equilibrium dis-
tribution function may be taken to be f eq = ep

µuµ/T .
Here uµ is again the time-like eigenvector of hTµ⌫i =R d3p

(2⇡)3
pµp⌫

p f(x, p) and T is the non-equilibrium tempera-

ture defined from the time-like eigenvalue of hTµ⌫i, which

for a single massless Boltzmann particle is T =
⇣

⇡2✏
6

⌘1/4
.

Note that for a conformal system one can again write
⌧⇡ = C⇡T�1 with C⇡ a constant. Solving Eq. (3) nu-
merically, representative results for ⌧@⌧ ln ✏ are shown in
Fig. 1 (note that ⌧@⌧ ln ✏  �1 because the e↵ective lon-
gitudinal pressure PL = ✏ (1 + ⌧@⌧ ln ✏) in kinetic theory
can never be negative for f > 0).
One observes the same basic structure as in rBRSSS,

indicating the presence of a hydrodynamic attractor at

Florkowski et al, 1707.02282, Romatschke, 1712.05815

Dissipative attractor:

lost of initial information 

at later time

Slow-roll attractor:

onset of 

hydrodynamization at 
early time

January 25, 2013 1:14
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LHC energies [20]. The agreement with experimental results from LHC shown in
Fig. 6 is particularly striking.
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Fig. 6. Left: Root-mean-square anisotropic flow coe�cients hv2ni1/2 in the IP-Glasma model [20],
computed as a function of centrality, compared to experimental data of vn{2}, n 2 {2, 3, 4},
by the ALICE collaboration [182] (points). Right: Root-mean-square anisotropic flow coe�cients
hv2ni1/2 as a function of transverse momentum, compared to experimental data by the ATLAS
collaboration using the event plane (EP) method [22] (points). Bands indicate statistical errors.

This agreement indicates that initial state fluctuations in the deposited energy
density, translated by hydrodynamic evolution into anisotropies in the particle pro-
duction, are the main ingredient to explain the measured flow coe�cients.

Because of this feature, some e↵ort has been concentrated on characterizing the
initial state in a way that ties it directly to the measured flow. The simplest way of
doing so is to compare the initial eccentricities of the system

"n =

p
hrn cos(n�)i2 + hrn sin(n�)i2

hrni (13)

to the final flow harmonics vn. However, in particular for v4 and higher harmonics,
the nonlinear nature of hydrodynamics becomes important [183] and more accurate
predictors for flow coe�cients involve both linear and nonlinear terms, e.g. v5 has
contributions from "5 and "2"3, and it was shown [184] that the nonlinear term
becomes more dominant with increasing viscosity.

The fact that linear terms are damped more by viscosity leads to a growing
correlation of di↵erent event planes

 n =
1

n
arctan

hsin(n�)i
hcos(n�)i , (14)

with increasing viscosity [184], a result that is in line with findings in a di↵erent
work [185], where experimental data on event plane correlations from the ATLAS
collaboration [186] was compared to hydrodynamic calculations in di↵erent scenar-
ios.

Gale et al, 1301.5893
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Figure 6: Measured hadron abundances divided by the spin degeneracy factor (2J + 1)
in comparison with thermal model calculations for the best fit to data [73] in central
Pb–Pb collisions at the LHC. For the model, plotted are the “total” yields, including
all contributions from high-mass resonances (for the Λ hyperon, the contribution from
the electromagnetic decay Σ0 → Λγ, which cannot be resolved experimentally, is also
included), and the (“primordial”) yields prior to decays.

(hyper)nuclei are droplets of quark matter [76] or if they form via nucleon (and hyperon)
coalescence.

The thermal model describes a snapshot of the collision, namely the chemical freeze-
out, which is assumed to be quasi-instantaneous. It provides a phenomenological link of
data to the QCD phase diagram, a link identified early on [3,81] and discussed extensively
more recently [78, 82–86].

The phenomenological phase diagram is shown in Fig. 7. Each point corresponds to a
fit of hadron yields in central Au–Au or Pb–Pb collisions at a given collision energy. The
agreement between the results from several independent analyses [64,78–80] is remarkable.
Note that in some cases [64,79,80] an additional fit parameter, the strangeness suppression
factor γs, is used to test possible departure from equilibrium of hadrons containing strange
quark(s). Values of γs (slightly) below unity are found. An approach with more non-
equilibrium parameters is also employed [87, 88], with somewhat different conclusions.
Fits considering a spread in T and µB were also performed [89].

A remarkable outcome of these fits is that T increases with increasing energy (decreas-
ing µB) from about 50 MeV to about 160 MeV, where it exhibits a saturation for µB !300
MeV. This saturation of T led to the connection to the QCD phase boundary, via the
conjecture that the chemical freeze-out temperature can be the hadronization tempera-
ture [78] and that the two regimes in the phase diagram, Fig. 7, that of approximately
constant T for small µB values and of the strong increase of T at large µB, can imply
the existence of a triple point in the QCD phase diagram [85] (see Ref. [90] for an earlier
discussion). Various criteria for the chemical freeze-out were proposed [91, 92].

7

Andronic, 1407.5003



Fluid: from equilibrium to far-from-equilibrium 

20

• Conservation equations 

Tμν
eq = Λμ(u)Λν(u)diag(ε, p, p, p)

in equilibrium near equilibrium far from equilibrium 

Tμν
neq = ∂Tμν

eq +…

Tμν = Tμν
eq + Tμν

neq

Tμν
neq = − τUV

·Tμν
neq + ∂Tμν

eq +…

∂νTμν = 0

equilibrium non-equilibrium 

equilibrium 

proxy

equilibrium 

proxy

equilibrium 

proxy



From NS to MIS equations

21

• MIS-like theory extend the applicability of conventional hydrodynamics:

Aleksas Mazeliauskas aleksas.eu

QCD thermalisation

2

High-energy limit αs≪1 of QCD 

Berges, Heller, AM, Venugopalan RMP (2021)

● Initial conditions: highly occupied gluons 5elds
● Intermediate times: quark and gluon quasi-particles 

Courtesy of A. Mazeliauskas

MIS

NS



The simplest MIS-like equations
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• A simplest scenario: 0+1D conformal boost-invariant (Bjorken) fluids.

Tμν =

ε
p(1 + A

3 )

p(1 + A
3 )

p(1 − 2A
3 )

⟶ Tμν
eq =

ε
p

p
p

 (time) dependence only


 measures the effective energy scale: 


 measures the anisotropy (how far the system is from equilibrium):

τ

T

A

ε = 3p = CeT4, η =
4
3

CeCηT3, τUV = CτT−1

• The EOM for the dynamic system :Ψ = (T(τ), A(τ))

τ∂τΨ(τ) = − M(τ)Ψ(τ) + V

equilibration

solutions?

M(τ) = ( 1/3 −T(τ)/18
τA(τ)/Cτ 2A(τ)/9 ) V = ( 0

8Cη/Cτ)
Blaizot et al, 2106.10508



Asymptotic solutions
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• Early-time attractor solutions:

T(τ) ∼ μ(μτ)− 1 − α
3 (1 + …), A(τ) ∼ 6α(1 + …)

: integration constant parametrizing attractorμ

• Later-time asymptotic solutions

T(τ) ∼ Λ(Λτ)− 1
3 (1 + …) + C∞ e− 3

2Cτ
(Λτ)2/3

(Λτ)− 2
3 (1−α2)(1 + …)

A(τ) ∼ 8Cη(Λτ)− 2
3 (1 + …) + C′￼∞e− 3

2Cτ
(Λτ)2/3

(Λτ)− 1
3 +α2(1 + …)

: integration constantΛ, C∞

dissipative (hydrodynamic) attractor + transseries (non-hydrodynamic) modes

XA et al, 2312.17237

slow-roll attractor 

α = Cη/Cτ



Early-time attractor in phase space
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snapshot of  plane at different (τT′￼, T ) τ

• Trajectories in phase space rapidly approach the early-time attractor surface. 

time



“Too simple to be true”
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• 0+1D Bjorken model is highly idealized.

Multiplicity of hadrons


Thermal photon/dilepton spectrum


…

Collective flow


Jet


…

Does attractor exist in more complicated scenarios? 


Will attractor wash out mostly everything? 


What observables can/cannot be predicted from 0+1D Bjorken model?



Linear perturbations
• The existence of attractor naturally allows one to linearization the full system around it:
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• The EOM for the dynamic system:

ϕ = (δT, δθ, δω, δπ11, δπ22, δπ12)(τ, x)

   fluid divergence δθ ≡ ∂iδui

∂τ
̂ϕi (τ, k) = Mij(τ, k) ̂ϕj (τ, k)

6 independent fields:

∂νTμν = ∂ν(Tμν
attractor + δTμν) = 0 ⟶ {

∂νT
μν
attractor = 0,

∂νδTμν = 0.

shear stress tensor δπij

i = 1,2

vorticity δω ≡ ϵij∂iδuj

solutions?



Asymptotic solutions at late time
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• When , solutions perturbed around attractor are transseries:τ → ∞, k ≠ 0

: -dependent integration constantsC1, …, C6 k

δ ̂T(k) ∼ Ci e−Si τbi +… τai (1 + …)

δω̂(k) ∼ Ci e−Si τbi +… τai (1 + …)

Attractor is asymptotically stable ( ) against transverse perturbations.Re Si > 0

i = 1,2,3,4

i = 5,6

 and  are determined independentlyδ ̂θ δ ̂πij

Non-hydrodynamic content is important at asymptotic later time.



Zero wavenumber modes

28

• When ,  modes need to be considered separately:τ → ∞ k = 0

δ ̂T ∼ C3 (1 + …) + C4 e− 3
2Cτ

τ2/3
τ− 2

3 (1−α2)(1 + …)

δui ∼ Ci τ1/3(1 + …) i = 1,2

reproduces to background transseries solution

mild growth due to momentum conservation

δ ̂π12 ∼ C6 e− 3
2Cτ

τ2/3
τ

2
3 α2(1 + …)

Observables are extracted from a finite set of asymptotic data .Cn(k)

# of data: 6 × Nk

δ ̂π11 − δ ̂π22 ∼ C5 e− 3
2Cτ

τ2/3
τ

2
3 α2(1 + …)



Matching to numerics
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      fluid divergence
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• The analytic solutions (solid curves) fit the numerics (discrete points) in a 
wide range of time.



Transverse tomography
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• Transverse information is encoded in a finite set of Fourier modes via FFT.

Evolution of temperature (energy density) in transverse spaces



Collectivity: analytic results
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dN(p⊥, ϕ)
p⊥dp⊥dϕdy

=
m⊥τΣ
(2π)3

2K1(m̂⊥) +
1
12 [ ̂p2

⊥K1(m̂⊥) − 2m̂⊥K2(m̂⊥)] A

F0

+ perturbations

• Cooper-Frye freezeout

pressure anisotropy

• Collective expansion

dN(p⊥, ϕ)
p⊥dp⊥dϕdy

= v0(p⊥)(1 +
∞

∑
n=1

2vn(p⊥)cos(nϕ))

v0( ̂p⊥) ∼
m⊥τfΣ
(2π)3 (F0+ perturbations) v1( ̂p⊥), v2( ̂p⊥) ∼

perturbations
4F0+ perturbations



Jet-medium interaction
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• The total energy of jet and fluid system is conserved:

∂νTμν = ∂ν ( Tμν
attractor + δTμν + Tμν

jet ) = 0

{
∂νT

μν
attractor = 0,

∂νδTμν = − ∂νT
μν
jet = Jμ .

• Attractor provides a background for the jet-medium interactions:

Chaudhuri et al, 0503028

Casalderrey-Solana et al, 0602183

Chesler et al, 0712.0050

Neufeld et al, 0802.2254

Qin et al, 0903.2255

Yan et al, 1707.09519

Casalderrey-Solana et al, 2010.01140

…

jet source



Boost-invariant jet
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• A knife-shape jet resulted from boost-invariant assumption, which

z

t

τ = τ0

z

captures main effects qualitatively; 

corresponds to the longest wavelength modes along rapidity that are 
mostly relevant. 



Jet source
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• Jet source current:

njet(t, x) = (τγs)−1n⊥(t, x)

The transverse distribution  and parton trajectory  is arbitrary, e.g.,n⊥(t, x) xs(τ)

Jμ = fμ(t) njet(t, x)

fμ(t) = ( dE
dτ

,
dP
dτ ) =

dE
dt

uμ
s

xs(τ) = (x0 + vs(τ − τ0))Θ(τ − τ0)

spatial distribution of source 
effective drag force

n⊥(t, x) ∼ δ(2)(x − xs(τ))

Point-like distribution: Gaussian distribution:

n⊥(t, x) ∼ e−(x−xs(τ))2/2σ2

straight-line trajectory:



Energy loss
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• We assume the BBMG energy loss formalism

Chesler et al, 1402.6756

dE
dτ

=
4Einτ2

πℓ2
stop ℓ2

stop − τ2
∼ (τT)2T 2

dE
dτ

= κ ( E
T )

a

(τT) z T 2

: jet-medium coupling

: jet-energy dependence

: path-length dependence

κ
a
z

Bethe-Heitler limit

 SYMN = 4

LPM factorization limit

AdS/CFT

model (a, z)
(1,0)
(0,0)
(0,1)
(0,2)

additive single scattering

pQCD elastic, non-relativistic heavy quark

pQCD radiative, weakly coupled 

light quark, strongly coupled 

applicable regime

• Energy loss formula may fall into BBMG classification in certain limit, e.g.,

 class(0,2)
(energetic partons / small systems)
ℓstop ≫ τ, R



Asymptotic jet solutions at late time
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• Inhomogeneous EOM
∂τ

̂ϕi (τ, k) = Mij
̂ϕj (τ, k) + Ji(τ, k)

• The late-time asymptotic solutions can be found by Wronskian:

δ ̂ϕ(τ, k) = ∑
i

Ci(k) δ ̂ϕi(τ, k) + δ ̂ϕp(τ, k)

• The particular solutions have the universal power-law behavior, e.g.,

δ ̂Tp(τ, k) ∼
i n⊥(k) e−ik⋅xs(τ)(2Cη − 3Cτ(k̂ ⋅ vs)2)

2kΛk̂ ⋅ vs (4Cη + Cτ (1 − 3(k̂ ⋅ vs)2))
(Λτ)2z − 1

3 (1 + 𝒪(τ−1/3))

Poles at  (effective MIS speed of sound)c∞ leading power-law decay is model dependent



Matching to numerics
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• The analytic solutions (solid curves) fit the numerics (discrete points) in 
a wide range of time (with the same initial conditions).

3 4 5 6 7 8 9

-0.2

-0.1

0.0

0.1

0.2

w/o jet w/ jet

3 4 5 6 7 8 9 10

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

3 4 5 6 7 8 9

-1.0

-0.5

0.0

0.5

1.0

1.5

3 4 5
-0.1

0.

0.1

●
●
●
●



Jet wake
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• The transverse tomography with jet wake

energy density velocity 



Collectivity with jet: multiplicities 
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• Comparison of flow observables without jet (solid) and with jet (dashed)
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Collectivity with jet: collective coefficients
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• Comparison of flow observables without jet (solid) and with jet (dashed)
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Conclusion



Recap
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• Fluctuations: establish quantitative connection between EOS and experiment, 
and use BES-II data in turn to constrain the EOS and transport coefficients.


• Stochastic fluctuations in the regime far from equilibrium, spin hydrodynamics.

Outlook

Thank You!

• Formulating relativistic hydrodynamic fluctuations involving velocity in non-
Gaussian regime is very nontrivial.


• The perturbation of attractors demonstrates the importance of non-
hydrodynamic sector. 


