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Section Outline :

Spin Polarization in Heavy Ion Collisions and Problem - I
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Particle Polarization :

Figure 1: Origin of particle polarization. [W. Florkowski et al, PPNP 108 (2019) 103709]

o Large angular momentum — Local vorticities — spin alignment.

[Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005); Phys. Lett. B 629, 20 (2005)]
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Particle Polarization :
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Experimental evidence, [STAR Collaboration, Nature 548, 62 (2017), Phys. Rev. Lett. 123, 132301 (2019), Phys. Rev.

Lett. 126, 162301 (2021)]

Theoretical models assuming equilibration of spin d.o.f. explains the data. 340



Particle Polarization :
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Figure 2: Observation (L) and prediction (R) of longitudinal polarization.
[Left: Phys. Rev. Lett. 123 132301 (2019);  Right: Phys. Rev. Lett. 120 012302 (2018)]
o Inclusion of shear-induced polarization (SIP) solves the problem with extra constraints.
[Fuet. al. Phys. Rev. Lett. 127, 142301 (2021);  Becattini et. al. Phys. Lett. B 820 136519 (2021)]

o Still the resolution remains ambiguous.

[Florkowski et. al., Phys. Rev. C 100, 054907 (2019); Phys.Rev.C 105, 064901 (2022)]

o Do dissipative forces play any role and solve the problem?
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Inclusion of Dissipation :
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Figure 3: Polarization. 7; = 7.5 fm forK(Xf = 0.6) and, 75 = 4.9 fm for A (sz =1.5).

o T, is in agreement with [Hidaka et. al., arXiv: 2312.08266, Wagnar et. al., arXiv: 2405.00533] .

o We had to assume, wg; — 0. [S. Banerjee et. al., arXiv:2405.05089] 5/40



Summary of the Problem I:

The first problem we wish to address is :

o Study the effects of spin-dependent relaxation time on spin-polrization.
— Formulate Dissipative Spin-hydrodynamics with extended RTA (ERTA).
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Section Outline :

Relativistic Hydrodynamics and Problem - II:
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Relativistic Hydrodynamics :

o The conserved currents of hydrodynamics are,
NP = nout + n*, THY = Eutu” — (P + IT) APV + 7h¥

where, uynt =0, u,m" =0 and, 7}; = 0.

o We have chosen the Landau frame u, T"" = £u” and Landau matching
conditions £ = £y, n = no.

o The number of unknown variables are, 4 + 8 + 3 = 15.

o However, the number of conservation laws are 5.

o So, apart from EoS, 9 more equations needed to close the system of equations.
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Relativistic Hydrodynamics :

o The conservation laws lead to the following dissipative hydro equations,

Eo+ (Eo+P+ )0 — 70, =0
(Eo+ P+ ) a® =V (P + )+ AS9, 7" =0
h0+n09+8ﬂ,n“ =0

where, o = (VFu” + VYu*) /2 — AHY0/3 is the shear stress tensor.
o These equations are exact up to all order in gradients.

o Next we incorporate the order-by-order gradient corrections :

no— NH H K
N = Nigy + Ny + Nzy +

v _ v 7 g .
THY = T(o) +T(1) +T(2) +
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Dissipative Relativistic Hydrodynamics up to O(0) :

o Truncating terms up to first order in spacetime gradients, we get the
Navier-Stokes equations within Landau-Lifshitz frame and matching
conditions as,

T =2nou,
I=-¢o,
nt =k (VHE).

where, £ = pu/T. n,¢ and « are the O(9) transport coefficients.

o The details of the transport coefficients can only be obtained from a
microscopic theory.
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Causality of O(0) Relativistic Hydrodynamics :

o To study the causality, perturb the hydrodynamic fields:

£ — & + OE,

ut — ub + out,

o We may assume a solution of the form — A = Ae
o This leads to dispersion relation:
w= (7% ) k2.
Eo + Po
o Propagation speed of the perturbation:

[P. Romatschke, IJMPE 19 (2010) 1-53]

—iwt+ik-x
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Dissipative Relativistic Hydrodynamics up to O(9°) :

o Truncating terms up to second order in spacetime gradients, we get the
evolution equations of the dissipative currents as,

Qv
lur) 7:_— =2 Brou + )\17I'S/‘0'V>’Y + AomHY 0 + )\37rﬁ,”u.z">W + A\ IIoHY,
s

. 11
I+ — =Bpouw + 6.0 + 627" o0,
T

%
n :1'7 = Bn (VHE) + hanuw™ + ant0 + hanyovy + Yy (Vo E).

o The dissipative currents can no longer be completely determined from other
hydrodynamic variables and have to be promoted to independent variables.

o Higher order evolution equations can also be obtained. However, to completely
specify the theory a microscopic theory is required — Kinetic Theory.
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Causality of O(9?) Relativistic Hydrodynamics :

o For a chargeless, conformal system, the dispersion relation becomes:

= (&%7) o
Eo+Po) (1 —wrn)

o

Propagation speed of the perturbation:

pmax _ iy 40 J (e
k—oo dk Tr \ Eo + Po

o

For 7= > 10/ (€6 + Po), the system is causal = MIS theories can be causal.

[P. Romatschke, IJTMPE 19 (2010) 1-53]

o

More sophisticated methods of causality analysis exist.
[M. P. Heller, PRL 130 (2023), 261601, L. Gavassino, PRL 132 (2024), 162301]

o The price to pay is to include non-thermodynamical variables.
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BDNK Theory and the Origin of Acausality :

o Under BDNK approach, the constitutive relations are:
5 =¢, (T'/T) Feal+e €+ 0(0?)
6P = (T/T) + 70+ 73 € +0(07)
on = v, (T/T) Fral+ g€+ 0(?)
h* = 0,4" + (02/T) (VHT) 4 05 (VHE) + O (07)

nt =y +(72/T) (VHT) 4+ 73 (VH€) + O (87)
T =2not’ + O (87).

[P. Kovtun, JHEP 10 (2019) 034, K. Jensen et. al. PRL 109 (2012), 101601]

14/40



BDNK Theory and the Origin of Acausality :

o

The replacement D — V = Non-hyperbolic equations.

o BDNK resolves this from the macroscopic point of view.

o

But microscopic theories like RTA requires D — V for conservation laws.

o Novel RTA provides the appropriate framework in this regard.
[G. S. Rocha et.al., PRL 127 (2021) 4, 042301, PRD 106 (2022) 3, 036022]

o No such theory exists for spin-hydrodynamics.

15/40



Summary of the Problem II :

The second problem we wish to address is :

o Construct a kinetic theory that is compatible with BDNK approach.
— Formulate Dissipative Spin-hydrodynamics with Novel RTA (NRTA).
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Section Outline :

Relativistic Spin-hydrodynamics :
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Relativistic Spin-hydrodynamics :

o We first note that spin-polarization originates from the rotation of fluid.
o Hence, we will have to deal with three conserved currents :

8uN* =0, 8uT* =0, B = J

where, J = L+ S.  Also, LM*Y = gh T — gV T,

o For symmetric 7" we have, |8,SM* =0

N* = N§ + 6N*, TH = T4 + 6TH, SAHY = GLHY 4 sGAmY ]
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Relativistic Spin-hydrodynamics :

o We first note that spin-polarization originates from the rotation of fluid.
o Hence, we will have to deal with three conserved currents :

8uN* =0, 8uTH =0, NIV =0 J

where, J = L+ S. Also, LMW = ghT Y — gV T,

o For symmetric 7" we have,

N* = NE + 6N*, TH = T 4 5TH, SRV = SuH g §SAH J

o The dissipative parts require microscopic description — Kinetic Theory.
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Section Outline :

Relativistic Kinetic Theory with Spin:

19/40



Kinetic Theory with Spin :

o To import spin in kinetic theory (KT), we start from the Wigner function
(Wqp), that bridges the gap between QFT and KT.

Wap(z, k) = /d“y@*"k'y (: Pp(z1)va(z2)) :
o For spin-1/2 particles we set up kinetic equation of VW, g using Dirac equation,

i
['y- (er 58) — m} Wag = C [Was]
[Xin-Li Sheng, PhD Thesis (2019), N. Weickgenannt et al, PRL 127 (2021) 5, 052301, PRD 100, 056018 (2019).]

o The Wigner function can be decomposed as,

1
Was = 5

1
i (f+ P+ YV + PR AL+ 5£“”&w>

apB
F — scalar component,

P — pseudoscalar component,

V., — vector component,

A, — axial vector component,

Sw — tensor component.

where, the v-matrices are the 4 x 4 Dirac y-matrices and, X*" = i*y[“'y"].
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Kinetic Theory with Spin :

o For spin-hydrodynamics it suffices to consider only 7 and .A,, components.

[Xin-Li Sheng, PhD Thesis (2019)]

Scalar Component Axial Component
Kin. Eq. k"8, F(z, k) = Cr k"9, A" (z, k) = C%
k- k-
RTA C;:M[Feq(m,k)ff(x,k)] c;:( u) [.A;’q(a:,k)fA”(z,k)]
Teq Teq
b o | FE k) =2m [ (e, s) 690 F )| AL (oK) =2m [ 5 (ep,s) 690k F 1)
JP,S Jp,s

[S.B., W. Florkowski, A. Jaiswal, A. Kumar and, R. Ryblewski, PLB 814 (2021) 136096, PRD 103 (2021) 1, 014030]

Momentum measure — /() — /dP(~-~), /dP = d3p/ (2m)3 p°.
p

Spin measure — ./L;(---)ﬁ/dS(---), /dS:(m/ws)/d4s5(s-s+52).
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Relativistic Kinetic Equation :

o We take the equilibrium (extended) phase-space distribution function to be :
FE(a,ps) = fE, = e-Blwnte (141, o 2
(T, 8) = fos=e 1+2w‘ws +0O(w?)
[F. Becatinni et al., Annals Phys. 338 (2013) 32-49, W. Florkowski et al., PRD 97 (2018) 11, 1160171
o Near local equilibrium f(z, p, s) is expanded using Chapman-Enskog :
fi(CC,p, 5) = f$($7p7 S) + 6fi($7pv 5)'
[de Groot, van Leewan, van Weert, ‘Relativistic Kinetic Theory - Principle and Applications (1980)’1

o The conserved currents are expressed in kinetic theory as,

‘N“:fpvs pu(f+_f7): TMV:fp,S pupu(f++f—): S)\’“V:fp_yspxs‘w(f*+f’)
o Under RTA, conservation laws require, (u-p)Sf/m = o,
D,s
/ p’ (u-p)of/m=oand, | (u-p)s’of/m =o.
p,s p,s
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Dissipative Currents in Spin-hydrodynamics:

o The dissipative quantities are defined as,

nt :Ag/dp/dspa (6fF—=6f7)
Aunp

m=-=22 [ap [asper? (o1 +657)

ThY = Agg/dp/ds;)apﬁ (BfF+6f7)
SSMHY = /dP/dSp’\s“” (6fF +6f7)
where, ALY = (1/2)(AL A} + AGAL) — (1/3)AMY A,p is a traceless

af
symmetric projection operator.

23/40



Dissipative Currents in Spin-hydrodynamics with RTA:

o The non-equilibrium parts give the transport coefficients:

SNH = Teq Bn(VHE),
STH = Teq[ — B A" 042 Br 0],

SSMH = reg B O+ BEM (V) + BP MY g5+ BY *XHY ( pting)|

o By choosing the Landau frame and matching conditions we found the following
relations:

ne tanh &
== (Vv
Erp) (Vb
WhY = DO + DEY™ (Vo) + DEV*Poog + DY P (Vawg,),

E=¢60, B=p0, Biu=-VuB+

[S.B., W. Florkowski, A. Jaiswal, A. Kumar and, R. Ryblewski, PLB 814 (2021) 136096, PRD 103, 014030 (2021)]

o But such first-order theory is not causal and we had to assume g = 7eq ().
[A. Daheret. al., PRD 107 (2023) 5, 054043]
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Boltzmann Equation

e Spacetime Evolution \
pous + O - o
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e Background Forces
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Boltzmann Equation

e Spacetime Evolution \V
i - B -

e Background Forces
e Collision Kernel

o Gravitational Forces : Ft =-T HBPQP’B-

@

(o}

Electromagnetic Forces : F* = qF*p,.
o Mean-Field Forces : F* = M (0*M).
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Boltzmann Equation

e Spacetime Evolution \V
i+ B - v

e Background Forces
e Collision Kernel

o Gravitational Forces : Ft =-T ngap’e-

@

o Electromagnetic Forces : FH = qF*p,.
o Mean-Field Forces : F* = M (0*M).
e Global Equilibrium solution:
fo=(expg+r)""

where, r = 0,41 and g = Zanqbn
n

e Under local equilibrium, a,, — o, ()
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The Collision Kernel

o For 2 < 2 collisions:

C[f] = /dP dPl dK/ Wkk'%—)pp’ X (fpfp’ — fkfk/)
N———

Transition Amplitude: \_/
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The Collision Kernel

o For 2 < 2 collisions:

C[f] = /dP dPl dK/ Wkk'<—>pp’ X (fpfp’ — fkfk/)
——

Transition Amplitude: \_/

o Chapman-Enskog Expansion:

T = fok +0fi = for (1 + k)

o Linearized Collision Operator :

C[f] — fz¢k = /dP dP' dK' Wkk’(—)pp’ fokfok’ X (d)p + ¢p/ — Pk — ¢k’)

Collisional Invariants: \/

[S. R. de Groot et. al., Relativistic Kinetic Theory, ~C. Cercignani et. al., The Relativistic Boltzmann Equation]
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The Conservation Laws

o Collisional invariants remain conserved during collisions.
o Each collisional invariant correspond to a conservation law.

o For a non-rotating, unpolarizable fluid :
e ¢ = 1 —> Number Conservation.
e ¢ = Ey — Energy Conservation.
o ¢ =k (~ k")) — Linear Momentum Conservation.

o Thus, a collision kernel should satisfy:
L1i=o, L By = o, Lk =o.
o The linearized collision kernel satisfies the property:

[ nioc= [ dx ol

:>/dKL¢k:o, /de”quk:/dK (u“Ek+k<”>) Ly = o.
[S. R. de Groot et. al., Relativistic Kinetic Theory, C. Cercignani et. al., The Relativistic Boltzmann Equation]
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New Collision Kernels

o We will work with two types linearized collision kernels.
1. Extended Relaxation Time Approximation (ERTA):

N E;
Lgrradx = *_I_Tf (¢x — ¢1) fok

where,

« _ (k-ou)  (Bx —p)éT  op
Pk = T T= T

6uM:u;7u“, ST =T" — T, Spo=p" — .

[D. Dashet. al., PLB 831 (2022) 137202]
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New Collision Kernels

o We will work with two types linearized collision kernels.
1. Extended Relaxation Time Approximation (ERTA):

N E;
Lgrradx = *_I_Tf (¢x — ¢1) fok

where,
w  (k-du)  (Bx—p)oT  dp
Pk = T T= T
6uM:u;7u“, ST =T" — T, Spo=p" — .

[D. Dashet. al., PLB 831 (2022) 137202]

2. Novel Relaxation Time Approximation (NRTA):

5
Lngra ~ (-ﬂ +> 1A (>\n|>

where, |\, ) are degenerate, orthogonal eigenvectors of Lxgra-
[G. S. Rocha et. al., PRL 127 (2021), 042301]
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Solving The Boltzmann Equation

o Boltzmann equation is an inhomogeneous partial differential equation.
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¢ = én + éin
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Solving The Boltzmann Equation

o Boltzmann equation is an inhomogeneous partial differential equation.
o Thus, the solution is:

¢ = én + éin

o The homogeneous part looks like :

dn=a+bukt = a1+ (b u)Byg + by k.

o Subtracting the homogeneous part of the solution, gives freedom to choose the
frame and matching conditions.

[S. R. de Groot et. al., Relativistic Kinetic Theory, C. Cercignani et. al., The Relativistic Boltzmann Equation]
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Solving The Boltzmann Equation

o Boltzmann equation is an inhomogeneous partial differential equation.

o Thus, the solution is:

¢ = én + éin

o The homogeneous part looks like :

dn=a+bukt = a1+ (b u)Byg + by k.

o Subtracting the homogeneous part of the solution, gives freedom to choose the
frame and matching conditions.

[S. R. de Groot et. al., Relativistic Kinetic Theory, C. Cercignani et. al., The Relativistic Boltzmann Equation]

o Both ERTA and NRTA have this feature.
ERTA : a— (Bx — p) (6T/T?) + (6p/T), and, by — — (6uu/T).
NRTA: a—®,,  and, b, — &Y.
[D. Dash et. al., PLB 831(2022) 137202, G.S. Rochaet. al., PRL 127 (2021), 042301]

20/40



Solving The Boltzmann Equation (Contd.)

o Two popular approaches are considered :

1. Chapman-Enskog-like iterative solution:

Gk fok = ¢y i for — (%:() (k- 0) fin—1)ks

We will use this to solve the Extended RTA case.
[D. Dash et. al., PLB 831 (2022) 137202]

2. Moment method:

pe= > o, ok, PO(BER)

n,f=o

We will use this to solve the Novel RTA case. Here PT(f) are orthogonal polynomials

satisfying the property:
£

(264 1)

n m n

(B/m) (k- A k) POPY) = AD60m,

I
Lo _ ¢

" (204 )N
[G. S. Rocha et. al., PRL 127 (2021), 042301]

((Bi/m) (k- A B) PYOPY)
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Inclusion of Spin

o Phase-space is extended to include spin degrees of freedom :
S k) —> folw,k,5)
fotx — fos = foexp(s 1) = foi [1+ = (s:0)] + O ()
o Homogeneous part for spin-polarizable particles :
¢n = a+ bkt + st
o The solutions are modified as :

1. Chapman-Enskog-like iterative solution (ERTA):

¢ T]
bncfors = O fos = s (02 0) fnmnyos
2. Moment method (NRTA):
e (r-e1g) (ia-g)
b= > (asn"‘ RS Za )kwj-- kg PA(BBx)
n,l=o

[S. Bhadury, 2408.14462]
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Section Outline :

Relativistic Spin Hydrodynamics with ERTA :
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Field Redefinition - ERTA

o The thermodynamic variables (starred) are determined via field re-definitions :
(2 ¢s)o + (@ Ps)5 = 0, (2 9s)o + (T2 bs)y =0
(a5k0s) + (@ kM 3:) =0, (055" s)g + (@4 8" Bs)s =0

where we use the notations:

<(~-~>>0:/deS(-~->fok, <(~-~>>6:/deS(~-~)fOk

o The thermodynamic variables are :
X" =X+6X

where, X =T, i, up, wpw.

o Then we find using the field-redefinitions (up to O (9)):
duy = BCy (V4E), 8T =C 0, Sp=Cy0,
8w = DI 6 + DEVY (V4 £€) + DEVP g5 + DT (Vywag).

o Even with arbitrary frame and matching conditions, we had to use, D — V.

o While the first-order theory is still acausal, we can now have, 7z (z, p, s). 33/a0



Constitutive Equations & Dissipative Currents - ERTA

o Under a general field re-definition the constitutive relations are given by :
N¥ = (no + dn)u’ +nk,
THY = (Ey + 6E) ulu” — (P + 6P) AV + ah(y?) 4 7hv
Sk,uu _ Sé”“j + 55/\,;“/.

o The dissipative currents are :
on=v0 6 = e, P = pb,
n* = kLY (Vu€), ht = KZD (Vu8),
Y = anot? |

BN = BI04 BT (946) 4 BEOF 0y 4 B (V)

o The expressions of the transport coefficients can be obtained assuming:

(7, D, 5) = Teq(z) (B p)"* (u-5)"
[S. Bhadury, 2408.14462]
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Frame Invariant Transport Coefficients - ERTA

o The entropy production is given by,

O Hy = —BI16 — QM (V&) + B oy — SMY (Vawuw)

o The frame-invariant transport coefficients are:

T=—C0=6P— (%) 5P + (%) on,

Mo
Bo— 1MV (V,€) = nP — hH,
Q= (Vi) =n (50+7>O)

Y = onoh?,

S/\p,u — /BgMU’Ya/B (

Vowag) = = (w DS 58, 05 — 55 )

1
2

[S. Bhadury, 2408.14462]
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Section Outline :

Relativistic Spin hydrodynamics with NRTA :
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The Linearized collision kernel - NRTA

o We work with 1 = 0, as NRTA is not built for pair production and annihilation.

o We have 10 collisional invariants and hence :

o The orthonormal basis are :

Fx
A1) = —F/————,
V(B /R)),

[A/‘f)s =-1 + Z ‘)\n> ()\n‘¢5>

n=i

Jo (k)
P\274> =

\/(1/3)<(Ek/TR)k<a>k<a>> ’

o

S (oW e N

(B /m) 3,

(B /) sM),

 ((Bie/mR) KVEH) Ky }

((BE/m)), ((1/3) (Bi/7R) KV k(ay)

5 |

(B/m)G |

_ 3 [se
e (WS RN

o Then we get,

tEk =0,

— <(Ek/TR)k<H>gHV>Uk<M :|
< {(1/3) (Bi/mR) Kk oy |

(B/m)),

Lkl = o, Ls* =o.
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Field Redefinition - NRTA

o We work with ;1 = 0, as NRTA is not built for pair production and annihilation.

o Now we use a new set of notations :

(o = [ A () fos. (W= [ K () Fo

o The thermodynamic variables (starred) are determined via field re-definitions :

/ dKdS g $5 foie = 0, / dKdS g2k g fo = o, / K dS ggs™ by foge = 0

o The homogeneous parts of the solution are :

S 2 ioiiok’ o) = -3 gl
= (@ P’ " n—

<Q2 k<”>k<”1>P7(L1)>ok
<q2 (k-A-k) P£1)> §

o.

oo

== 3w (as P (s P)

n=1i
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Section Outline :

Summary and Outlook :
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Summary and Outlook :

o Summary :

1. ERTA provides a simple solution to make the relaxation time dependent on p and s.

2. ERTA does not lead to first-order causal theory of spin hydrodynamics.

3. NRTA gives the option of constructing first-order causal spin-hydrodynamics.

4. NRTA cannot describe a system with pair production and annihilation.

o Outlook :

1. For the NRTA, we still need to find :
O, O, v

(p(“l""‘%)

n

WMV-,<IL1"'#1{>

for

for

for

n

Vv
o »
o~
%
N

\%

°
~

v
=

2. Second-order Spin hydrodynamics from kinetic theory should be formulated.

Thank you.
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Back Up:

o The frame-invariant transport coefficients are:

- (8790) (8730)
fi=m— e+ Vi,
€, ) ., ono ) ¢,

Mo
li=~— | =—— ) 0
i (&+%)’

o Out of the 16 parameters, only three one-derivative transport coefficients
C(f1, f2, f3), m, K(l1,12) are independent.
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