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Heavy lon Collision

Heavy lon Collision

relativisitc generalization of fluid mechanics.

@ The QGP phase can be modelled in the framework of relativistic hydrodynamics which is a

Hydro expansion
Initial state of QGP or hadron gas
. . | I r . |
Preequilibrium

Hadronisation
Figure: Various stages of Ultrarelativistic heavy-ion

collisions
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Heavy lon Collision

Conservation laws

o Conservation of particle number and the energy momentum tensor,

BHT;“' =0 (1)
BHN}‘ =0 (2)
@ With the fluid velocity at each point being u*, the fluid energy momentum tensor and
number current can be decomposed along and orthogonal to fluid velocity as:
TH = eutu” — (P + AW 4 2ulth¥) 4 7t (3)
N}‘ = nut +n# (4)

o Here APV = gt¥ — yMuY is the orthogonal projector to ut.

@ In Landau frame definition,
u, THY

uP
€
And hence, the heat current h* = 0, i.e, there is no energy dissipation.
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Heavy lon Collision

Equations of motion

@ The fluid equations of motion are now given by:

e+ (e+P)f—7Hou =0, (5)
(e + P)u* — VFP 4+ ALoyn" =0, (6)
n+nf+oun* =0 (7)

@ ¢, n and P are related to each other via the equation of state.

@ The evolution equations for 7#* and n* is needed which can be derived from entropy-current
analysis, requiring 0, S* > 0.

@ The evolution equation for 7#" that we need to ensure the second law of thermodynamics is
guaranteed is:

) 4 ™ 2Br 0P — Spnmh’O + om$lY )Y
- = T T ~ e Ty
s

— TP £ A BV @ 4 L, VR (8)

@ The transport coefficients must be determined from a microscopic theory.
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Kinetic Theory Approach

@ To solve the resulting equation of motion, we need to find the evolution equation of 7H" as
well as the other dissipative quantities. We do that using kinetic theory approach.

o We start with a distribution function for the particle, f(z,p) and which can then be used to
define:

= [appryps v [avprs )

o With fo(z,p) being the local equilibrium distribution, the deviation of equilibrium can be
written as 6f = f — fo.

T = ARY / dPppPsf (10)
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Heavy lon Collision

Boltzmann Equation and the RTA collision kernel

@ To get the form of §f, the evolution of f(x,p) is needed via the Boltzmann equation.
pHouf =Cl[f] (11)

@ The collision term which encodes the details about various collisional processes happening in
the system can be approximated using the relaxation time approximation (RTA) as:

clfl = - P 5 g (12)

TR

e Conservation laws implies that for C[f],

[avein =o= [ appreis) (13)

@ The relaxation time Tr is momentum independent for RTA since a momentum dependent
Tr(p) leads to violation of conservation laws with Landau matching condition:

[avcin#oz [apprers (14)
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Extended relaxation time: Motivation

o Tr(z,p) reflects how quickly particles at that momentum equilibriate with rest of the fluid.

@ According to some studies!, various physical scenarios lead to various forms of momentum
dependence for the relaxation time.

o If energy loss of particles grows linearly with momentum, % o p, relaxation time is expected
to be independent of p

If energy loss of particles approaches a constant value, relaxation time follows 7 o p
For scalar A\¢* theory, relaxation time follows 7 o p.
For QCD, the momentum dependence should lie between these two cases.

For example, in case of QCD radiation energy loss taken into account, we expect T oc p0-°

This leads to the formulation of Hydrodynamics using a momentum-dependent relaxation
time approach.

K. Dusling, G.D. Moore & D. Teany, Phy Rev C 81, 034907 (2010)
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Heavy lon Collision

Extended relaxation time

@ The collision kernel for extended relaxation time reads 2:

(u 3 p) *
Clfl==———=(f—fo) (15)
TR(-'E,p)
Where f is the equilibrium distribution function in the “thermodynamic” frame.

fg = emPrlnmre (16)

o Where u**,3* and o™* are related with the usual variables by:

uh* = ut + Sut, W= p+op, T =T+ 6T, (17)

@ This lets us use a momentum dependent relaxation time to determine the transport
coefficients. The form of momentum dependent 7r(z, p) is taken as:

() = = (L) (18)

2D. Dash, S. Bhadury, S. Jaiswal, A. Jaiswal, Physics Letters B, 831 (2022)
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Heavy lon Collision

Gradient expansion

@ We use a Champan-Enskog like gradient expansion to get the form of df upto second order.

TR TR TR
Af =——"—pH0ufo — ———=p"Ou| — ——p"Oufo + 51| + Affsy.- 19
w-p) T (wp) /| (w-p) GRS CINC)
Where Af(*Q) is given by Af(*Q) = f§ — fo.

@ This can be obtained by Taylor expanding f; about 7', 1 and u*:

(du(ay - p) n (u-p—p)
T T2

. S
Affy = |- T2y + (2)] fo. (20)

T
@ With the three conditions, viz. Landau frame condition, € = ¢g and n = ng, we obtain the
form of du*, §T and Spu.
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Heavy lon Collision

Shear stress evolution within ERTA
@ The df with the necessary counter terms inside u*#, 8* and p* leads to:

THY

alne) 4 = 2Br0" — SpnmVO + 27r,<},“o.)”>'Y — 'r7r7r71:<yucr”>'y

Tr

— Tenn i) 4 AoV L, VR, (21)

@ This evolution equation is second order in the gradient expansion of the hydrodynamic fields

@ The central result of the current work is that in the massless MB limit, the evolution of the
number diffusion n* is coupled to the evolution of the shear stress tensor whereas they are

decoupled in the RTA limit 3.

RI(5 + 2£) 5
- -7 > ——

o , _ @)
TU(5 + £) 2
e@dgRT(5 + £)
= — —, £> -5 23
n0 307233 (23)
2I'(6 + 2¢) 5
Toe = ————, £ > —— (24)
70(5 + £) 2
Ter (5 2) {I'(5 r4 £) — 48T (4 2¢
Ly = (5+ ) {0+ 0T 4+ ) (4 + )}’ > o 25)

15(2 — £ 4+ H)T(3 4 £)T'(5 + 2£)
S 4Te(5 + £) {I'(5 + £)I'(4 + £) — 480'(4 + 2£)} s o 25)
15(62 — £ 4+ 4)T(3 4+ £)T'(5 + 2£)

3A. Jaiswal, B. Friman, K. Redlich, Phy Lett B 751 (2015)
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Results for B = 0 case

Transport coefficients

_ L(£+ DTT(5 + ) {-T(4 + OT(5 + £) + 48T (4 + 20)}

>\7rn
60(£2 — £+ 4)T(3 + O)T(5 + 2¢)

£> -2 (28)

o In the massless MB limit, the coefficients of the term Trnn{Pu?? | Lin V{#n?) and
Arnn BV o are plotted below *:

o [GeV]
Arn [GeV]
Lon [GeV]

-1

<2 = 1

4s. Singh, M. Kurian, V. Chandra, Phy. Rev. D 110, 014004 (2024)
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Exact calculations of transport coefficients

@ Some recent studies °,% analytically extracted a full set of eigenvalues and eigenfunctions of

the relativistic linearized Boltzman collision operator for A¢* theory.

Lon=1 / dIC dPAP’ fors (2m)°8 (k + K —p = p')(p + &y — bk — b1r)- (29)

@ Where the eigenfunctions and thier eigenvalues are given by:
ﬂL(zl(m+l)k(“1 ke = _aM |:n—|—m —
n

1
5 +5405n0] LC™ DR e (30)

n+m+1

@ Expanding ¢ in terms of these eigenfunctions and keeping the terms with zero eigenvalues
leads to the collision kernel being:
. gM 1
L(z)k = _T |:¢k: —Co — Cng.k:) - Cgk}<u>:| (31)

@ Recovering the RTA limit from the exact theory leads to the form of momentum-dependent
relaxation time being:

_ 2(u-p)
TrR(P) = M
Which implies £ = 1 and & = 472/(ge®) in the corresponding ERTA framework.

5Gabriel S. Rocha, Caio V.P. de Brito, and Gabriel S. Denicol, Phys. Rev. D 108, 036017 (2023)
Gabriel S. Rocha, Gabriel S. Denicol, and Jorge Noronha, Phys. Rev. Lett. 127, 042301 (2021)
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Results for 0 case

Comparision with self interacting A¢* theory

Coefficients RTA results | ERTA  results | A¢? results (ex-
(1=0) (l=1) act)
24dg 72
i Te gno B2 gnoB?
" 4P7, 16d, 48
5 98° 983
K noTc dg 3
12 982 9BZ
4 4 4
Onm 3 3 3
Trm 170 2 2
4 4
brn 0 ~38 ~38
16 16
Tan 0 ~35 ~35
2 5
Arn 0 33 68

Table: Comparison of the ERTA coefficients with exact results from A¢* theory.
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Electromagnetic field

o The electromagnetic field tensor F* and its dual F'** can also be decomposed into
components parallel and perpendicular to the fluid velocity:

FHY = EHy? — BYEM 4 #vBy, By (32)

. 1

F1Y = 2P Fog = Bru? — BYul — t**Puq I (33)
Where EH = FPVqy,, and BH* = FHVqy,,.

@ In the non-resistive limit, we take the electric field E¥ — 0 so that induced current doesn't
blow up. This leads to following evolution equation obtained from Maxwell's equations:

P (uqdy B + Badyua) = J¥ (34)
B* + B*§ = u"8, BY + B¥V,u*. (35)
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Equations of motion for MHD

@ In this non-resistive limit,

B2
ThY = T(u”u” — AMY — 2bHDY) (36)
@ With the maxwell's equations, the conservation of total T#" = Tk + T}w leads to:
ATy = FHXJp (37)

o The fluid equations of motion are now given by:

E+(e+P)o—7Hou =0, (38)
(e + P)u* — VHP + AL, " = —Bb"*ny, (39)
n+nf+ on* =0 (40)

@ The Boltzmann equation in the presence of the external magnetic fields and using the
extended relaxation time is given by:

o
PO — aBpy oL = P (g (a1)
" (@)
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Transport coefficients in MHD

@ Again, doing a Chapman Enskog-like gradient expansion, we get the Deltaf o) needed to
derive m*¥ evolution as:

TR
A J— Y _ 2 4B ov u
TR 3f0
+ quJ"pyi + Afl, 42

@ Using the above Af, the second order shear evolution equation is given by:

pv 4
7‘r<“”> + LT = 2/87r0';“/ — gw‘“’é + 27T»<YM(4)U>’Y - TWWW'(yHUU)PY
Ed

— TP 4 Ay n BV o L, VEERY) 4 §,TBAZEquWgB"7r7p

— qBﬂ'Tm]5¢u<“b”>‘Tn(7 — qB)\,mBnabc<”V”>a — qTOlSrrnva (B”>‘Tng) (43)
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Results for B # 0

Results

@ The plots for two of these coefficients, d,.p and d,, 5 against the momentum dependence
parameter [ is:

14 14
1.2 12
1.0 1.0
3 08 i 0.8
& Q
“ 06 5 06
04| 04|
02| 02
003 = 1 003 = 1

l l

@ We see that both of these coefficients tend to their limiting case values for RTA at §,p — g

and 6,5 — 2/5 respectively 7.

7A. Panda, A.Dash, R. Biswas, V.Roy, JHEP 03, 216 (2021)
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The Navier Stokes limit

o In the Navier Stokes’ limit which gives 7#¥ in the first order theory, without magnetic fields:

Y = 2ngot? (44)
@ In the first order, the shear evolution in case of MHD becomes:

g"g"r BV o BN o8P I
— - 57TBAT,,Bqu g Typ = 2Bn0P”.
s

o With a finite magnetic field, the shear viscosity splits into five components:

(45)

MY

3 3
[27100 (A“O‘A”ﬂ) + 101 (A‘“’ - EE“") (AD‘B - 550‘3) — 2nga (B4 VB

+ 2V 2, (E““b”ﬂ n E”O‘b“ﬂ) + 2104 (b“"‘b”bB + byab“bﬂ)]aaﬁ (46)
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The Navier Stokes limit (comparision with RTA MHD results)

Where, x = ‘IB%O(Z).
As we see, the momentum dependence of the ERTA has a significant effect on the various shear
viscosity coefficients even in the first order.
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Conclusion

Conclusion

o This study shows that there is a significant impact of momentum dependence of the
relaxation time on the dynamics of the fluid in both with and without magnetic field.

o Incorporating these affects via the modified transport coefficients should lead to a more
accurate simulation of the expanding fireball in heavy ion collisions.

o Further work can be done in recognizing the momentum dependence parameter ¢ for various
theories.

@ The Magnetohydrodynamics of ERTA can be studied in the resistive case as an extension of
this work.
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Conclusion

Current work..

o Extension of the previous work is being conducted where the goal is to derive the evolution
equation for number diffusion.

o This requires solving the system of equations given by the matching conditions to get du”,
ép and 0T

@ An example of this matching condition is the landau frame condition which will give us the
necessary counter-terms that will be needed to satisfy the Landau frame condition even when
the relaxation time is momentum dependent:

I31 oT 1) . .
—?Ju”—l—(lgo - ,ulgo)ﬁu“ + Igo?uu” = Aut + BV*a + Colu® + Dohu®

+ EolVea + FolVHB — K31 AP0, + Gl (VOur) + HD(VHa)
+ IVaa(VHu®) + JV%ch (47)

@ Where the coefficients are expressed in terms of various thermodynamic integrals.

@ The other two matching conditions which needs to be satisified by addition of these
counter-terms are n = ng and € = €g.

@ Various values of ¢ will be obtained depending on the theory and these transport coefficients
will be predicted for those physical theories.
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Thank you!
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