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Heavy Ion Collision

Heavy Ion Collision

The QGP phase can be modelled in the framework of relativistic hydrodynamics which is a
relativisitc generalization of fluid mechanics.

Figure: Various stages of Ultrarelativistic heavy-ion collisions
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Heavy Ion Collision

Conservation laws

Conservation of particle number and the energy momentum tensor,

∂µT
µν
f = 0 (1)

∂µN
µ
f = 0 (2)

With the fluid velocity at each point being uµ, the fluid energy momentum tensor and
number current can be decomposed along and orthogonal to fluid velocity as:

Tµν
f = ϵuµuν − (P +Π)∆µν + 2u(µhν) + πµν (3)
Nµ

f = nuµ + nµ (4)

Here ∆µν = gµν − uµuν is the orthogonal projector to uµ.
In Landau frame definition,

uµ =
uνTµν

ϵ

And hence, the heat current hµ = 0, i.e, there is no energy dissipation.
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Heavy Ion Collision

Equations of motion

The fluid equations of motion are now given by:

ε̇+ (ε+ P )θ − πµνσµν = 0, (5)
(ϵ+ P )u̇µ −∇µP +∆µ

ν∂γπ
γν = 0, (6)

ṅ+ nθ + ∂µn
µ = 0 (7)

ϵ, n and P are related to each other via the equation of state.
The evolution equations for πµν and nµ is needed which can be derived from entropy-current
analysis, requiring ∂µSµ ≥ 0.
The evolution equation for πµν that we need to ensure the second law of thermodynamics is
guaranteed is:

π̇⟨µν⟩ +
πµν

τπ
= 2βπσ

µν − δπππ
µνθ + 2π

⟨µ
γ ων⟩γ − τπππ

⟨µ
γ σν⟩γ

− τπnn
⟨µu̇ν⟩ + λπnn

⟨µ∇ν⟩α+ lπn∇⟨µnν⟩. (8)

The transport coefficients must be determined from a microscopic theory.
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Heavy Ion Collision

Kinetic Theory Approach

To solve the resulting equation of motion, we need to find the evolution equation of πµν as
well as the other dissipative quantities. We do that using kinetic theory approach.
We start with a distribution function for the particle, f(x, p) and which can then be used to
define:

Tµν =

∫
dPpµpνf Nµ =

∫
dPpµf (9)

With f0(x, p) being the local equilibrium distribution, the deviation of equilibrium can be
written as δf = f − f0.

πµν = ∆µν
αβ

∫
dPpαpβδf (10)
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Heavy Ion Collision

Boltzmann Equation and the RTA collision kernel

To get the form of δf , the evolution of f(x, p) is needed via the Boltzmann equation.

pµ∂µf = C[f ] (11)

The collision term which encodes the details about various collisional processes happening in
the system can be approximated using the relaxation time approximation (RTA) as:

C[f ] = −
(u · p)
τR

(f − f0) (12)

Conservation laws implies that for C[f ],

∫
dPC[f ] = 0 =

∫
dPpµC[f ] (13)

The relaxation time τR is momentum independent for RTA since a momentum dependent
τR(p) leads to violation of conservation laws with Landau matching condition:∫

dPC[f ] ̸= 0 ̸=
∫

dPpµC[f ] (14)
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Heavy Ion Collision

Extended relaxation time: Motivation

τR(x, p) reflects how quickly particles at that momentum equilibriate with rest of the fluid.
According to some studies1, various physical scenarios lead to various forms of momentum
dependence for the relaxation time.
If energy loss of particles grows linearly with momentum, dp

dt
∝ p, relaxation time is expected

to be independent of p
If energy loss of particles approaches a constant value, relaxation time follows τR ∝ p

For scalar λϕ4 theory, relaxation time follows τR ∝ p.
For QCD, the momentum dependence should lie between these two cases.
For example, in case of QCD radiation energy loss taken into account, we expect τR ∝ p0.5

This leads to the formulation of Hydrodynamics using a momentum-dependent relaxation
time approach.

1K. Dusling, G.D. Moore & D. Teany, Phy Rev C 81, 034907 (2010)
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Heavy Ion Collision

Extended relaxation time

The collision kernel for extended relaxation time reads 2:

C[f ] = −
(u · p)
τR(x, p)

(f − f∗
0 ) (15)

Where f∗
0 is the equilibrium distribution function in the “thermodynamic” frame.

f∗
0 = e−β∗(u∗·p)+α∗ (16)

Where u∗µ,β∗ and α∗ are related with the usual variables by:

uµ∗ = uµ + δuµ, µ∗ = µ+ δµ, T ∗ = T + δT, (17)

This lets us use a momentum dependent relaxation time to determine the transport
coefficients. The form of momentum dependent τR(x, p) is taken as:

τR(x, p) =
κ

T

(u · p
T

)ℓ
(18)

2D. Dash, S. Bhadury, S. Jaiswal, A. Jaiswal, Physics Letters B, 831 (2022)
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Heavy Ion Collision

Gradient expansion

We use a Champan-Enskog like gradient expansion to get the form of δf upto second order.

∆f = −
τR

(u · p)
pµ∂µf0 −

τR

(u · p)
pµ∂µ

[
−

τR

(u · p)
pµ∂µf0 + δf∗

(1)

]
+∆f∗

(2). (19)

Where ∆f∗
(2)

is given by ∆f∗
(2)

= f∗
0 − f0.

This can be obtained by Taylor expanding f∗
0 about T , µ and uµ:

∆f∗
(2) =

[
−
(δu(2) · p)

T
+

(u · p− µ)

T 2
δT(2) +

δµ(2)

T

]
f0. (20)

With the three conditions, viz. Landau frame condition, ϵ = ϵ0 and n = n0, we obtain the
form of δuµ, δT and δµ.
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Heavy Ion Collision

Shear stress evolution within ERTA

The δf with the necessary counter terms inside u∗µ, β∗ and µ∗ leads to:

π̇⟨µν⟩ +
πµν

τπ
= 2βπσ

µν − δπππ
µνθ + 2π

⟨µ
γ ων⟩γ − τπππ

⟨µ
γ σν⟩γ

− τπnn
⟨µu̇ν⟩ + λπnn

⟨µ∇ν⟩α+ lπn∇⟨µnν⟩. (21)

This evolution equation is second order in the gradient expansion of the hydrodynamic fields
The central result of the current work is that in the massless MB limit, the evolution of the
number diffusion nµ is coupled to the evolution of the shear stress tensor whereas they are
decoupled in the RTA limit 3.

τπ =
κ̄Γ(5 + 2ℓ)

TΓ(5 + ℓ)
, ℓ > −

5

2
(22)

η0 =
eαdgκ̄Γ(5 + ℓ)

30π2β3
, ℓ > −5 (23)

τππ =
2Γ(6 + 2ℓ)

7Γ(5 + ℓ)
, ℓ > −

5

2
(24)

lπn =
TℓΓ(5 + ℓ) {Γ(5 + ℓ)Γ(4 + ℓ) − 48Γ(4 + 2ℓ)}

15(ℓ2 − ℓ + 4)Γ(3 + ℓ)Γ(5 + 2ℓ)
, ℓ > −2 (25)

τπn =
4TℓΓ(5 + ℓ) {Γ(5 + ℓ)Γ(4 + ℓ) − 48Γ(4 + 2ℓ)}

15(ℓ2 − ℓ + 4)Γ(3 + ℓ)Γ(5 + 2ℓ)
, ℓ > −2 (26)

(27)

3A. Jaiswal, B. Friman, K. Redlich, Phy Lett B 751 (2015)
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Results for B = 0 case

Transport coefficients

λπn =
ℓ(ℓ + 1)TΓ(5 + ℓ) {−Γ(4 + ℓ)Γ(5 + ℓ) + 48Γ(4 + 2ℓ)}

60(ℓ2 − ℓ + 4)Γ(3 + ℓ)Γ(5 + 2ℓ)
, ℓ > −2 (28)

In the massless MB limit, the coefficients of the term τπnn⟨µu̇ν⟩, lπn∇⟨µnν⟩ and
λπnn⟨µ∇ν⟩α are plotted below 4:
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4S. Singh, M. Kurian, V. Chandra, Phy. Rev. D 110, 014004 (2024)
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Results for B = 0 case

Exact calculations of transport coefficients

Some recent studies 5,6 analytically extracted a full set of eigenvalues and eigenfunctions of
the relativistic linearized Boltzman collision operator for λϕ4 theory.

L̂ϕk =
g

2

∫
dK′dPdP ′f0k′ (2π)5δ(4)(k + k′ − p− p′)(ϕp + ϕp′ − ϕk − ϕk′ ). (29)

Where the eigenfunctions and thier eigenvalues are given by:

L̂L
(2m+1)
nk k⟨µ1 . . . k µℓ⟩ = −

gM
2

[
n+m− 1

n+m+ 1
+ δℓ0δn0

]
L
(2m+1)
nk k⟨µ1 . . . k µm⟩, (30)

Expanding ϕk in terms of these eigenfunctions and keeping the terms with zero eigenvalues
leads to the collision kernel being:

L̂ϕk = −
gM
2

[
ϕk − c0 − c1L

(1)
1k − cµ0 k<µ>

]
(31)

Recovering the RTA limit from the exact theory leads to the form of momentum-dependent
relaxation time being:

τR(p) =
2(u · p)
gM

Which implies ℓ = 1 and κ = 4π2/(geα) in the corresponding ERTA framework.
5Gabriel S. Rocha, Caio V.P. de Brito, and Gabriel S. Denicol, Phys. Rev. D 108, 036017 (2023)
6Gabriel S. Rocha, Gabriel S. Denicol, and Jorge Noronha, Phys. Rev. Lett. 127, 042301 (2021)
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Results for B = 0 case

Comparision with self interacting λϕ4 theory

Coefficients RTA results
(l = 0)

ERTA results
(l = 1)

λϕ4 results (ex-
act)

τπ τc
24dg
gn0β2

72
gn0β2

η 4Pτc
5

16dg
gβ3

48
gβ3

κ n0τc
12

dg
gβ2

3
gβ2

δππ
4
3

4
3

4
3

τππ
10
7

2 2

lπn 0 − 4
3β

− 4
3β

τπn 0 − 16
3β

− 16
3β

λπn 0 2
3β

5
6β

Table: Comparison of the ERTA coefficients with exact results from λϕ4 theory.
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B ̸= 0 case

Electromagnetic field

The electromagnetic field tensor Fµν and its dual F̃µν can also be decomposed into
components parallel and perpendicular to the fluid velocity:

Fµν = Eµuν − EνEµ + ϵµναβuαBβ (32)

F̃µν =
1

2
ϵµναβFαβ = Bµuν −Bνuµ − ϵµναβuαEβ (33)

Where Eµ = Fµνuν and Bµ = F̃µνuν .
In the non-resistive limit, we take the electric field Eµ → 0 so that induced current doesn’t
blow up. This leads to following evolution equation obtained from Maxwell’s equations:

ϵµναβ
(
uα∂µBβ +Bβ∂µuα

)
= Jν (34)

Ḃµ +Bµθ = uµ∂νB
ν +Bν∇νu

µ. (35)

Sunny Singh (IIT Gandhinagar) IIT Gandhinagar 31.10.2024 15 / 23



B ̸= 0 case

Equations of motion for MHD

In this non-resistive limit,

Tµν
em =

B2

2
(uνuν −∆µν − 2bµbν) (36)

With the maxwell’s equations, the conservation of total Tµν = Tµν
em + Tµν

f leads to:

∂µT
µν
f = FµλJf,λ (37)

The fluid equations of motion are now given by:

ε̇+ (ε+ P )θ − πµνσµν = 0, (38)
(ϵ+ P )u̇µ −∇µP +∆µ

ν∂γπ
γν = −Bbνλnλ, (39)

ṅ+ nθ + ∂µn
µ = 0 (40)

The Boltzmann equation in the presence of the external magnetic fields and using the
extended relaxation time is given by:

pµ∂µf − qBσνpν
∂f

∂pσ
= −

u · p
τR(x, p)

(f − f∗
0 ) (41)
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B ̸= 0 case

Transport coefficients in MHD

Again, doing a Chapman Enskog-like gradient expansion, we get the Deltaf(2) needed to
derive πµν evolution as:

∆f =−
τR

(u · p)
pγ∂γf0 −

τR

(u · p)
pγ∂γδf(1) +

τR

(u · p)
qBbσνpν

∂

∂pσ
δf(1)

+
τR

(u · p)
qBbσνpν

∂f0

∂pσ
+∆f∗

(2), (42)

Using the above ∆f , the second order shear evolution equation is given by:

π̇⟨µν⟩ +
πµν

τπ
= 2βπσ

µν −
4

3
πµνθ + 2π

⟨µ
γ ων⟩γ − τπππ

⟨µ
γ σν⟩γ

− τπnn
⟨µu̇ν⟩ + λπnn

⟨µ∇ν⟩α+ lπn∇⟨µnν⟩ + δπB∆µν
ηβqBbγηgβρπγρ

− qBτπnB u̇⟨µbν⟩σnσ − qBλπnBnσb
σ⟨µ∇ν⟩α− qτ0δπnB∇⟨µ

(
Bν⟩σnσ

)
(43)
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Results for B ̸= 0

Results

The plots for two of these coefficients, δπB and δπnB against the momentum dependence
parameter l is:
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We see that both of these coefficients tend to their limiting case values for RTA at δπB → β
2

and δπnB → 2/5 respectively 7.

7A. Panda, A.Dash, R. Biswas, V.Roy, JHEP 03, 216 (2021)
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Results for B ̸= 0

The Navier Stokes limit

In the Navier Stokes’ limit which gives πµν in the first order theory, without magnetic fields:

πµν = 2η0σ
µν (44)

In the first order, the shear evolution in case of MHD becomes:(
gµγgνρ

τπ
− δπB∆µν

ηβqBbγηgβρ
)
πγρ = 2βπσ

µν . (45)

With a finite magnetic field, the shear viscosity splits into five components:

π
µν

=

[
2η00

(
∆

µα
∆

νβ
)

+ η01

(
∆

µν −
3

2
Ξ
µν

)(
∆

αβ −
3

2
Ξ
αβ

)
− 2η02

(
Ξ
µα

b
ν
b
β

+ Ξ
να

b
µ
b
β − 2η03

(
Ξ
µα

b
νβ

+ Ξ
να

b
µβ

)
+ 2η04

(
b
µα

b
ν
b
β

+ b
να

b
µ
b
β
) ]

σαβ. (46)
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Results for B ̸= 0

The Navier Stokes limit (comparision with RTA MHD results)
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Where, χ =
qBτ0(x)

T
.

As we see, the momentum dependence of the ERTA has a significant effect on the various shear
viscosity coefficients even in the first order.
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Conclusion

Conclusion

This study shows that there is a significant impact of momentum dependence of the
relaxation time on the dynamics of the fluid in both with and without magnetic field.
Incorporating these affects via the modified transport coefficients should lead to a more
accurate simulation of the expanding fireball in heavy ion collisions.
Further work can be done in recognizing the momentum dependence parameter ℓ for various
theories.
The Magnetohydrodynamics of ERTA can be studied in the resistive case as an extension of
this work.
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Conclusion

Current work..

Extension of the previous work is being conducted where the goal is to derive the evolution
equation for number diffusion.
This requires solving the system of equations given by the matching conditions to get δuµ,
δµ and δT .
An example of this matching condition is the landau frame condition which will give us the
necessary counter-terms that will be needed to satisfy the Landau frame condition even when
the relaxation time is momentum dependent:

−
I31

T
δuµ+(I30 − µI20)

δT

T 2
uµ + I20

δµ

T
uµ = Auµ +B∇µα+ Cσµ

αu̇
α +Dσ̇µ

αu
α

+ Eσµ
α∇αα+ Fσµ

α∇µβ − ξK31∆
µ
α∂kπ

αk +Gu̇α(∇αuµ) +HD(∇µα)

+ I∇αα(∇µuα) + J∇ασµ
α (47)

Where the coefficients are expressed in terms of various thermodynamic integrals.
The other two matching conditions which needs to be satisified by addition of these
counter-terms are n = n0 and ϵ = ϵ0.
Various values of ℓ will be obtained depending on the theory and these transport coefficients
will be predicted for those physical theories.
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