Simulations of Stochastic fluid dynamics near the QCD critical point

Chandrodoy Chattopadhyay

North Carolina State University

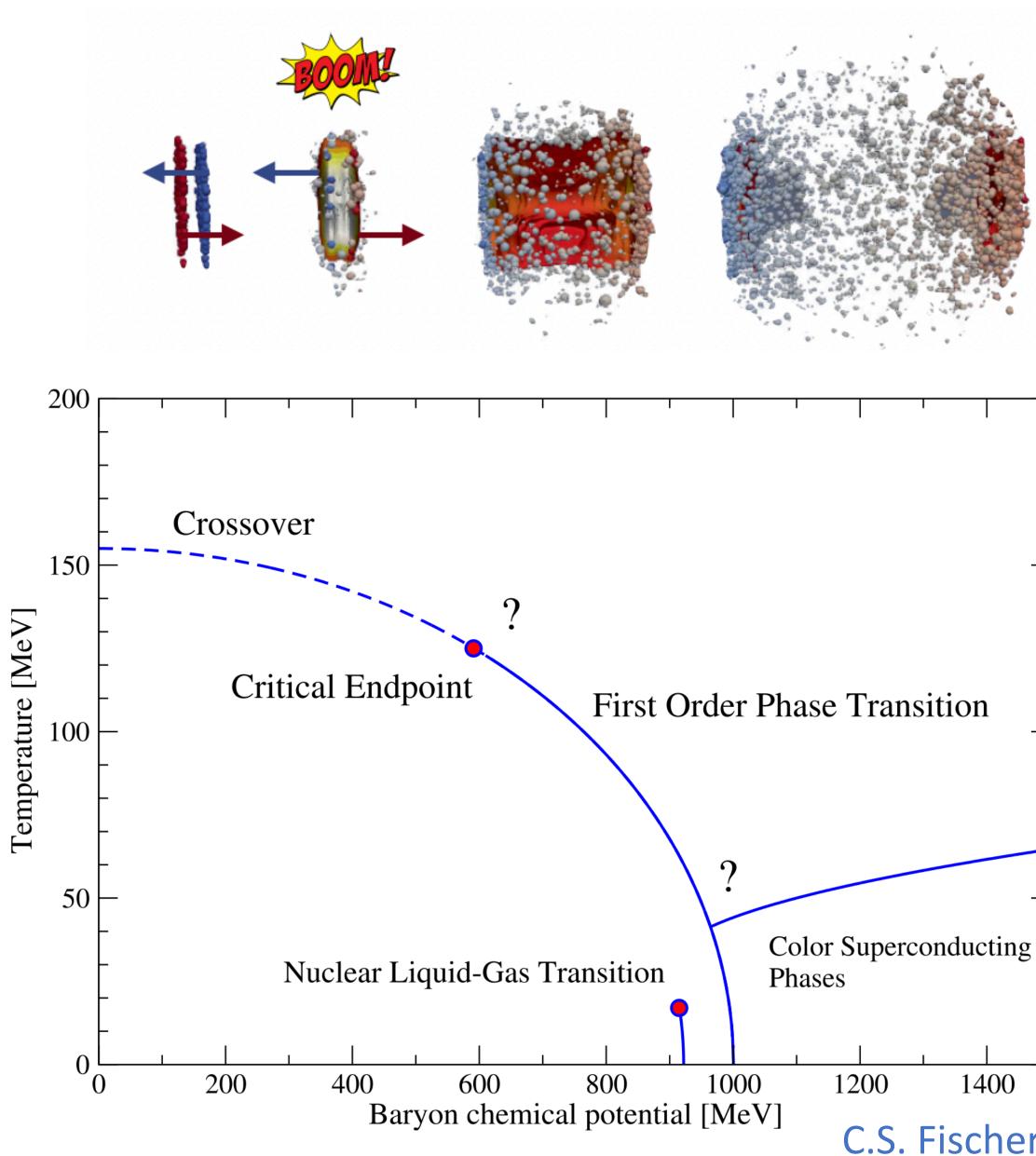
Physics Colloquium

Hydro Workshop, Subatech, Nantes

October 29, 2024

In collaboration with Josh Ott, Vladimir Skokov, and Thomas Schaefer

Introduction

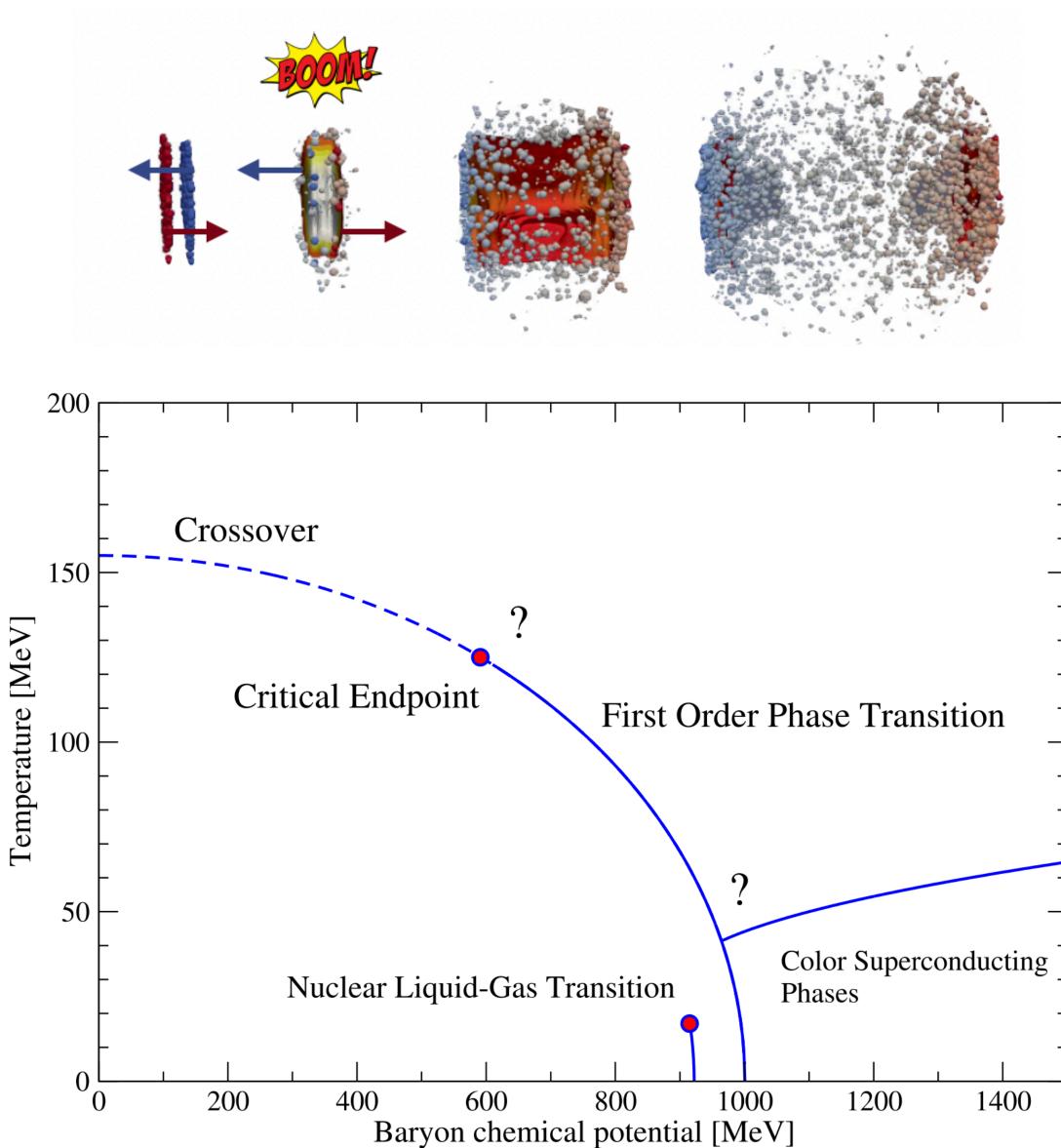


- Long-term goal: Identify signatures of a possible critical end point of QCD using heavyion collisions.
- Near a critical point, fluctuations become • dominant. But fluctuations not equilibrated as fireball is rapidly expanding.
- Need for a dynamical theory of critical fluctuations.
- Fluid dynamics should still be applicable, but • with appropriate modifications:
 - Inclusion of thermal fluctuations, slow dynamics of order parameter, and criticality in equation of state.

C.S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019)

2

Introduction



- Dynamics of critical fluctuations are universal.
- Hence, study QCD critical dynamics using • the simplest system from the same dynamic universality class.
- Universality class depends on
 - Order parameter being conserved/nonconserved.
 - Coupling of order parameter to other slow modes, eg, hydrodynamic modes.
- QCD critical point shares the same static universality class as the 3d Ising Model

3

The basic idea

- The properties of a fluid are defined by <u>slow</u>, <u>macroscopic</u> degrees of freedom: <u>conserved densities</u>, i.e., densities of energy, momentum, or any conserved charge.
- If a fluid is near a critical point, the dynamics of its order parameter becomes slow (critical slowing down). Must be included in the hydrodynamic description. Hohenberg & Halperin
- These macroscopic fields fluctuate as they couple to microscopic degrees of freedom.
- The theory to be solved is then stochastic hydrodynamics coupled to an order parameter.
 - Such theories are classified by Hohenberg & Halperin: purely relaxational dynamics (Model A), critical diffusion (Model B), critical anti-ferromagnet (Model G), critical diffusion coupled to Navier-Stokes (Model H).

Rajagopal and Wilczek

Son and Stephanov

4

Previous works

- Use framework of non-critical stochastic hydro and include criticality in EOS and transport coefficients.
 - Deterministic approaches: The above framework can be used in linearized regime to write deterministic eqs for n-point equal time functions: Hydro+, Hydro+, hydro-kinetics. Stephanov, Yin, X. An, Akamatsu, Teaney, Mazeliaukas, F. Yan, H. U. Yee, Martinez, Schaefer...
 - Extend them to critical regime by replacing susceptibilities and relaxation-rates by their critical expectations. Numerical studies of one-dimensional expanding systems. M. Nahrgang et al., G. Pihan et al., M. Bluhm, L. Du, Heinz and others
 - Berges, Schlichting et al, Schweitzer, von • Use of ϵ -expansions, functional renormalization group. Smekal, Chen, Tan, Fu, Roth, Ye
 - Not many studies of direct simulation of critical fluid dynamics. A novel approach to simulate stochastic dynamics based on Metropolis has been recently formulated.
 - Florio, Grossi, Soloviev, Teaney, Schaefer, Skokov, Basar, Bhambure, Singh, Newhall et al

5

<u>Outline of this talk</u>

- Main goal: Discuss numerical simulations of Model H, i.e., critical dynamics of a conserved order parameter coupled to fluid dynamic variables.
- Part I: critical diffusion of a conserved order parameter (Model B)
 - Simulation of diffusive dynamics using a Metropolis algorithm
 - Dynamic scaling in Model B
- Part II: Coupling of the conserved order parameter to hydrodynamic modes (Model H)
 - Modification to dynamic scaling behavior compared to Model B
 - Renormalization of shear viscosity of the fluid

6

• Part I: critical diffusion of a conserved order parameter (Model B)

Based on C.C., J. Ott, T. Schaefer, V. Skokov (PRD 108 (2023) 074004)

- Consider the Ising model. Coarse grain the spin (microscopic) degrees of freedom to obtain an order parameter $\phi(x)$ (magnetization density).
- The statics of the system near the critical point (small ϕ) is governed by an effective freeenergy functional (Ginzburg-Landau)

$$F[\phi] = \int d^3x \,\left[\frac{1}{2}\left(\nabla\right)\right]$$

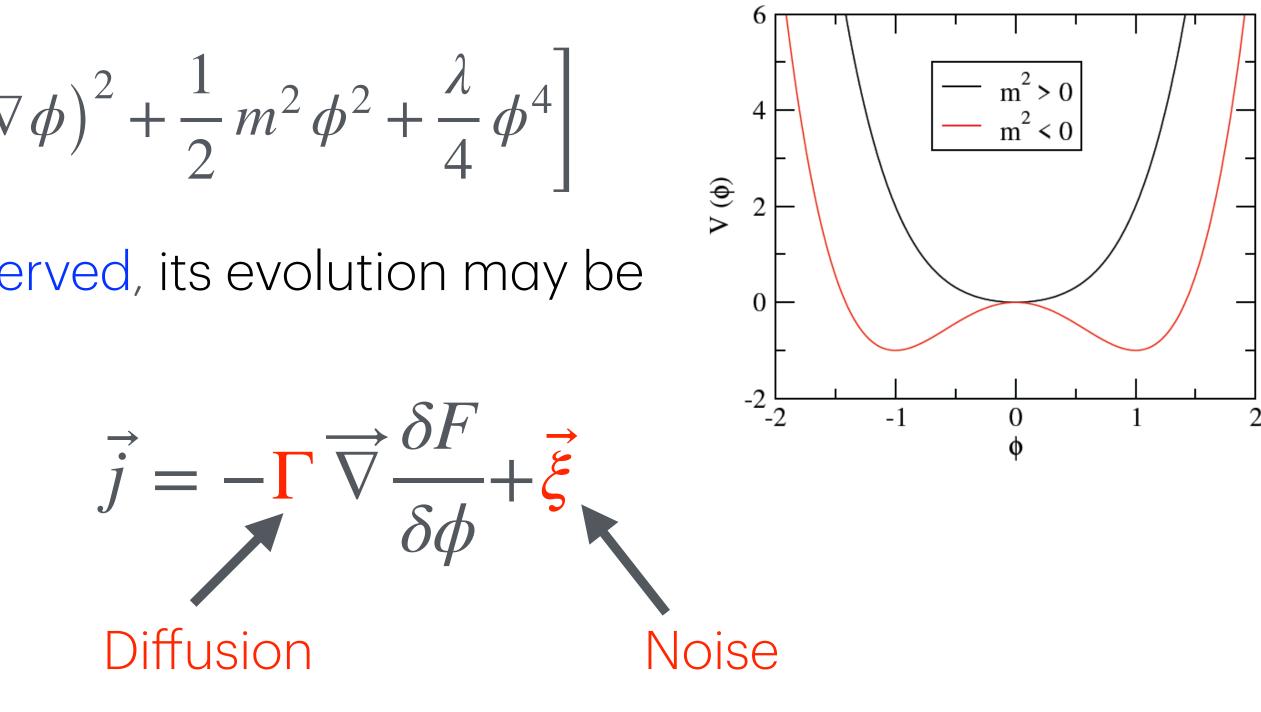
Dynamics: If the order parameter is conserved, its evolution may be modeled as

$$\frac{\partial \phi}{\partial t} + \overrightarrow{\nabla} \cdot \overrightarrow{j} = 0, \quad \text{the current}$$

Noise ensures fluctuationdissipation

$$\langle \xi^i(t,\vec{x})\,\xi^j(t')$$

Model B



 $\langle \vec{x}' \rangle = 2 \Gamma T \delta^{ij} \delta(t - t') \delta^3(\vec{x} - \vec{x}')$

Model B in mean-field approximation

• In the free-energy functional set $\lambda = 0$

$$F[\phi] = \int d^3x \, \left[\frac{1}{2} \left(\,\nabla \phi \right)^2 + \frac{1}{2} \,m^2 \,\phi^2 + \frac{\lambda}{4} \,\phi^4 \right]$$

 $\frac{\partial N_k}{\partial t} = -2$ Equilibrium correlator $N_k^{eq} = \frac{T}{k^2 + m^2}$ and relaxation-rate $\Gamma_k = \Gamma k^2 (k^2 + m^2)$

- Near $m^2 = 0$, mean-field predicts $\Gamma_k \sim k^z$ with a dynamic exponent z = 4.
- Later: interactions, coupling of ϕ to hydro modes lead to modifications from z = 4.

• Evolution of ϕ becomes linear. The equal-time correlator $N_k(t) = \langle \phi(t, \vec{k}) \phi(t, -\vec{k}) \rangle$ satisfies

$$2\Gamma_k(N_k - N_k^{eq})$$

9

Model B: the non-linear case

- Interactions renormalize m^2 . For chosen values of (T, λ) it is possible to tune m^2 to hit the critical point.
- To determine m_c^2 for an infinite system from finite volume calculations. Quantities like $\langle M^2 \rangle$, $\langle M^4 \rangle$ show peaks whose location depends on L.
- At the true critical point, leading order fill volume effects on the Binder cumulant l
- Model B configs have long thermalization time $\tau_R \sim L^z$ with $z \approx 4$.
- class, easier to thermalize $au_R \sim L^2$.

$$F[\phi] = \int d^3x \left[\frac{1}{2} \left(\nabla \phi \right)^2 + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4 \right]$$

nite

$$U \equiv 1 - \frac{\langle M^4 \rangle}{3(\langle M^2 \rangle)^2}$$

• Determine m_c^2 using Model A (purely relaxational dynamics), lies in same static universality

T. Schaefer and V. Skokov PRD 014006 (2022)

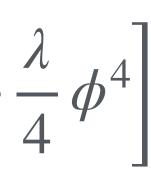
• Choose trial updates at \vec{x} and $\vec{x} + \hat{\mu}$ (conserves ϕ)

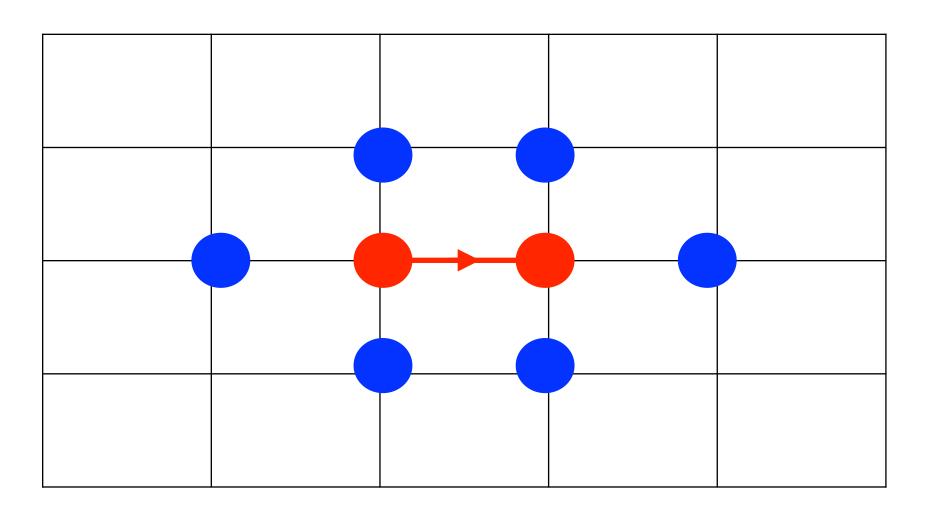
$$\phi^{\text{trial}}(t + \Delta t, \vec{x}) = \phi(t, \vec{x}) - q_{\mu}, \quad \phi^{\text{trial}}$$
$$q_{\mu} = \sqrt{2\Gamma T \Delta t} \,\xi_{\mu}$$

• Compute the change in free energy due to these updates

$$F[\phi] = \int d^3x \, \left[\frac{1}{2} \left(\,\nabla \phi \right)^2 + \frac{1}{2} \, m^2 \, \phi^2 +$$

 $a^{a}(t + \Delta t, \vec{x} + \hat{\mu}) = \phi(t, \vec{x} + \hat{\mu}) + q_{\mu}$





11

• Choose a trial update at \vec{x} and $\vec{x} + \hat{\mu}$

$$\phi^{\text{trial}}(t + \Delta t, \vec{x}) = \phi(t, \vec{x}) - q_{\mu}, \quad \phi^{\text{trial}}$$
$$q_{\mu} = \sqrt{2\Gamma T \Delta t} \,\xi_{\mu}$$

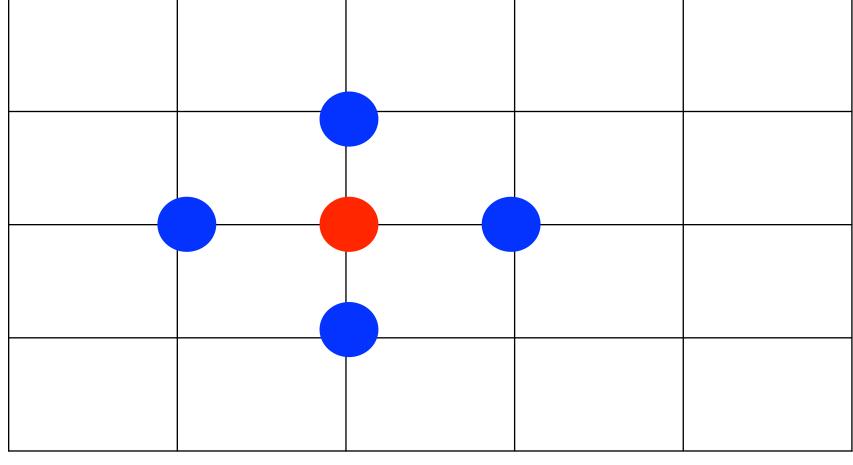
• The change in free energy $\Delta F(\vec{x}, \vec{x} + \hat{\mu}) = \Delta F(\vec{x}) + \Delta F(\vec{x} + \hat{\mu}) + q_{\mu}^2$

$$\Delta F(x) = \left(d + \frac{m^2}{2}\right) \left(\phi_{\text{trial}}^2(x) - \phi^2(x)\right) + \frac{\lambda}{4} \left(\phi_{\text{t$$

$$-\left(\phi_{\text{trial}}(x) - \phi(x)\right) \sum_{\hat{\mu}=1}^{a} \left(\phi(x + \hat{\mu}) - \phi(x - \mu)\right)$$

^{al} $(t + \Delta t, \vec{x} + \hat{\mu}) = \phi(t, \vec{x} + \hat{\mu}) + q_{\mu}$

 $b_{\text{trial}}^4(x) - \phi^4(x)$ $\hat{\mu}$)

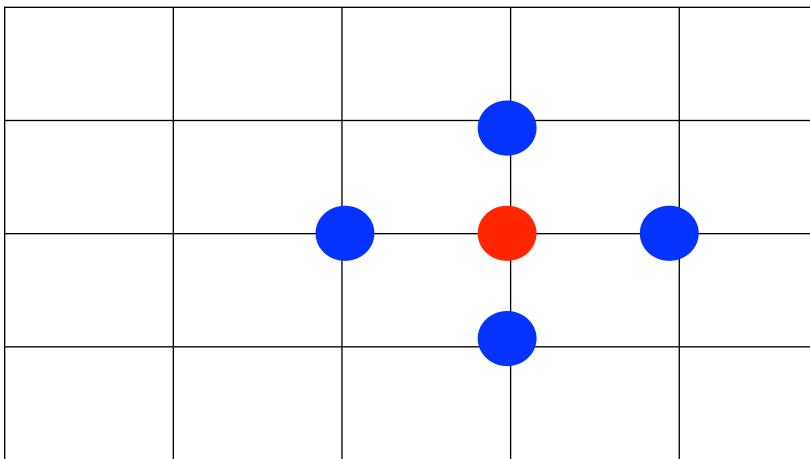


• Choose a trial update at \vec{x} and $\vec{x} + \hat{\mu}$

$$\phi^{\text{trial}}(t + \Delta t, \vec{x}) = \phi(t, \vec{x}) - q_{\mu}, \quad \phi^{\text{trial}}$$
$$q_{\mu} = \sqrt{2\Gamma T \Delta t} \,\xi_{\mu}$$

• The change in free energy $\Delta F(\vec{x}, \vec{x} + \hat{\mu}) = \Delta F(\vec{x}) + \Delta F(\vec{x} + \hat{\mu}) + q_{\mu}^2$

^{al} $(t + \Delta t, \vec{x} + \hat{\mu}) = \phi(t, \vec{x} + \hat{\mu}) + q_{\mu}$



• Choose trial updates at \vec{x} and $\vec{x} + \hat{\mu}$

$$\phi^{\text{trial}}(t + \Delta t, \vec{x}) = \phi(t, \vec{x}) - q_{\mu}, \quad \phi^{\text{trial}}$$
$$q_{\mu} = \sqrt{2\Gamma T \Delta t} \,\xi_{\mu}$$

• The change in free energy $\Delta F(\vec{x}, \vec{x} + \hat{\mu}) = \Delta F(\vec{x}) + \Delta F(\vec{x} + \hat{\mu}) + q_u^2$

• Accept with probability $P = \min(1, \exp(-\Delta F/T))$

^{al} $(t + \Delta t, \vec{x} + \hat{\mu}) = \phi(t, \vec{x} + \hat{\mu}) + q_{\mu}$

<u>The Metropolis scheme</u>

- The Metropolis update reproduces the flux on average, and also its variance
 - $\langle \vec{q} \rangle = -\Delta t \Gamma \, \vec{\nabla}$
 - $\langle \vec{q}^2 \rangle = 2\Gamma T \Delta t + \mathcal{O}(\Delta t^2)$
- Probability of a new configuration,

$$P\left(\phi(t,\vec{x}) \to \phi^{new}(t,\vec{x})\right) \sim e^{e^{it}}$$

irrespective of order of updates.

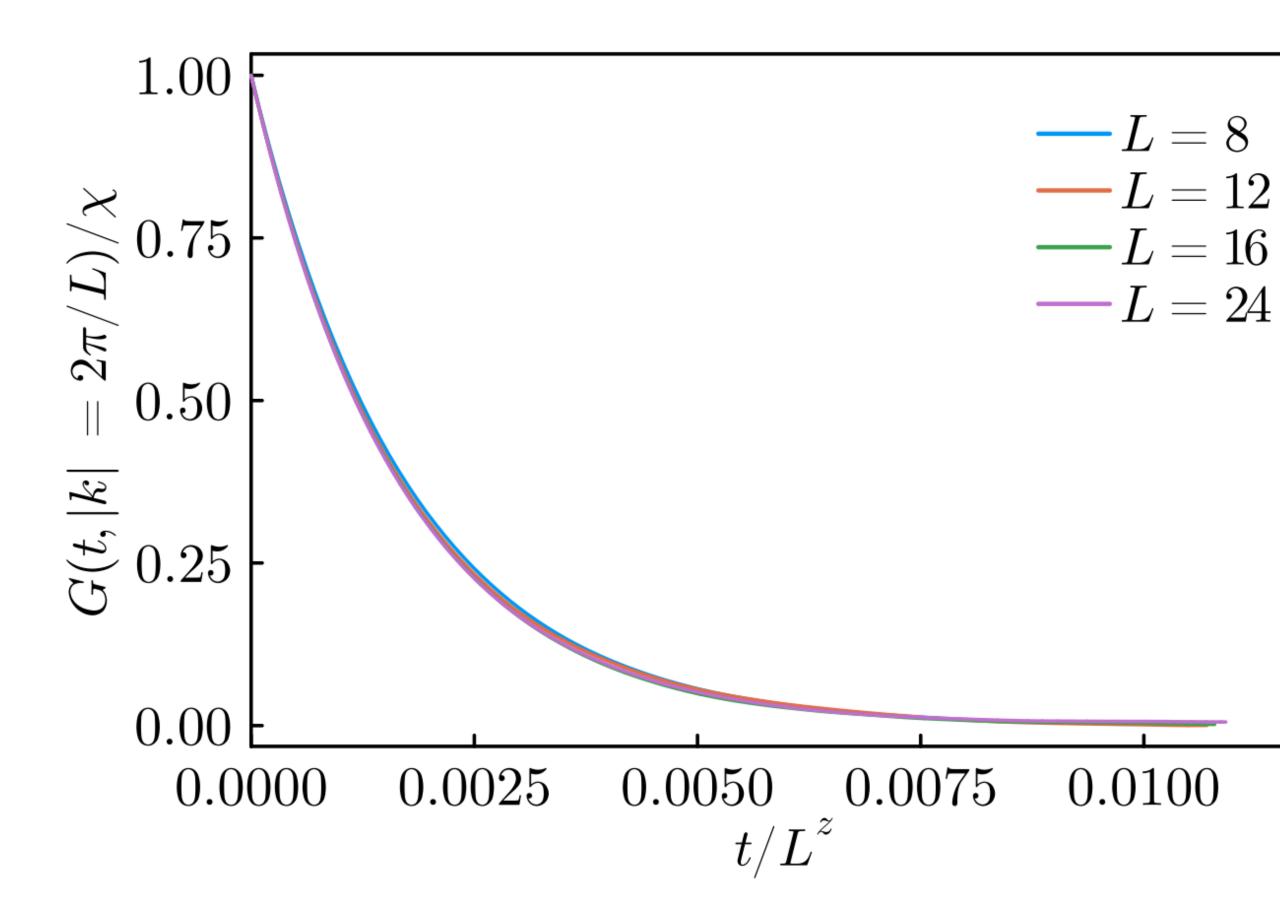
- The equilibrium distribution $\exp(-F[\phi]/T)$ is sampled even if Δt is not small.
- If Δt is not small, the diffusion eq. is approximately realized.

$$+\frac{\delta F}{\delta \phi} + \mathcal{O}(\Delta t^2)$$

$\exp\left[-\left(F[\phi^{new}] - F[\phi]\right)\right]$

1	5
	_

Results: Dynamic scaling



Data collapse occurs for $z \approx 3.97$. Theoretical expectation $z = 4 - \eta, \eta \approx 0.03$

• Scaling Hypothesis: Near a critical point the dynamic correlator, $\langle \phi(0,k) \phi(t,-k) \rangle$

$G(t,k) = \tilde{G}(t/\xi^z,k\xi)$

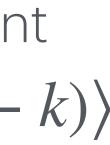
 \tilde{G} is a universal function.

At the critical point $\xi \sim L$, thus G(t,k)obtained in different volumes should collapse

$$G(t, k = 2\pi/L) \rightarrow \tilde{G}\left(\frac{t}{L^z}, 2\pi\right)$$

if time is scaled by L^{z} .

• z is the dynamic scaling exponent



• Part II: Coupling of the conserved order parameter to hydrodynamic modes (Model H)

Based on C.C., J. Ott, T. Schaefer, V. Skokov PRL 133 (2024) 032301

17

<u>Coupling to a fluid (Model H)</u>

Couple the order parameter ϕ to a fluid's momentum density $ec{\pi}$ •

$$\frac{\partial \phi}{\partial t} = \mathbf{\Gamma} \nabla^2 \frac{\delta H}{\delta \phi} - \left(\nabla \phi \cdot \frac{\delta H}{\delta \vec{\pi}_T} \right) + \zeta$$

advection diffusion noise

• Stochastic evolution equation of the momentum density

$$\frac{\partial \vec{\pi}_T}{\partial t} = \eta \nabla^2 \frac{\delta H}{\delta \vec{\pi}_T} + \left(\vec{\nabla} \phi \right) \cdot \frac{\delta H}{\delta \phi} - \left(\frac{\delta H}{\delta \vec{\pi}_T} \cdot \vec{\nabla} \right) \vec{\pi}_T + \vec{\xi}$$
diffusion
Stress
energy of ϕ
advection
noise
$$H = \int d^3 x \left[\frac{\vec{\pi}_T^2}{2\rho} + \frac{1}{2} \left(\vec{\nabla} \phi \right)^2 + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4 \right]$$

18

<u>Coupling to a fluid (Model H)</u>

Couple the order parameter to a fluid's momentum density $ec{\pi}$ •

$$\frac{\partial \phi}{\partial t} = \Gamma \nabla^2 \frac{\delta H}{\delta \phi} - \left(\nabla \phi \cdot \frac{\delta H}{\delta \pi_T} \right) + \zeta$$

• Evolution equation of the momentum density

$$\frac{\partial \vec{\pi}_T}{\partial t} = \eta \, \nabla^2 \frac{\delta H}{\delta \vec{\pi}_T} + \left(\vec{\nabla} \phi \right) \cdot \frac{\delta H}{\delta \phi} - \left(\frac{\delta H}{\delta \vec{\pi}_T} \cdot \vec{\nabla} \right) \vec{\pi}_T + \vec{\xi}$$

The Hamiltonian

$$H = \int d^3x \, \left[\frac{\vec{\pi}_T^2}{2\rho} + \frac{1}{2} \left(\vec{\nabla} \phi \right)^2 + \frac{1}{2} m^2 \phi^2 + \frac{1}{2} m^2 \phi^2 \right]$$

$$+\frac{\lambda}{4}\phi^4$$

For purposes of determining z It suffices to choose

- Non-relativistic fluid
- The momentum density is transverse $\overrightarrow{\nabla} \cdot \overrightarrow{\pi} = 0$

There are shear waves but no sound. No coupling to energy density or pressure.

<u>Model H (deterministic part)</u>

• Let's consider only the non-dissipative part of the equations

$$\frac{\partial \phi}{\partial t} + \frac{\vec{\pi}_T}{\rho} \cdot \vec{\nabla} \phi = 0, \qquad \qquad \frac{\partial \vec{\pi}_T}{\partial t} + \frac{\vec{\pi}_T}{\rho} \cdot \vec{\nabla} \vec{\pi}_T = \vec{\nabla} \phi \vec{\nabla}^2 \phi \quad \checkmark$$

The third-order term is necessary for conserving energy

where the equations of motion have been used along with standard continuum manipulations

$$\int_{X} V'(\phi) \frac{\vec{\pi}_T}{\rho} \cdot \nabla \phi = \int_{X} \vec{\nabla} \cdot \left(\frac{\vec{\pi}_T}{\rho} V(\phi) \right) = 0$$

Third-order term, goes beyond usual Navier-Stokes

$$\frac{dH}{dt} = \int d^3x \left[\dot{\vec{\pi}}_T \cdot \frac{\vec{\pi}_T}{\rho} - \dot{\phi} \nabla^2 \phi + V'(\phi) \dot{\phi} \right] = 0$$

$$\frac{\pi_i^T}{\rho} \left(\frac{\pi_i^T}{\rho} \nabla_j \right) \pi_i^T = \nabla_i \left(\frac{\pi_i^T}{\rho} \frac{\pi_T^2}{2\rho} \right)$$

These continuum manipulations are not necessarily allowed in the discretized theory.

<u>Model H numerics (deterministic part)</u> • The equations in manifestly $\dot{\phi} = \vec{\nabla} \cdot \left(\frac{\vec{\pi}_T}{\rho}\phi\right)$ $\dot{\pi}_i^T = -P_{ij}^T \nabla_k \left(\frac{1}{\rho}\pi_T^k \pi_T^j + \nabla_k \nabla_j \phi\right)$

- conserving form
- Use a skew symmetric derivative for the non-linear term

$$\nabla_{\mu} \left(\frac{1}{\rho} \pi_{\mu}^{T} \pi_{\nu}^{T} \right) \bigg|_{skew} \equiv \frac{1}{2} \nabla_{\mu} \left(\frac{1}{\rho} \pi_{\mu}^{T} \pi_{\nu}^{T} \right)$$

along with a centred difference $\nabla^c_{\mu}\psi = (\psi(x + \hat{\mu}) - \psi(x - \hat{\mu})/2)$

• The discretized evolution equations:

$$\dot{\phi} = -\frac{1}{\rho} \pi^{\mu}_{T} \nabla^{c}_{\mu} \phi, \qquad \dot{\pi}^{\mu}_{T} =$$

 $\left(\pi_{\nu}^{T}\right) + \frac{1}{2} \frac{\pi_{\mu}^{T}}{\rho} \nabla_{\mu} \pi_{\nu}^{T}$

Morinishi, Lund, Vasilyev, Moin, Journal of computational physics (143, 90(1998))

$$- \left| \nabla_{\mu} \left(\frac{1}{\rho} \pi_{\mu}^{T} \pi_{\nu}^{T} \right) \right|_{skew} + \left(\nabla_{\mu}^{c} \phi \right) \left(\nabla_{\nu}^{c} \nabla_{\nu}^{c} \phi \right)$$

<u>Model H numerics (deterministic part)</u>

• The discretized eqs.

$$\dot{\phi} = -\frac{1}{\rho} \pi_T^{\mu} \nabla_{\mu}^c \phi \qquad \dot{\pi}_T^{\mu} = -\left[\left. \nabla_{\mu} \left(\frac{1}{\rho} \pi_{\mu}^T \pi_{\nu}^T \right) \right|_{skew} + \left(\left. \nabla_{\mu}^c \phi \right) \left(\left. \nabla_{\nu}^c \nabla_{\nu}^c \phi \right) \right] \right]$$

conserves the kinetic energy of the system exactly:

project onto transverse part in Fourier space

$$\pi^T_{\mu} = P^T_{\mu\nu} \pi_{\nu} \qquad \qquad P^T_{\mu\nu} =$$

$$\frac{dT}{dt} = \frac{d}{dt} \int d^3x \left[\frac{\pi_T^2}{2\rho} + \frac{(\nabla \phi)^2}{2} \right] = 0$$

• The equations are integrated in time using a Runge-Kutta scheme. After each step,

$$\delta_{\mu\nu} + \frac{\tilde{k}_{\mu}\tilde{k}_{\nu}}{\tilde{k}^2}$$

Total energy conservation in the deterministic step is found to hold to very good accuracy.

22

<u>Model H numerics (stochastic /dissipative part)</u>

• For the fluctuating/dissipative part:

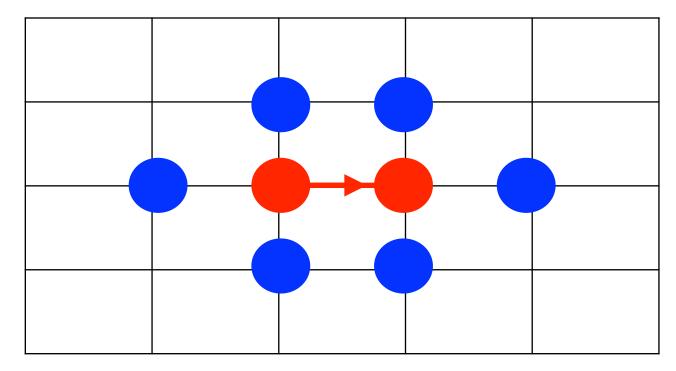
$$\pi_{\mu}^{\text{trial}}(t + \Delta t, \vec{x}) = \pi_{\mu}(t, \vec{x}) + r_{\mu}^{(\nu)}$$
$$\pi_{\mu}^{\text{trial}}(t + \Delta t, \vec{x} + \hat{\nu}) = \pi_{\mu}(t, \vec{x} + \hat{\nu}) - r_{\mu}^{(\nu)}$$

• Calculate change in energy. Accept/reject with $P = \min(1, \exp(-\Delta H/T))$

Same as Model B update

$$= \sqrt{2 T \Gamma \Delta t} \, \zeta_{\mu}$$

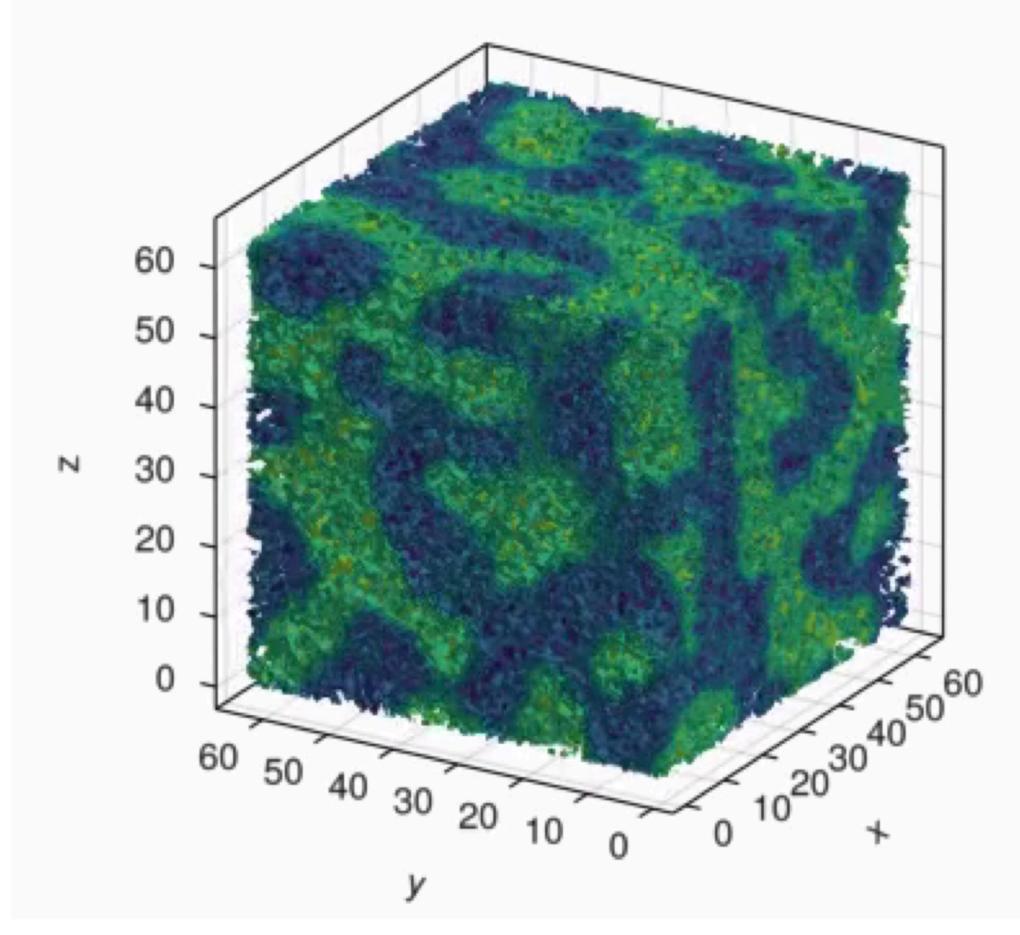
 $\langle \zeta^{\mu} \zeta^{\nu} \rangle = \delta^{\mu\nu}$



$$r_{\mu}^{(\nu)} = \sqrt{2\eta T \,\Delta t} \,\zeta_{\mu}^{(\nu)}$$

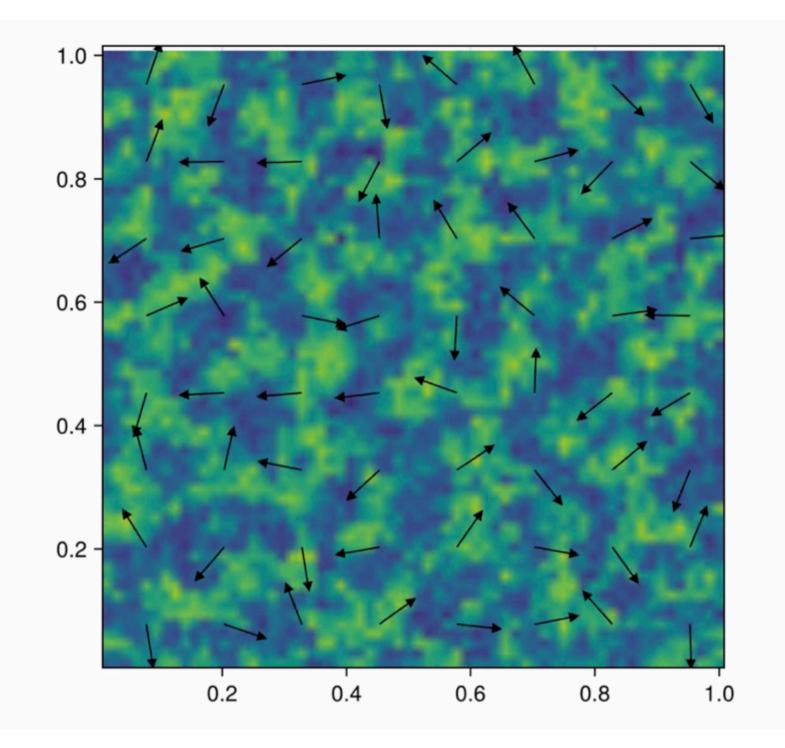
23

Order parameter field in 3d



Model H simulations

Order parameter + velocity field in 2d



Simulations by Josh Ott

24

<u>Results: Dynamics of momentum density</u>

• Consider the time-dependent correlation function of the momentum density

$$\langle \pi_i^T(0,\vec{k}) \pi_j^T(0,-\vec{k}) \rangle \equiv C_{ij}(t,\vec{k}), \quad \text{where} \quad C_{ij}(t,\vec{k}) = \left(\delta_{ij} - \hat{k}_i \hat{k}_j \right) C_{\pi}(t,k)$$
arized hydrodynamics $C_{\pi}(t,k) = \rho T \exp\left(-\frac{\eta}{\rho}k^2 t\right)$
bute $C_{\pi}(t,k)$ in Model H to
ct effective η
anal fluctuations and non-
effects modify linear hydro
(even away from T_c)
$$\int_{0}^{\frac{1}{20}} \int_{0}^{\frac{1}{20}} \int_{0}^{\frac{1}{20$$

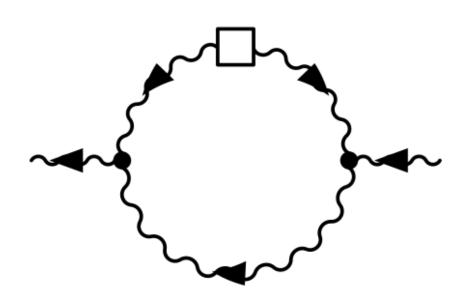
- In line
- Comp extrac
- Therm linear result

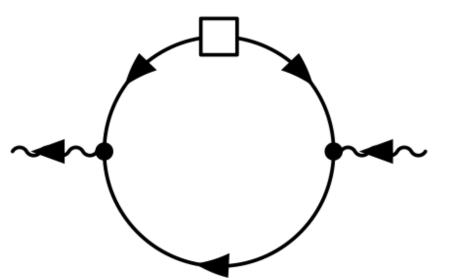
25

Non-linear interactions between modes $\vec{\pi}_T, \phi$ can be represented diagrammatically

Green's functions for ϕ

Corrections to momentum corr. function



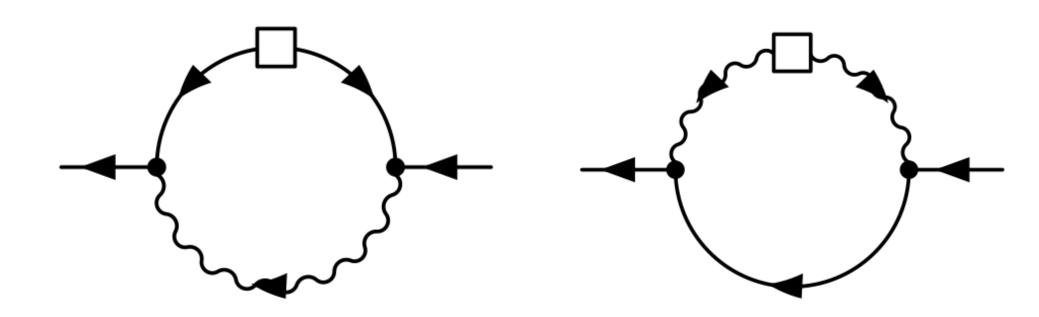


Self-advection of π_T

Coupling of π_T to ϕ

Dynamics: Loop corrections

Corrections to corr. function of ϕ



Advection of ϕ by π_T

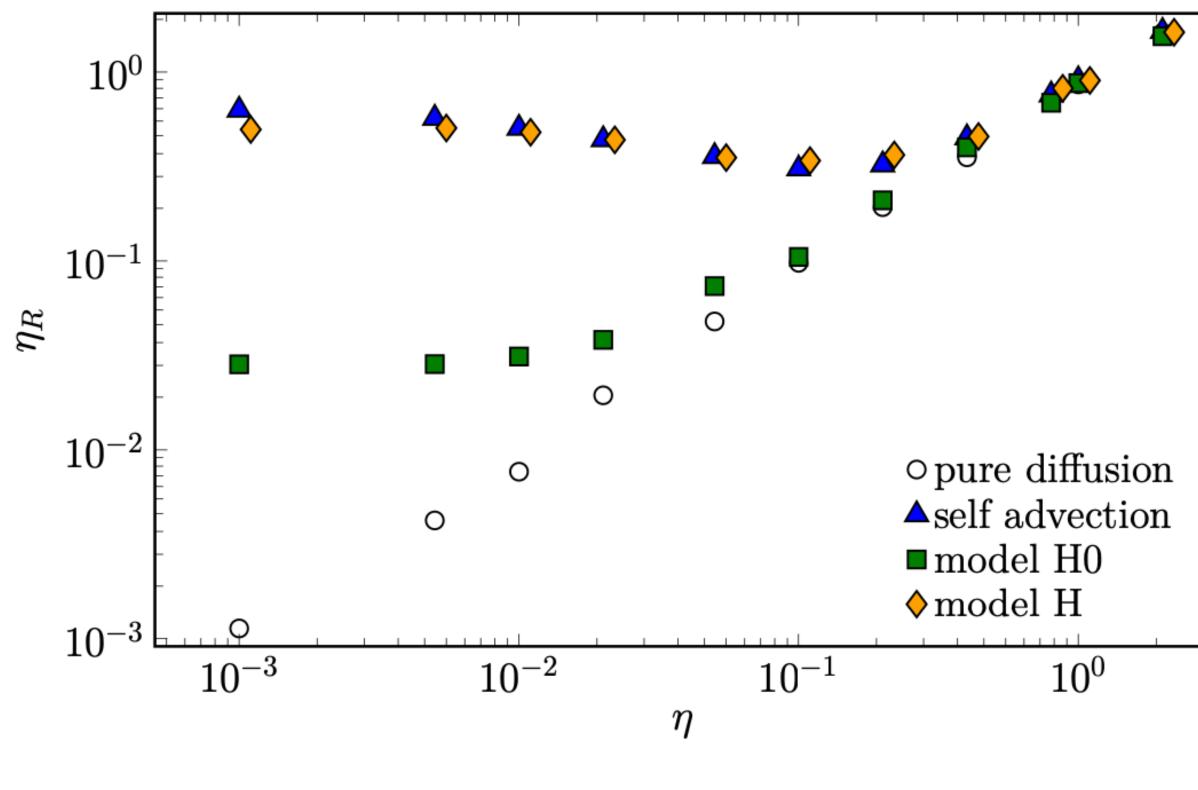
26

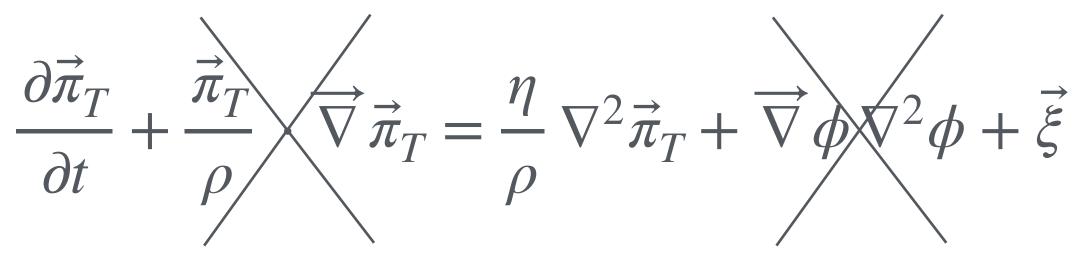
• For pure diffusion, the eq. is linear

• Effective viscosity becomes as small as the bare one

Pure-diffusion

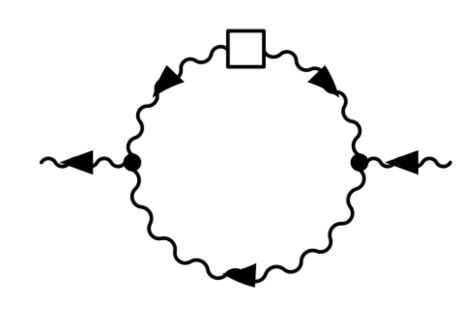
Renormalized viscosity





27

The "stickiness of shear" Schaefer & Chafin



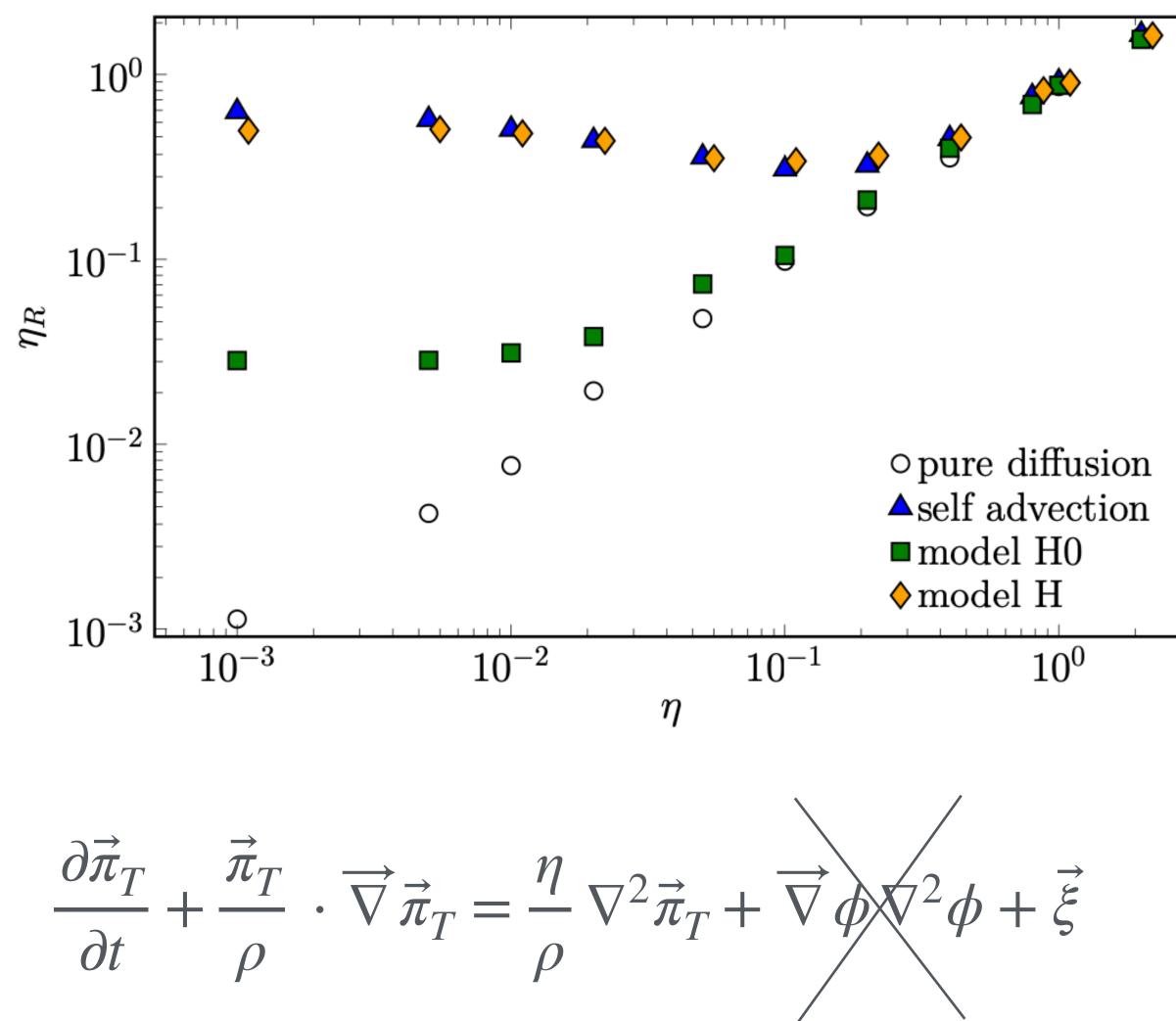
$$\eta_R = \eta + \frac{7}{60\pi^2} \frac{\rho T\Lambda}{\eta}$$

- Effective viscosity levels off, then increases.
- Thermal fluctuations + Non-linearity of hydro
 - shear viscosity has a minimum

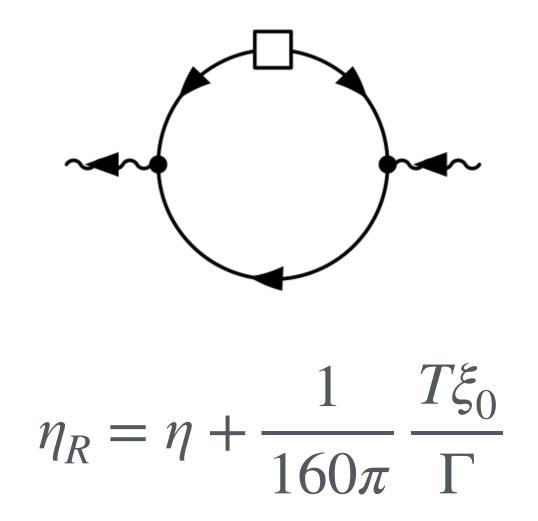
Self-advection

In analogy to "stickiness of sound" Kovtun, Moore & Romatschke

Renormalized viscosity



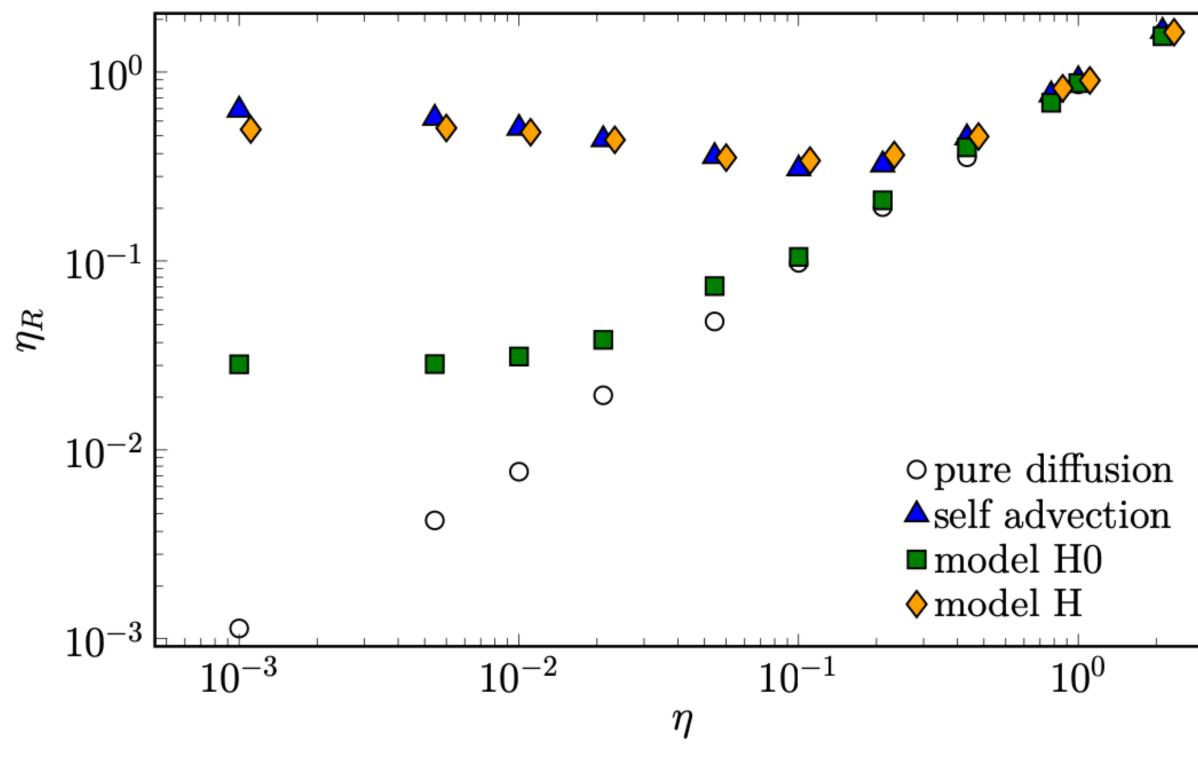
The renormalization of η due to coupling to the order parameter

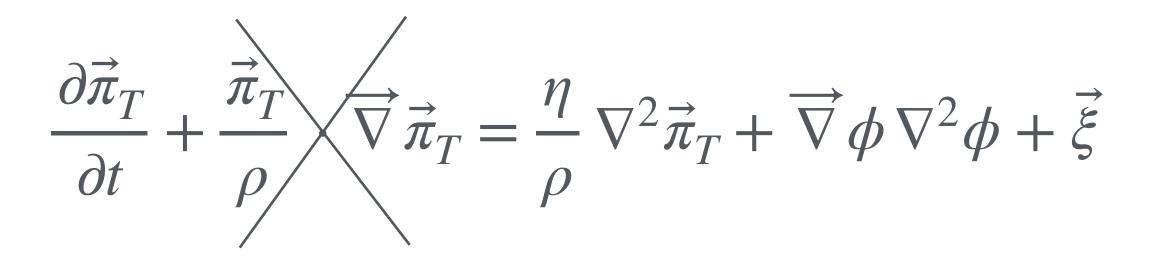


Much smaller effect than self-advection

Model

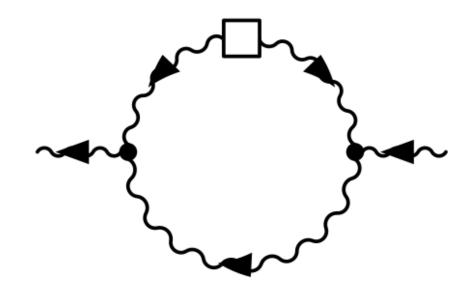
<u>Renormalized viscosity</u>





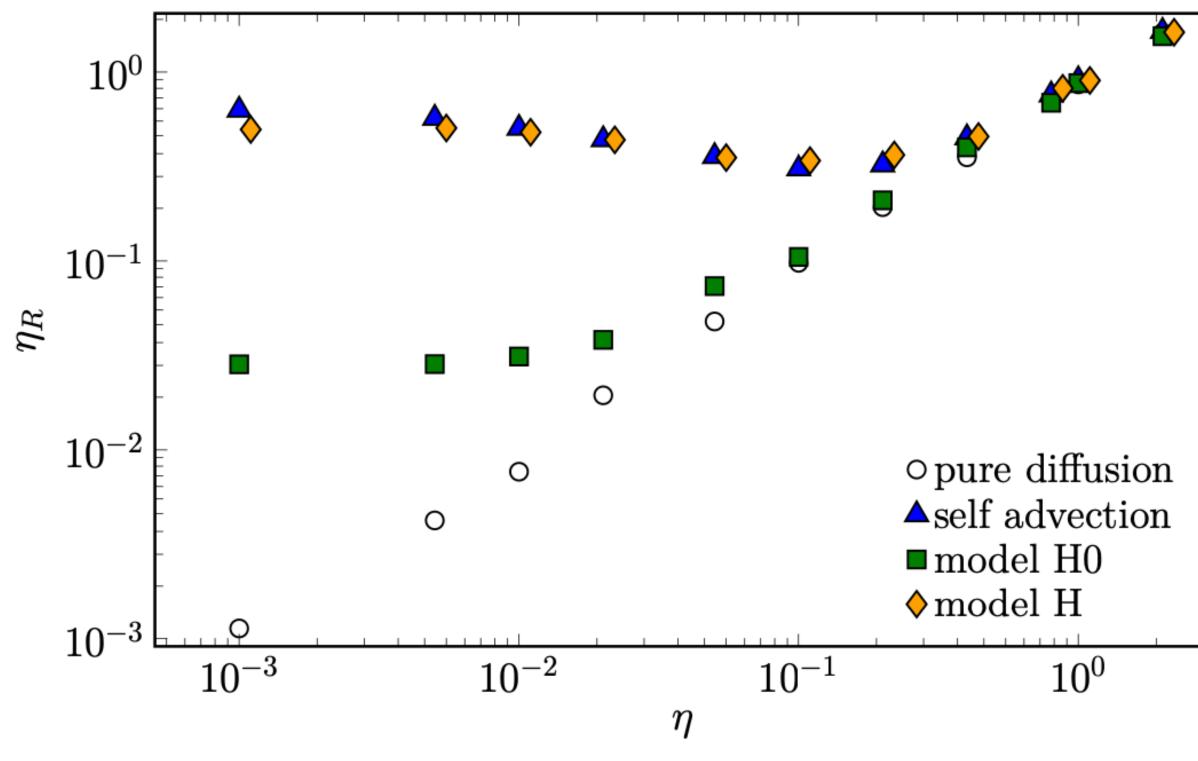
Renormalized viscosity

Model H effective viscosity dominated by self-advection of π_T



 $\eta_R = \eta + \frac{\gamma}{60\pi^2} \frac{\rho T \Lambda}{\eta}$

Model H



 $\frac{\partial \vec{\pi}_T}{\partial t} + \frac{\vec{\pi}_T}{\rho} \cdot \vec{\nabla} \vec{\pi}_T = \frac{\eta}{\rho} \nabla^2 \vec{\pi}_T + \vec{\nabla} \phi \nabla^2 \phi + \vec{\xi}$

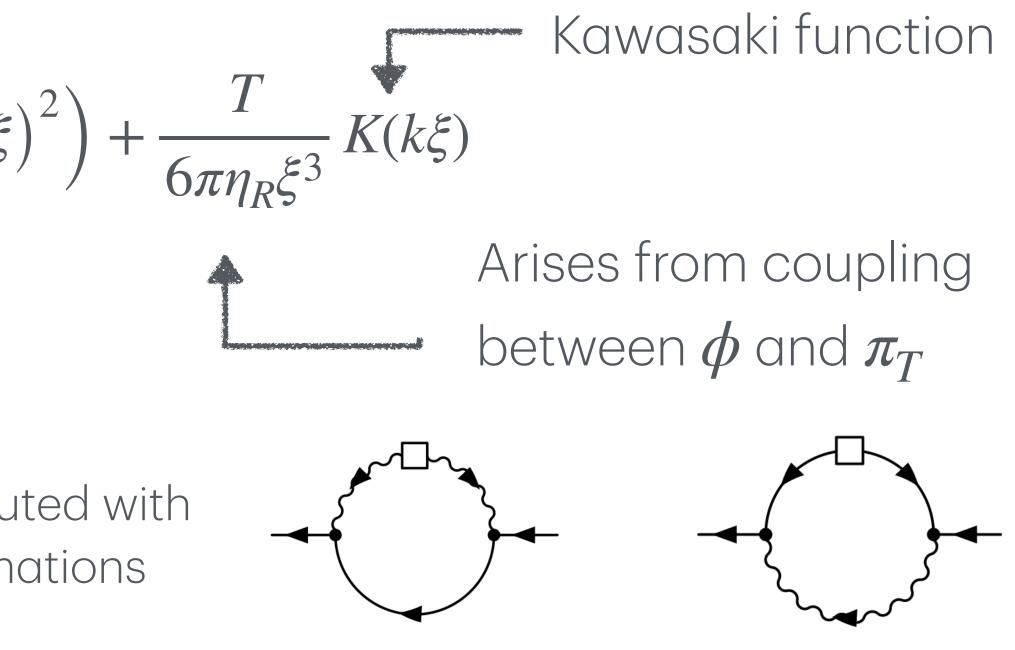
Dynamics: Order parameter

- Using the time dependent correlation function of the order parameter $C(t, \vec{k}) = \langle \phi(0, \vec{k}) \phi(t, -\vec{k}) \rangle$
 - a wave-number dependent relaxation rate is defined $C(t, \vec{k}) \sim \exp(-\Gamma_k t)$
- A model for Γ_k was proposed by Kawasaki:

$$\Gamma_{k} = \frac{\Gamma}{\xi^{4}} \left(k\xi\right)^{2} \left(1 + \left(k\xi\right)^{2}\right)^{2}$$

Pure Model B prediction using mean field approx.

> Diagrams computed with certain approximations



31

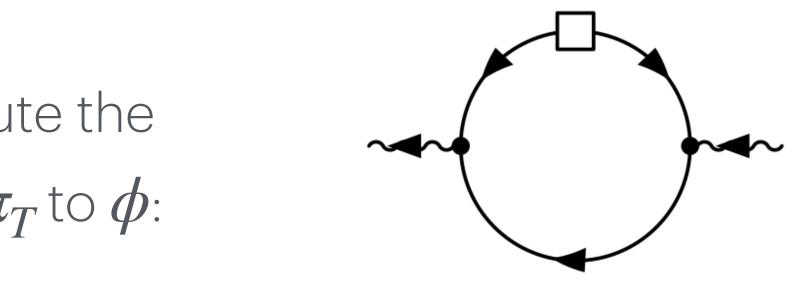
Dynamics: Kawasaki approximation

- The Kawasaki approximation: $\Gamma_k = \frac{1}{\epsilon^4}$
 - from z = 4 (pure diffusive dynamics) to z = 3 (pure Model H behavior).
 - Digression: Using Γ_k one can re-recompute the renormalization of η due to coupling of π_T to ϕ :

$$\eta_R = \eta \left[1 + \frac{8}{15\pi^2} \log\left(\frac{\xi}{\xi_0}\right) \right]$$

$$\left(k\xi\right)^2 \left(1 + \left(k\xi\right)^2\right) + \frac{T}{6\pi\eta_R\xi^3} K(k\xi)$$

• Near critical point, relaxation-rate for wavenumbers $k = k_* \sim 1/\xi$ should cross over



Near critical point, viscosity diverges, but only weakly

$$\eta_R \sim \xi^{x_\eta}$$
 with $x_\eta \approx 0.05$

Extraction of dynamic critical exponent (numerics)

• Compute time dependent correlator of the order parameter

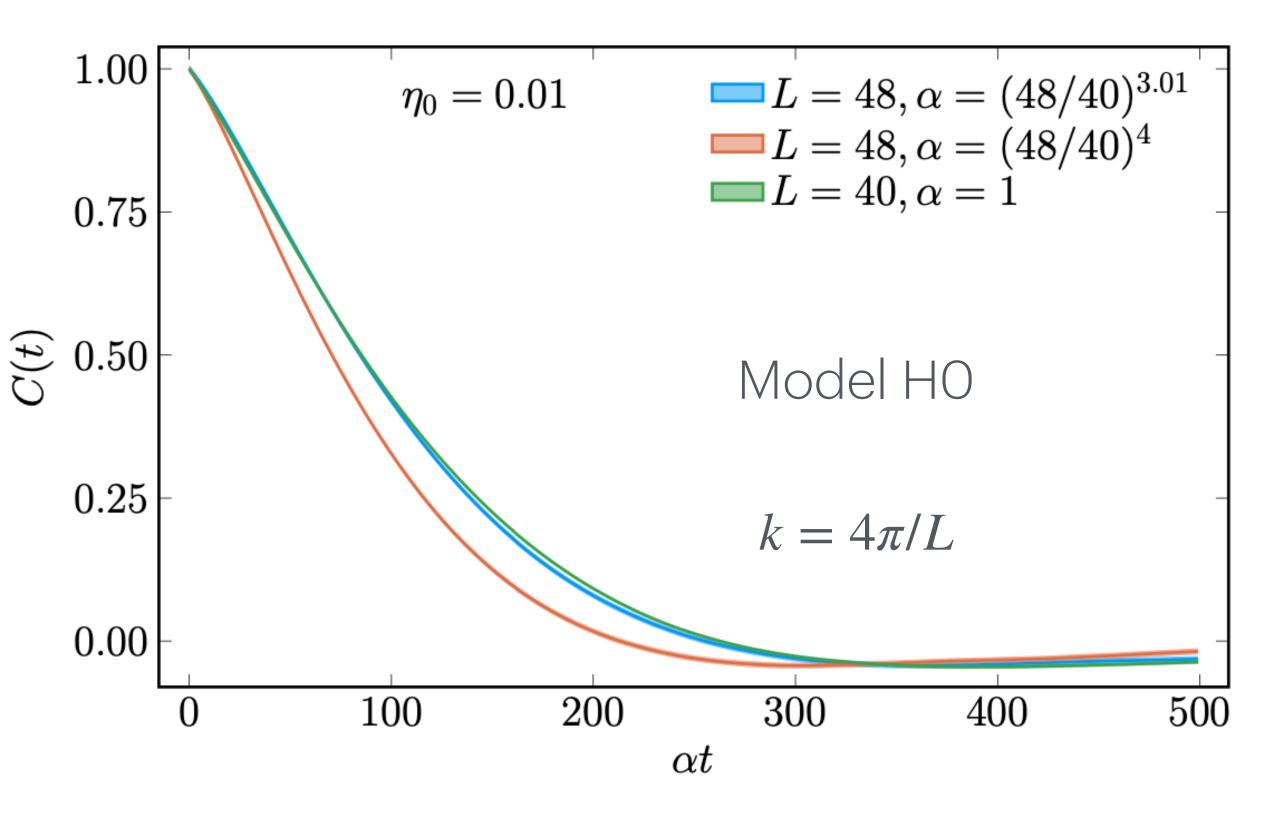
$$C(t,\vec{k}) = \langle \phi(0,\vec{k}) \, \phi(t,-\vec{k}) \rangle$$

at the critical point.

• Dynamic scaling at critical point :

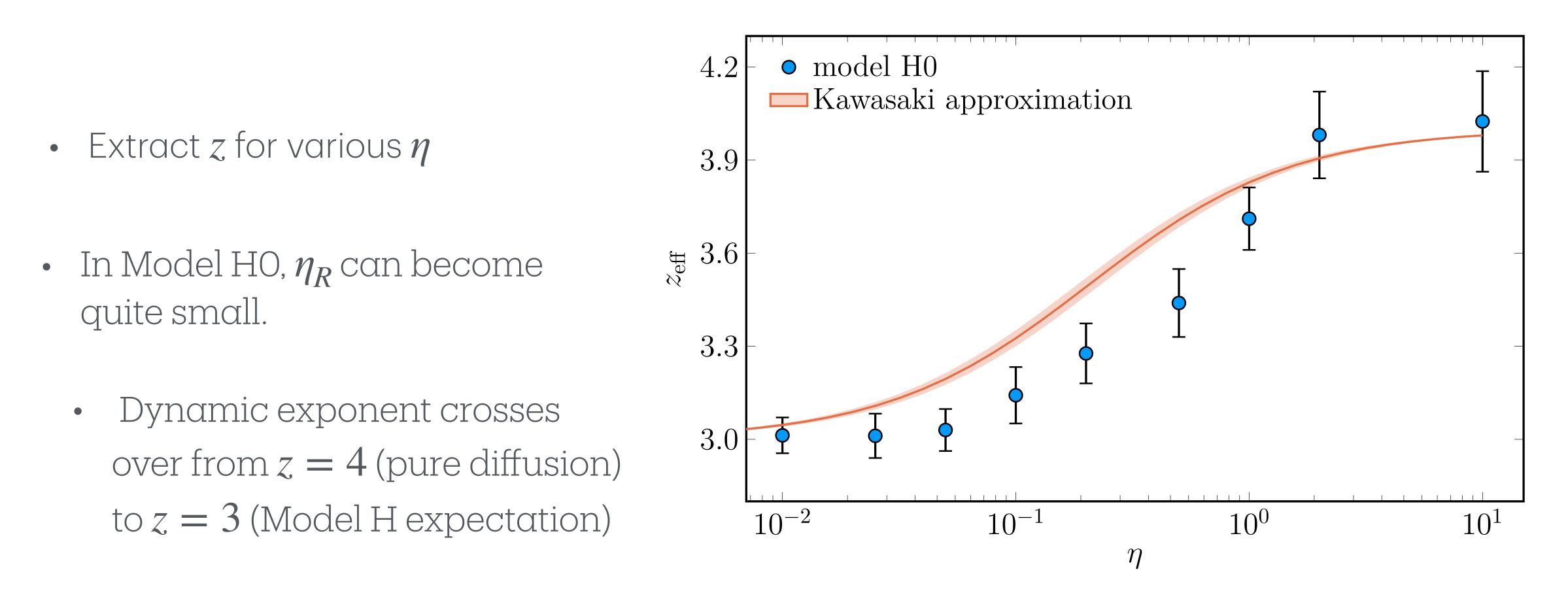
$$C(t,k) = \tilde{C}(t/L^z, kL)$$

• Hold *kL* fixed, vary lattice size. Extract *z*, by looking for data collapse.



 $z(\eta = 0.01) = 3.01$

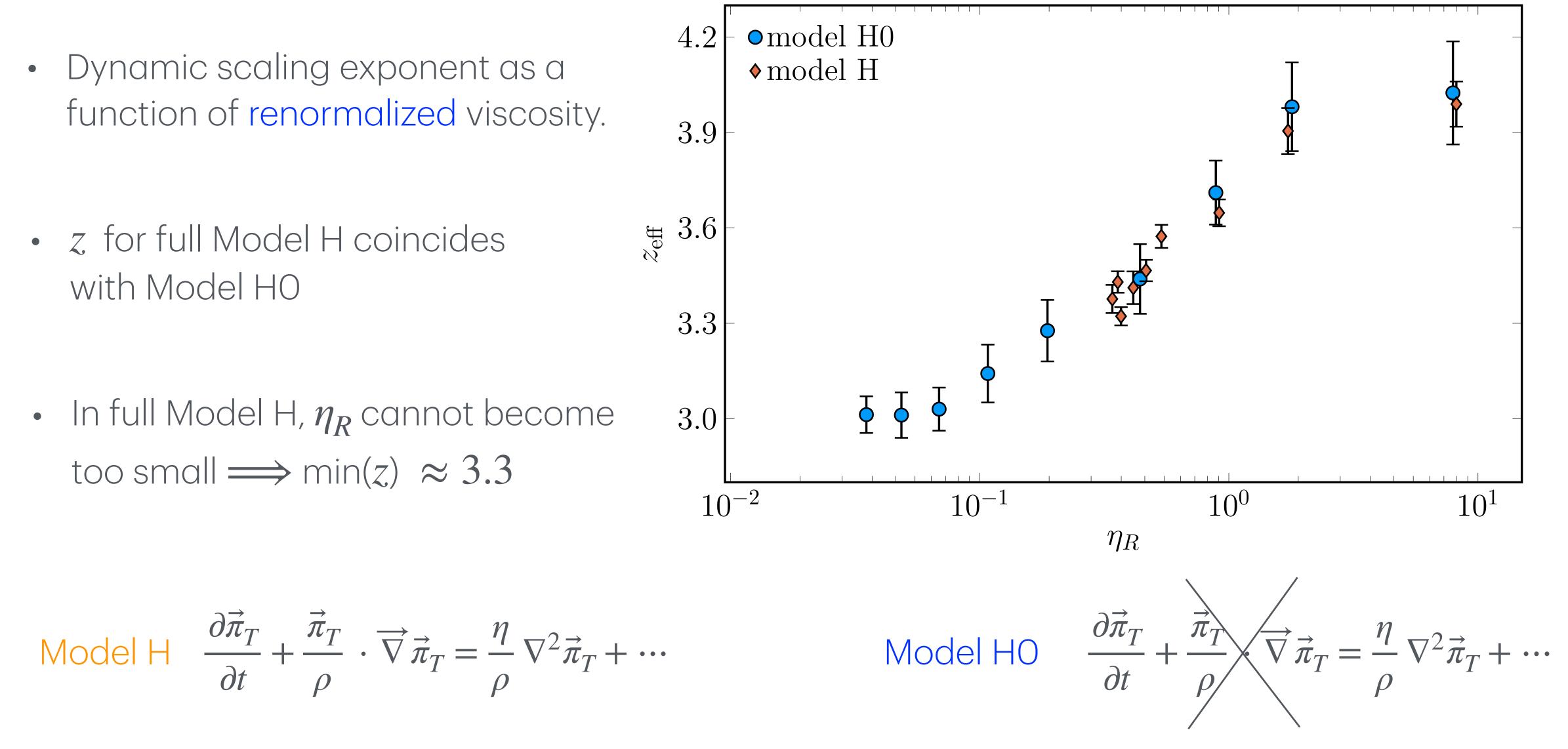
33



The Kawasaki approximation: $\Gamma_k = \frac{\Gamma}{\xi^4} \left(k\xi\right)^2 \left(1 + (k\xi)^2\right) + \frac{T}{6\pi\eta_R\xi^3} K(k\xi)$

Cross-over of z

34



Vodel H
$$\frac{\partial \vec{\pi}_T}{\partial t} + \frac{\vec{\pi}_T}{\rho} \cdot \vec{\nabla} \vec{\pi}_T = \frac{\eta}{\rho} \nabla^2 \vec{\pi}_T + \cdots$$

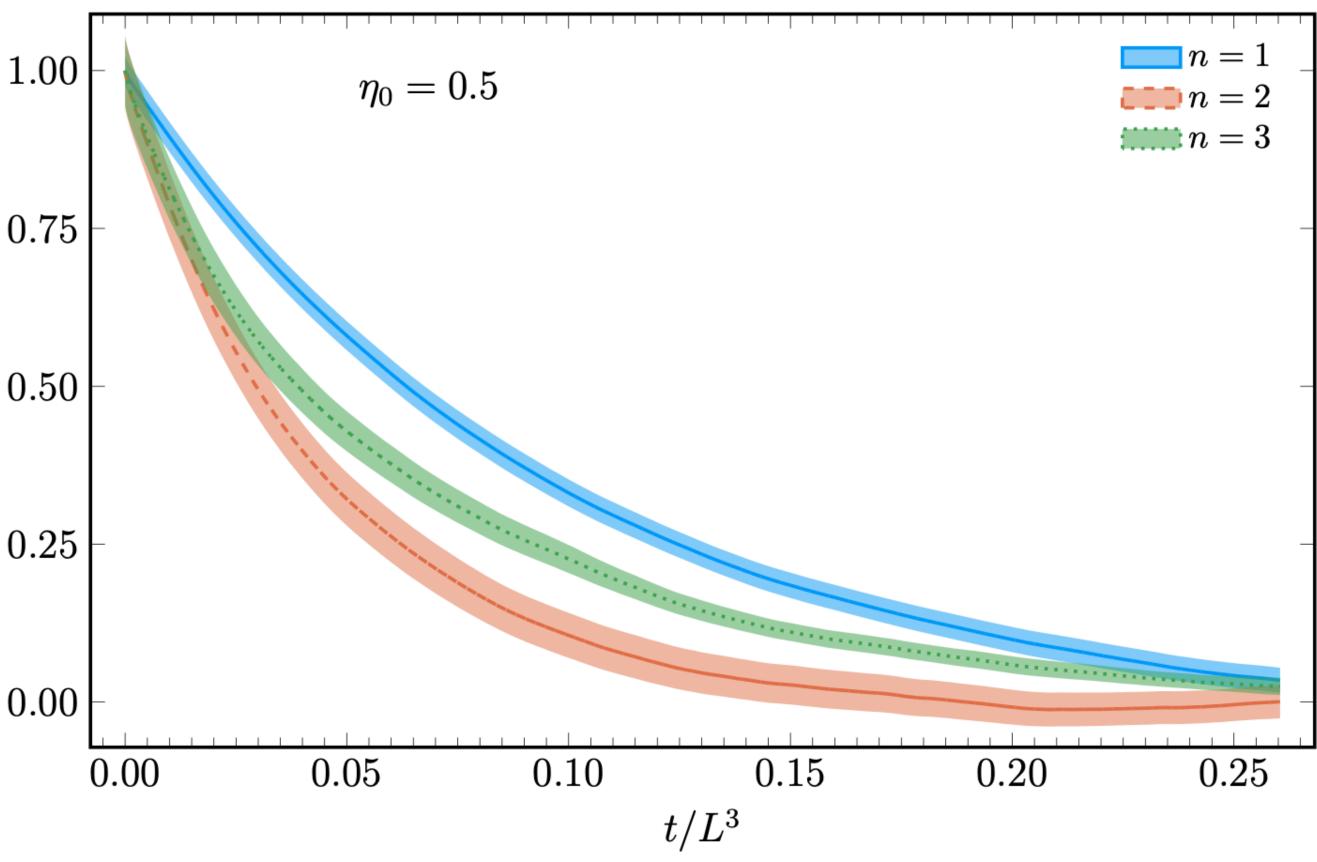
Evolution of higher moments

• Consider higher-point 1.00correlations

$$G_n(t) = \langle M^n(t)M^n(0) \rangle \qquad \qquad \bigcirc \qquad 0.7$$

- Correlation functions satisfy dynamical scaling
- Relaxation rate depends on 'n'. Not compatible with mean field expectations

0.00



Summary & Outlook

- Performed numerical simulations of stochastic fluid dynamics near a critical point. Observed renormalization of shear viscosity and dynamical scaling.
 - Self-coupling of momentum density is important in limiting the smallness of effective viscosity.
 - Dynamic scaling exponent depends sensitively on value of correlation length and effective shear viscosity.
 - Pure Model H behavior $z \approx 3$ requires both large ξ and small η_R .

sound modes and critical equation of state.

To generalize this to relativistic fluids with non-trivial expansions and cooling, inclusion of

Thank you!

37

Backup: determination of m_c^2 in Model A

- peaks.
- Computationally demanding.
- dynamics of an order-parameter (z = 2).

$$\frac{\partial \phi}{\partial t} = -\Gamma \frac{\delta F}{\delta \phi} + \zeta \qquad F[\phi] = \int d^3 x \left[\frac{1}{2} \left(\nabla \phi \right)^2 + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4 \right]$$

 $\langle \zeta(t, \vec{x}) \zeta(t', \vec{x}') \rangle = 2\Gamma T \delta(\vec{x} - \vec{x}') \delta(t - t')$

• At a critical point, susceptibilities $\langle M^2 \rangle$ diverge (infinite vol). In finite volume there are peaks. Possible strategy: Thermalize Model B configurations, compute $\langle M^2 \rangle$ at different m^2 and look for

• Mean-field estimates that Model B configurations take $\tau_{\rm therm} \sim L^z$ with z ~ 4 to thermalize.

• Use a model in the same static universality class but with smaller $z \Longrightarrow$ Model A, relaxational

Backup: The Metropolis scheme in Model A

- Take a trial update $\phi(t + \Delta t, x)_{\text{trial}} = \phi(t, x) + \sqrt{2\Gamma T \Delta t \theta}, \quad \langle \theta^2 \rangle = 1$
- The change in free energy due to this update

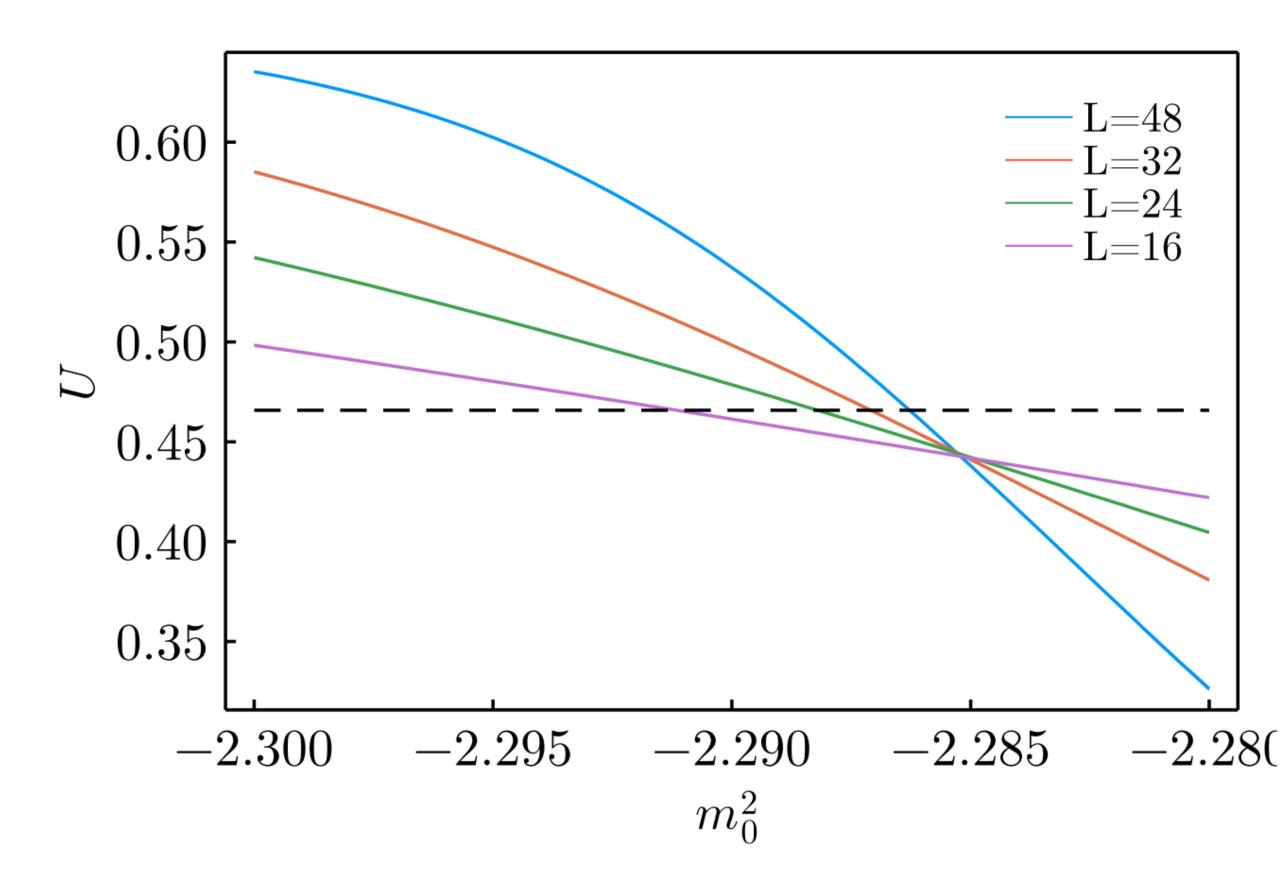
$$\begin{split} \Delta F &= \left(d + \frac{m^2}{2}\right) \left(\phi_{\text{trial}}^2(x) - \phi^2(x)\right) + \frac{\lambda}{4} \left(\phi_{\text{trial}}^4(x) - \phi^4(x)\right) \\ &- \left(\phi_{\text{trial}}(x) - \phi(x)\right) \sum_{\hat{\mu}=1}^d \left(\phi(x + \hat{\mu}) - \phi(x - \hat{\mu})\right) \end{split}$$

• Accept the update with probability

 $p = \min(1, \exp(-\Delta F/T))$

Backup: m_c^2 using Binder cumulants

- Fluctuation observables like $\langle M^2 \rangle$ and $\langle M^4 \rangle$ shows peaks at m_c^2 .
- The location of these peaks differs from infinite volume limit.



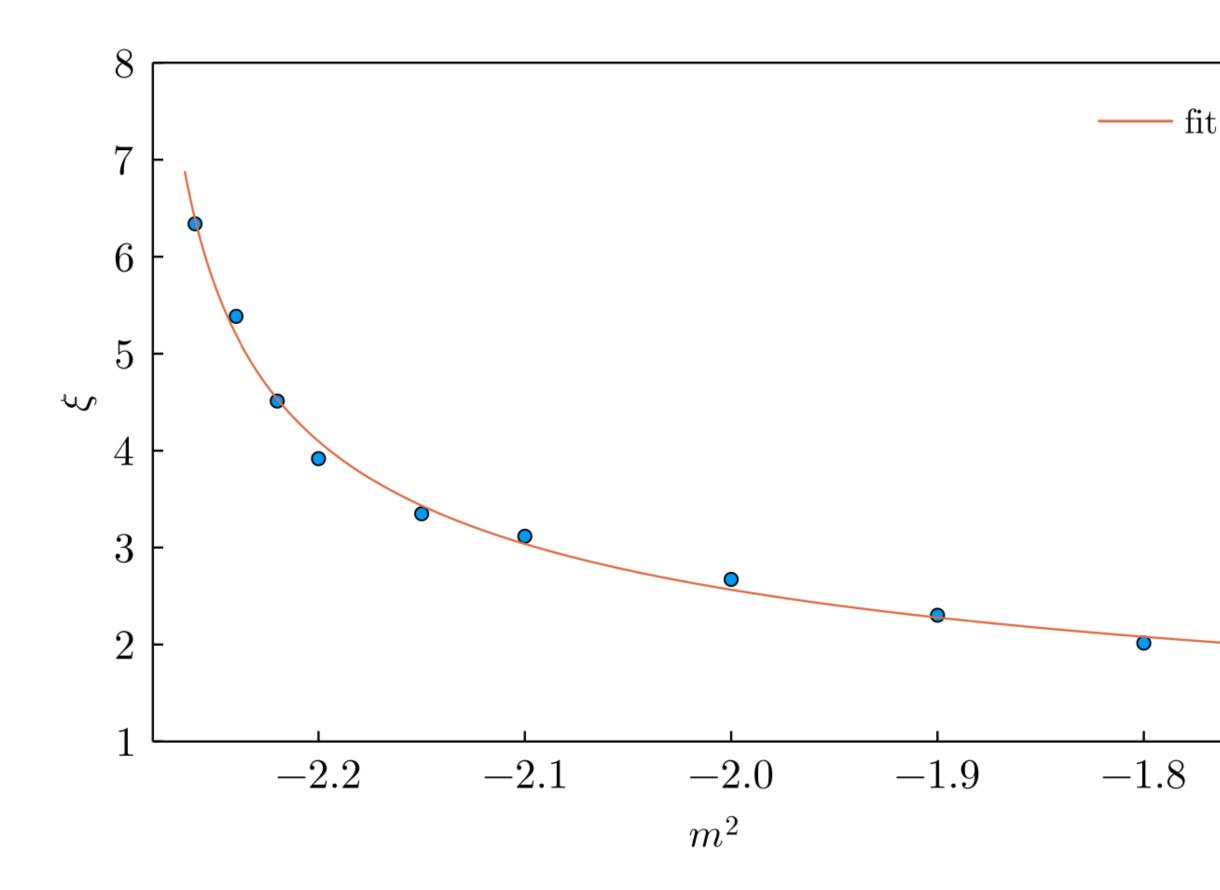
At the true critical point, finite volume effects on the Binder cumulant U cancels

$$U = 1 - \frac{\langle M^4 \rangle}{3(\langle M^2 \rangle)^2}$$

Strategy: Thermalize lattice using Metropolis update up to a long time, $t \sim L^2$

Compute $U(m^2)$ and estimate where the curves cross the infinite volume result

Backup: Correlation length in Model B



The static correlator in Fourier space

$$C(k) = \langle \phi(0,\vec{k}) \, \phi(0,-\vec{k}) \rangle$$

Extract correlation length by fitting with mean field expectation

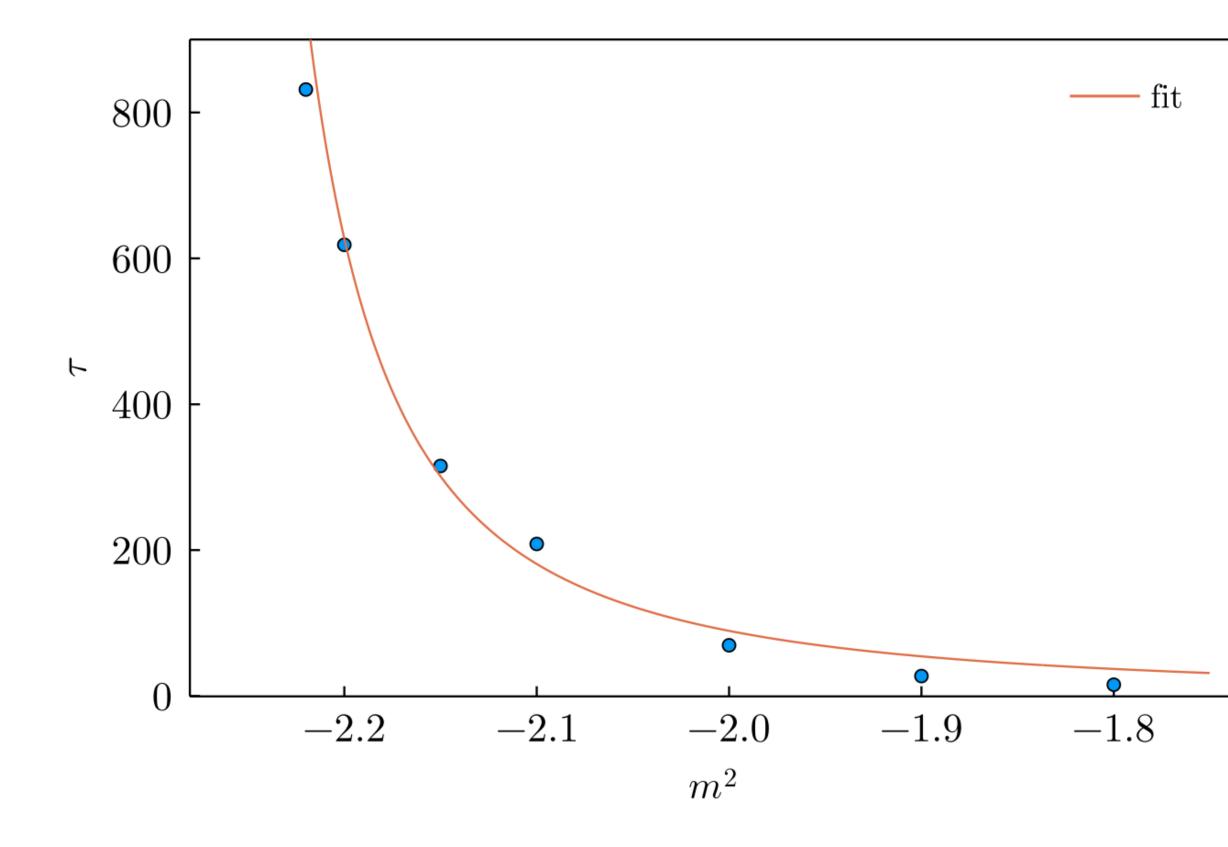
$$C(k) \sim \frac{1}{k^2 + 1/\xi^2}$$

The correlation length grows as

$$\xi \sim rac{1}{(m^2 - m_c^2)^{
u}}$$
 with $u \approx 0.5$

Λ

Backup: Relaxation time in Model B



• Compute the dynamic correlator

$$C(t,k) = \langle \phi(0,\vec{k}) \, \phi(t,-\vec{k}) \rangle$$

• The correlator damps in time

$$C(t,k) \sim \exp(-t/\tau_k)$$

Where τ_k is a momentum-dependent relaxation time.

- In figure, τ for a given m^2 (or ξ) is defined as τ_k at $k=1/\xi$
- Relaxation time grows as $\tau \sim \xi^z$

Backup: The stickiness of sound

Linearized energy-momentum tensor in presence of noise

$$T_{00,\xi} = \delta e \qquad T_{0i,\xi} = -\left(e_0 + P_0\right)\delta u_i$$

Noise is Gaussian: $\langle \xi_{ij}(x)\xi_{kl}(y)\rangle = 4\eta$

Averages of any quantity is obtained by using a functional integral $\langle \mathcal{O} \rangle \equiv D\xi_{ij} e^{-S_{\xi}} \mathcal{O}$

$$S_{\xi} = \int d^3x \,\xi_{ij} \left(\frac{1}{8T\eta} \,\Delta^{ijkl}\right) \,\xi_{kl}$$

Can compute any correlation functions, for eg., $\langle T^{12}(x) T^{12}(y) \rangle \equiv G^{12,12}(x,y)$

Kovtun, Moore & Romatschke

$$T_{ij,\xi} = \delta_{ij} c_s^2 \,\delta e - \eta \,\left(\partial_i \delta u_j + \partial_j \delta u_i - \frac{2}{3} \delta_{ij} \,\overrightarrow{\nabla} \cdot \delta \vec{u}\right) + \xi_{ij}$$

$$T\Delta_{ijkl}\,\delta^4(x-y)$$

Backup: The stickiness of sound

Beyond linearized regime, consider terms up to 2nd order in perturbation (also take low momentum limit) $T^{12}_{\xi} = (e_0 + P_0) \ \delta u^1 \delta u^2 + \xi^{12}$

For example,
$$G_{\text{sym}}^{01,01} = -\frac{2T}{\omega} \left(e_0 + \frac{k^2 \eta}{i\omega - \gamma_\eta k^2} \right)$$
 $\gamma_\eta = \eta / (e_0 + P_0)$

Finally, one obtains $G^{12,12}(\omega, k \rightarrow 0) = -i\omega$

Renormalization of shear

- The symmetric correlator $G^{12,12}_{\text{sym}}(x,y) = \langle \xi^{12}(x)\xi^{12}\rangle(y)\rangle_{\xi} + (\epsilon_0 + P_0)^2 \langle \delta u^1(x)\delta u^2(x)\delta u^1(y)\delta u^2(y)\rangle_{\xi}$
- In Fourier space, $G_{\text{sym}}^{12,12}(\omega, k \to 0) = 2T\eta + \int \frac{d\omega'}{2\pi} \frac{d^{\alpha-1}k'}{(2\pi)^{d-1}} \qquad \left[G_{\text{sym}}^{01,01}(\omega', \mathbf{k}')G_{\text{sym}}^{02,02}(\omega-\omega', -\mathbf{k}')\right]$ $+G_{\rm sym}^{01,02}(\omega',\mathbf{k}')G_{\rm sym}^{02,01}(\omega-\omega',-\mathbf{k}')$

$$\left(\eta + \frac{17T\Lambda_{UV}}{120\pi^2\gamma_{\eta}}\right) + (1+i)\omega^{3/2} \frac{\left(7 + \left(\frac{3}{2}\right)^{-1}\right)T}{240\pi\gamma_{\eta}^{3/2}}$$

Kovtun, Moore & Romatschke

