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Long-term goal: Identify signatures of a
possible critical end point of QCD using heavy-
ion collisions.

Near a critical point, fluctuations become
dominant. But fluctuations not equilibrated as
fireball is rapidly expanding.

Need for a dynamical theory of critical
fluctuations.

Fluid dynamics should still be applicable, but
with appropriate modifications:

. Inclusion of thermal fluctuations, slow
dynamics of order parameter, and
criticality in equation of state.

C.S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019)
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universal.

Hence, study QC:

D critical dynamics using

the simp.

est system from the same dynamic

universa.

ity class.

Universality class depends on

- Order parameter being conserved,/non-

conserved.

« Coupling of order parameter to other

slow modes, eg, hydrodynamic modes.

QCD critical point shares the same static
universality class as the 3d Ising Model

3



The basic idea

The properties of a fluid are defined by slow, macroscopic degrees of freedom:

conserved densities, i.e., densities of energy, momentum, or any conserved charge.

If afluid is near a critical point, the dynamics of its order parameter becomes slow

(critical slowing down). Must be included in the hydrodynamic description. Hohenberg &

Halperin

These macroscopic fields fluctuate as they couple to microscopic degrees of freedom.

The theory to be solved is then stochastic hydrodynamics coupled to an order parameter.

Such theories are classified by Ho

dynamics (Model A), ¢

ritical diffus

(Model 5), critical diffu

\

relevant to QCD

nenberg &

ion (Model
sion coupled to Navier-Sto

/ Rajagopal and Wilczek

3), C

Halperin: purely relaxational

ritical anti-ferromagnet

<es (Model H).

Son and Stephanov



. Use framework of non-critical stochastic hydro and include criticality in

. Use of e-expansions, functional renormalization group.

transport coefficients.

Previous works

~OS and

- Deterministic approcaches: The above framework can be used in linearized regime to

write deterministic eqgs for n-point equal time functions: Hydro+, Hydro++, hydro-kinetics.

Stephanoy, Yin, X. An, Akamatsu, Teaney, Mazeliaukas, F. Yan, H. U. Yee, Martinez, Schaefer...

- Extend them to critical regime by replacing susceptibilities and relaxation-rates by

their critical expectations. Numerical studies of one-dimensional expanding systems.

M. Nahrgang et al., G. Pihan et al., M. Bluhm, L. Du, Heinz and others

Not many studies of di
simulate stochastic dy

‘ect sim

NAMICS

Ulatio

N of

0ASEC

C

Berges, Schlichting et al, Schweitzer, von

Smekal, Chen, Tan, Fu, Roth, Ye

ritical fluid dynamics. A

on Metropolis has been rece

novel ap

oroach to

Ntly formr

ulated.

Florio, Grossi, Soloviev, Teaney, Schaefer, Skokov, Basar,
Bhambure, Singh, Newhall et al



Outline of this talk

Main goal: Discuss numerical simulations of Model H, i.e., critical dynamics of @
conserved order parameter coupled to fluid dynamic variables.

Part I: critical diffusion of a conserved order parameter (Model B)
Simulation of diffusive dynamics using a Metropolis algorithm
Dynamic scaling in Model B

Part II: Coupling of the conserved order parameter to hydrodynamic modes (Model H)
Modification to dynamic scaling behavior compared to Model B

Renormalization of shear viscosity of the fluid



. Part |: critical diffusion of a conserved order parameter (Model B)

Based on C.C., J. Ott, T. Schaefer, V. Skokov
(PRD 108 (2023) 074004)



Model B

Consider the Ising model. Coarse grain the spin (microscopic) degrees of freedom to obtain an

order parameter @(x) (magnetization density).

- The statics of the system near the critical point (small ¢) is governed by an effective free-
energy functional (Ginzburg-Landau)

6 | | |

F[¢]=Jd3x [%(V¢)2+lm2¢2+%¢4] 4:

2

Dynamics: If the order parameter is conserved, its evolution may be
modeled as
O

— +V. f =0, the current
ot

| | Diffusion Noise
Noise ensures fluctuation-

dissipation (E,X)EWX, X)) = 2T T8 8(t — 1) 3% — X)



Model B in mean-field approximation

- In the free-energy functional set A = 0

. Nearm

| 3 l 2 l 2 42 £4
F[¢]—de[2(v¢)+2m¢+4¢]

. Evolution of ¢ becomes linear. The equal-time correlator N, (1) = (¢ (¢, 1?) O(t, — lz)) satisfies

ON,
ot

I

Equilibrium correlator N, = and relaxation-rate T, = T k*(k* + m*)
k? + m?

2 = (0, mean-field predicts [, ~ k*with a dynamic exponent z = 4.

- Later: interactions, coupling of ¢ to hydro modes lead to modifications from z = 4.



Model B: the non-linear case

. |nteractions renormalize mz. For chosen

1 2 A
values of (T, 1) it is possible to tune m* Flgl = J‘Px [5 (Vo) 5 m - 1 #*
to hit the critical point.

. To determine m? for an infinite system from finite volume calculations. Quantities like

(M?), {M*) show peaks whose location depends on L.

. At the true critical point, leading order finite O (M*)

volume effects on the Binder cumulant U cancel 3((M?))?

. Model B configs have long thermalization time 7, ~ L*with z & 4.

2

- using Model A (purely relaxational dynamics), lies in same static universality

. Determine m

. - 2
class, easier to thermalize 7z ~ L. T schaefer and V. Skokov PRD 014006 (2022)



. Compute the change in free energy due to

Metropolis step for Model B

. Choose trial updates at x and X + fi  (conserves ¢)

PUNt + ALX) = Pp(1,X) — q,, QT+ ALY+ ) = (L, X+ ) + g,

q, = \/ZFTAtfﬂ

these updates

_ | .3 l 3 l ) i4
F[¢]—de[2(v¢)+2mgb+4qb

11



Metropolis step for Model B

. Choose a trial update at x and X + /i

P+ ALT) = p(,X) — q,, U+ ALT + ) = P(LX+ ) + g,

q, = \/ZFTAtcfﬂ

+ The changein free energy AF(X,X + 1) = AFX)+AF(X + i) + q/%

2 A
AF(x) = (d | ’7; ) <¢t%ial(x) — ¢2(x)) + Z <¢éial(x) — ¢4(X))

d
~(Puia®) — p)) ) (Pl + @) — plx — )

=1
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Metropolis step for Model B

. Choose a trial update at x and X + /i

PUNt + ALX) = (6, %) — g, PN+ AL+ ) = LT+ ) + q,

q, = \/ZFTAtfﬂ

. The change in free energy AF(X,X + i) = AF(X)+AF(X + /2)+q,f

13



Metropolis step for Model B

. Choose trial updates at X and X + /I

PN+ ALX) = o, %) — q,,  PUUCHALX+ Q) = Pp(LX+ ) + g,

q, = \/ZFTAtfﬂ

. The change in free energy AF(X,X + i) = AF(X)+AF(X + /2)+q,f

. Accept with probability P = min(1, exp(—AF/T))

14



The Metropolis scheme

- The Metropolis update reproduces the flux on average, and also its variance

~ — OF ,
(g) = — AtI'’V — + O(Ar”)
o

(G*) =2 T At + O(At?)

- Probability of a new configuration,

P (¢, %) = ¢™"(t,X)) ~ exp |- (F[¢""] — Fl])|

irrespective of order of updates.

. The equilibrium distribution exp(—F[¢]/T) is sampled even if At is not small.

. If Atisnot small, the diffusion eq. is approximately realized.

15



Results: Dynamic scaling

1.00
—L =28

o — L =12
~0.75F —L =16
= L=
=
N
1 0.90
e
E’J/ 0.25

0.00 t . | ——

0.0000 0.0025 0.0050 0.0075 0.0100

t/L"

Data collapse occurs for z &~ 3.97. Theoretical
expectationz =4 —n,n =~ 0.03

. Zis the dynamic scaling exponent

- Scaling Hypothesis: Near a critical point

the dynamic correlator, (¢ (0, k) ¢(t, — k))

G(t, k) = G(t/E, k&)

(7 is a universal function.

. At the critical point & ~ L, thus G(¢, k)

obtained in different volumes should
collapse

~f I
G(t,k=2n/L) - G (—,27:)
) 5

if time is scaled by L*

16



. Part II: Coupling of the conserved order parameter to
hydrodynamic modes (Model H)

Based on C.C., J. Ott, T. Schaefer, V. Skokov
PRL 133 (2024) 032301

17



Coupling to a fluid (Model H)

. Couple the order parameter ¢ to a fluid’s momentum density 7

%=FV25—H— (ng- 5H>+§

57TT

diffusion advection  noise

- Stochastic evolution equation of the momentum density

on , OH — oH oH —\_. -
=nV'— +<V¢)-—— -V | np+ ¢
ot 57TT

diffusion Stress advection
energy of ¢
- L7 = N2, A,
+ The Hamiltoniaon H = |d°x —+—(ng) + —m P+ — @
20 2 2 4

18



Coupling to a fluid (Model H)

. Couple the order parameter to a fluid’s momentum density 7

o H SH For purposes of determining |
— =TV g — [ Vo - 5 + ¢ | zltsuffices to choose |

. . | - Non-relativistic fluid
. Evolution equation of the momentum density

« The momentum density is

0 SH /— \ 6H [(6H — L e
ﬂT:ﬂVZ +<V¢)-——( -V);?T+§ | transverse V -7 =0

O

There are shear waves but
. no sound. No coupling to

-9 1 o) 1 J energy density Or pressure.
H=|dx |—+—=( V@) +—mp-+—1¢
) 2 P 4

19



Model H (deterministic part)

Let’s consider only the non-dissipative part of the equations

. . . Third-order term, goes
a¢ ﬂ'T — aﬂ'T T = = ;< .
— +—-V¢ =0, + = . Vi, = V¢ V?p <= beyondusual Navier-
o p a p Stokes

—

The thirgl—order term is necessary for d_H _ J 3, [7—[} T V2 + V() ¢] — 0
conserving energy dt I,

where the equations of motion have been used along with standard continuum manipulations

- - T T T 2
J V’(¢)EV¢=J'V<EV(¢)>=O ﬂ_i(ﬂ_ivj>ﬂiT=vi(7Ti ﬂT)
x P X p p\ P p 2p

- These continuum manipulations are not necessarily allowed in the discretized theory.

20



Model H numerics (deterministic part)

. The equations in manifestly b = V. (ﬁ ¢) ]Z'ZT = — Pi]T Vk<l ﬂ%ﬂ]T + Vkvj¢>

conserving form 0 P
Use a skew symmetric derivative for the non-linear term Morinishi, Lund, Vasilvev, Moin,
1 1 1 1zl Journal of computational physics
V,u <_7T/4T7T1/T> = _V,M (— IMTJZ'VT> | . VﬂﬂUT (143, 90 (1998)
skew

along with a centred difference V) w = (w(x + 1) — w(x — f1)/2

- The discretized evolution equations:

: 1
b= Vi, = — vﬂ(—n,{nf) +(V;¢) (ViVig)

skew

21



Model H numerics (deterministic part)

- The discretized egs.

gﬁ=—%ﬂgvz¢ 7%’}=— Vﬂ<— MTﬂUT) +(V;¢)(V,€V,€¢)

skew

dt 20 2

2
conserves the kinetic energy of the ¢/ _ d J' By | T (Vo)’ — 0
system exactly: dt dt

The equations are integrated in time using a Runge-Kutta scheme. After each step,
project onto transverse part in Fourler space

T _ s
nlszPﬂTyﬂy P =0, +—

- Total energy conservation in the deterministic step is found to hold to very good accuracy.

22



Model H numerics (stochastic /dissipative part

- For the fluctuating/dissipative part: Same as Model B update
d"A(t + AL X) = P(t, %) + g¥ g" =/2TT At¢,
. - — <é’//té’l/> — 5//”/
PR+ ALY+ f) = P, + i) — g

- Similarly for the momentum densities:

trial >\ > (v) (V) — v)
m, (1 + At x) = m,(t,x) + 1) ) =+/2nT At g,

At + ALX + D) = n,(t,X + D) — 1y

+ Calculate change in energy. Accept/reject with P = mun(1, exp(—AH/T))



Model H simulations

Order parameter field in 3d

Order parameter + velocity field in 20

Simulations by Josh Ott

24



Results: Dynamics of momentum density

(z1(0,6) 21 (0, — b)) = Cy(t,k), where  Cy(t, k) = <5l-j — l%-l%-) C,(t, k)

In linearized hydrodynamics C,(t,k) = p T exp (

. Compute C_(¢, k) in Model H to

extract effective i

. Thermal fluct
inear effects

result (even away

Jations anad

Mod

ity linear

rom 1)

0.0

—Ekzt

- Consider the time-dependent correlation function of the momentum density

60

100

25



Dynamics: .Loop corrections

Non-linear interactions between modes J?T, @ can be represented diagrammatically

Green’s functions for V1 VAVIVAVV VoV VAV VAVAV,VoV VoV

Green'’s functions for ¢

Corrections to momentum corr. function Corrections to corr. function of ¢
Self-advection of 7 Coupling of

Advection of @ by &
7,10 ¢ ¢ by 7y

26



Renormalized viscosity

For pure diffusion, the eq. is linear

Fffective viscosity becomes as
small as the bare one

Pure-diffusion

=1 T ! ! L B I I B L I LI B B B B ! ! U b‘“
10°} ‘*) E
- A b x & :
: & LH L
O
_1 !
O
= O
<= o 5 . O
O
_2 . n
10 i O o pure diffusion
_ o A self advection -
_ Emodel HO
] o Omodel H
10— = . Ll : Ll : L 0 .
1073 102 101 10°
n
aﬂT ﬂ'T }’] N
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Renormalized viscosity

The “stickiness of shear” gchaefer & Chafin " - " —
AT r
_ ® v o o ®
O
107! . "
g O
0 |
7 pTA Ll
Hp = 1] | 5 10 : ® opure diffusion :
605 ] : Aself advection
Emodel HO
Effective viscosity levels off, then increases. 10-3L0 - ¢modelH
| | | 10~ 102 1071 10°
Thermal fluctuations + Non-linearity of hydro
— shear viscosity has a minimum
. | - 2= 2
Self-advection 5w T, Vrr= 5 Vi + VON“ ) + ¢

In analogy to “stickiness of sound” Kovtun, Moore & Romatschke




Renormalized viscosity

The renormalization of # due to coupling
to the order parameter

1 TE&,
1607 I

Ng = N -

Much smaller effect than self-advection

Model HO

MR

=1 T ! ! L B | I I LI B B B B ! ! U b‘“
10° | % &% E
; & :
l Lo N »H L &
' O
_]_ |
10 - O °
i O
O m N -
O
_2 . n
10 i O o pure diffusion
_ o A self advection -
_ Emodel HO ‘
] o Omodel H
10— = . Ll : Ll : L 0
1073 102 101 10°
n
ony 7y n

NN 7, =25 2 Vg V2 + &
o p p
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Renormalized viscosity

Model H effective viscosity dominated by o8
self-advection of 7 4 Y o o
r l L L L &
| 0
—1 L
1071 g °
ot i O
= O m = "
O
10_2? ® opure diffusion -
' o A self advection
B model HO ‘
\ o ¢Omodel H
10— = 91 | T R | e ! I N N B B A A
M = 1 4 7 pIA 10-3 102 1071 100
. 6072 1 !
Model H 5 | p ‘V”TZZV”T‘FVqﬁV ¢+
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Dynamics: Order parameter

- Using the time dependent correlation function of the order parameter
C@t, k) = (p(0,k) p(t, — k))

a wave-number dependent relaxation rate is defined  C(t, 1?) ~ exp(—=171)

. A model for I, was proposed by Kawasaki:

- Kawasaki function

I
&

(k§)2(1+(kéj)2) | : K(k&)

67nRe

Arises from coupling

Pure Model B prediction
using mean field approx.

Diagrams computed with
certain approximations

between ¢ and &,

31



Dvnamics: Kawasaki approximation

. . [ T
+ The Kawasaki approximation: T, = g (k§)2 (1 n (k(f)z) : e K(kE)

. Near critical point, relaxation-rate for wavenumbers k = k. ~ 1/& should cross over
from z = 4 (pure diffusive dynamics) to z = 3 (pure Model H behavior).

. Digression: Using I, one can re-recompute the

renormalization of 7 due to coupling of ;- to ¢:

8 S
— 14 | - - . . . .
TR =1 [ 1572 02 (5())] Near critical point, viscosity diverges, but only weakly

g ~ & withx, &~ 0.05

32



Extraction of dvnamic critical exponent (numerics

- Compute time dependent correlator

1.00[ | | | | B
mo = 0.01 =L = 48, o = (48/40)3 "
of the order parameter oL — 48 o — (48/40)’
N N R 0.75 1 L =40, a0 =1
C(1, k) = (#(0, k) p(t, — k))
L . = 050
at the critical point. ® Model HO
. Dynamic scaling at critical point : 0-251 b — dx/]
C(t,k) = C (t/L% kL) 0.00|
0 100 200 300 400 500

at
Hold kL fixed, vary lattice size. Extract z
oy looking for data collapse.

z(n = 0.01) = 3.01



Cross-over of 7

Extract z for various i

- In Model HO, p can become

quite small.

Dynamic exponent Crosses
over from z = 4 (pure diffusion)

to z = 3 (Model H expectation)

12| © model HO -
1 Kawasaki approximation .
0 0 BT BT
Y
. I )
The Kawasaki o= — (k&) (1 + (k&) 4 K(kE)

approximation:

54

6znRs .
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Wi

In full Model H, R cannot become

Cross-over of 7

Dynamic scaling exponent as d
function of renormalized viscosity.

for full Model H coincides

ith Model HO

too small = min(z) ~ 3.3

- @model HO

4.2
¢ model H

3.9
= 3.0
N

3.3

3.0 §$ 9

102 10~1
Model HO
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Evolution of higher moments

I

Consider higher-point

. 1.00 - — 05 an =I 1
correlations Mo = 0. soon =2
—_ n n . _
G, (1) = (M"()M"(0)) _om
-
=
3 - 2 0.50( _
M(t) = | d’x¢(t,x) s
1% &
Correlation functions satisty 0.25} .
dynamical scaling
0.00 | ]
Relaxation rate depends on n' 0.00 0.0 0.10 0.15 0.20 0.25

Not compatible with mean field t/L?

expectations



Summary & Outlook

Performed numerical simulations of stochastic fluid dynamics near a critical point. Observead
renormalization of shear viscosity and dynamical scaling.

. Self-coupling of momentum density is important in limiting the smallness of
effective viscosity.

- Dynamic scaling exponent depends sensitively on value of correlation length
and effective shear viscosity.

. Pure Model H behavior z & 3 requires both large £ and small #p .

To generalize this to relativistic fluids with non-trivial expansions and cooling, inclusion of
sound modes and critical equation of state.

Thank you!



Backup: determination of 7~ in Model A

. At a critical point, susceptibilities (M 2) diverge (infinite vol). In finite volume there are peaks.

Possible strategy: Thermalize Model B configurations, compute (M?) at different m? and look for
peaks.

. Mean-field estimates that Model B configurations take 7., ~ L with z ~ 4 to thermalize.
Computationally demanding.

- Use amodel in the same static universality class but with smaller z = Model A, relaxational
dynamics of an order-parameter (z = 2).

o S5F

1 2
T — — | 53 | = o2 20 g4
py » + ¢ Fl¢] de [2 (v¢) +—m?¢ ¢

(%) EW, X)) = 2T TS — ¥) 8(t — 1)



Backup: The Metropolis scheme in Model A

. Take atrialupdate @t + At, X)) = @(T, x) + \/ZF TAt0, (6 =1

- The change in free energy due to this update

m’ 2 2 A 4
AF =\ dH ) (¢trial(x) N ¢ (X)) + Z ( trlal(x) o ¢ (X))

d
~ (P — @) Y (Px + A) — Ppx — i)
=1

- Accept the update with probability

p =min(l, exp(—AF/T))



2

~ using Binder cumulants

Backup: m

2

C-

Fluctuation observables like (M?) and (M*) shows peaks at m

The location of these peaks differs from infinite volume limit.

At the true critical point, finite volume

_ effects on the Binder cumulant U cancels
—48
0.60 [.=32 4
L—24 =1 (M™)

_ 0.50 |

0.45 | = = - Strategy: Thermalize lattice using Metropolis

| update up to a long time, t ~ L?
0.40 |
0.35 t Compute U(mz) and estimate where the
curves cross the infinite volume result

—2.300 —2.295 —2.290 —2.285  —2.2&(

9
my



Backup: Correlation length in Model B

fit The static correlator in Fourier space

C(k) = (p(0,k) p(0, — k))

- xtract correlation length by fitting with
Mmean field expectation

C(k) ~
(k) k% + 1/&2
T2 21 20 19 18
2 The correlation length grows as
|
G ~ with v~ 0.54

(m? = m2y
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Backup: Relaxation time in Model B

fit

—2.2

—2.1

—2.0

—1.9

—1.8

- Compute the dynamic correlator

C(t, k) = (p(0.k) (1, — k))

W
re

« The correlator damps in time

C(t, k) ~ exp(—t/t;)

nere 7, is d momentum-dependent

axation time.

- |Infigure, 7 for a given m? (or E)is

defined as 7, atk = 1/&

. Relaxation time grows as 7 ~ &2



Backup: The stickiness of sound

Kovtun, Moore & Romatschke
Linearized energy-momentum tensor in presence of noise

2 =
Ty e = 0€ lyie = — (eo + PO) OU, T = 5..c20e — 1 (0i5uj + 0;6u; — 551-]- V . 5u> + &

s

Noise is Gaussian: <5lj(x)ﬁsz(Y)> = 4n TAy 5% (x — y)

Averages of any quantity is obtained by using a functional integral  (0) = JDflje_Sé O

1 ;
Q. — d3 B Al]kl
¢ [ xfl] (STi’] ) 5kl

Can compute any correlation functions, foreg., (T'*(x) T'*(y) ) = G'*'*(x,y)




moment

Beyond |i

U

ned

Backup: The stickiness of sound

rized regime, consider terms up to 2nd order in perturbation (also take low

M i

M 712 = (e + Py) bu' su® + £

The symmetric correlator  GE2a?(z,y) = (€*3(x)€'2) ()¢ +(e0+Po) 2 (0u' (z)0u? (z)du' (y) du? (y))e

In Fourier space, Gl (w, k — 0) = 2Ty +/

dw' d* 'K’ [GOLO!
o (2m)d—1 fym
+G01’O2 (w/, k/)GO2,01 (w . w/, —k’)]

sym sym

(wl’ kI)G02,02 ((JJ . w/, _kl)

sym

sym

2T k*
For example, G = (e() 7 ) v, = nl(ey+ Py
w iw — ¥, k?
7+ (32 T
Finally, one obtains  G**'2(w,k = 0) = —iw [ n 4 LT Auy +(1+7;)w3/2( (2) )
12072+, 9 407T72/ 2

Renormalization of shear Kovtun, Moore & Romatschke



