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• Long-term goal: Identify signatures of a 
possible critical end point of QCD using heavy-
ion collisions. 

• Near a critical point, fluctuations become 
dominant. But fluctuations not equilibrated as 
fireball is rapidly expanding. 

• Need for a dynamical theory of critical 
fluctuations. 

• Fluid dynamics should still be applicable, but 
with appropriate modifications:                   

• Inclusion of thermal fluctuations, slow 
dynamics of order parameter, and 
criticality in equation of state.

Introduction
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C.S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019)



• Dynamics of critical fluctuations are 
universal. 

• Hence, study QCD critical dynamics using 
the simplest system from the same dynamic 
universality class. 

• Universality class depends on  

• Order parameter being conserved/non-
conserved. 

• Coupling of order parameter to other 
slow modes, eg, hydrodynamic modes. 

• QCD critical point shares the same static 
universality class as the 3d Ising Model

Introduction
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The basic idea
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• The properties of a fluid are defined by slow, macroscopic degrees of freedom: 
conserved densities, i.e., densities of energy, momentum, or any conserved charge.

• If a fluid is near a critical point, the dynamics of its order parameter becomes slow 
(critical slowing down). Must be included in the hydrodynamic description.

• These macroscopic fields fluctuate as they couple to microscopic degrees of freedom. 

• The theory to be solved is then stochastic hydrodynamics coupled to an order parameter. 

• Such theories are classified by Hohenberg & Halperin: purely relaxational 
dynamics (Model A), critical diffusion (Model B), critical anti-ferromagnet 
(Model G), critical diffusion coupled to Navier-Stokes (Model H).

relevant to QCD
Rajagopal and Wilczek

Son and Stephanov

Hohenberg & 
Halperin



Previous works

Stephanov, Yin, X. An, Akamatsu, Teaney, Mazeliaukas, F. Yan, H. U. Yee, Martinez, Schaefer… 

M. Nahrgang et al., G. Pihan et al. , M. Bluhm, L. Du, Heinz and others

• Use framework of non-critical stochastic hydro and include criticality in EOS and 
transport coefficients.

• Deterministic approaches: The above framework can be used in linearized regime to 
write deterministic eqs for n-point equal time functions: Hydro+, Hydro++, hydro-kinetics.

• Extend them to critical regime by replacing susceptibilities and relaxation-rates by 
their critical expectations. Numerical studies of one-dimensional expanding systems.

• Use of -expansions, functional renormalization group. ε Berges, Schlichting et al, Schweitzer, von 
Smekal, Chen, Tan, Fu, Roth, Ye

• Not many studies of direct simulation of critical fluid dynamics. A novel approach to 
simulate stochastic dynamics based on Metropolis has been recently formulated.

Florio, Grossi, Soloviev, Teaney, Schaefer, Skokov, Basar, 
Bhambure, Singh, Newhall et al
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Outline of this talk

• Main goal: Discuss numerical simulations of Model H, i.e., critical dynamics of a 
conserved order parameter coupled to fluid dynamic variables.

• Part I: critical diffusion of a conserved order parameter (Model B) 

• Simulation of diffusive dynamics using a Metropolis algorithm 

• Dynamic scaling in Model B

• Part II: Coupling of the conserved order parameter to hydrodynamic modes (Model H) 

• Modification to dynamic scaling behavior compared to Model B

• Renormalization of shear viscosity of the fluid
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• Part I: critical diffusion of a conserved order parameter (Model B) 

Based on C.C., J. Ott, T. Schaefer, V. Skokov 
(PRD 108 (2023) 074004)
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Model B

F[ϕ] = ∫ d3x [ 1
2 (∇ϕ)2 +

1
2

m2 ϕ2 +
λ
4

ϕ4]

∂ϕ
∂t

+ ⃗∇ ⋅ ⃗j = 0,   the current ⃗j = −Γ ⃗∇
δF
δϕ

+ ⃗ξ

⟨ξi(t, ⃗x) ξj(t′￼, ⃗x′￼)⟩ = 2 Γ T δij δ(t − t′￼) δ3( ⃗x − ⃗x′￼)

• Consider the Ising model. Coarse grain the spin (microscopic) degrees of freedom to obtain an 
order parameter  (magnetization density).ϕ(x)

• The statics of the system near the critical point (small )  is governed by an effective free-
energy functional (Ginzburg-Landau)

ϕ

• Dynamics: If the order parameter is conserved, its evolution may be 
modeled as

Noise
Noise ensures fluctuation-
dissipation

Diffusion
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Model B in mean-field approximation

∂Nk

∂t
= − 2Γk(Nk − Neq

k )

Neq
k =

T
k2 + m2

Γk = Γ k2(k2 + m2)

• In the free-energy functional set λ = 0

F[ϕ] = ∫ d3x [ 1
2 (∇ϕ)2 +

1
2

m2 ϕ2 +
λ
4

ϕ4]
• Evolution of  becomes linear. The equal-time correlator  satisfiesϕ Nk(t) = ⟨ϕ(t, ⃗k) ϕ(t, − ⃗k)⟩

Equilibrium correlator and relaxation-rate 

• Near , mean-field predicts  with a dynamic exponent . m2 = 0 Γk ∼ kz z = 4

• Later: interactions, coupling of  to hydro modes lead to modifications from .  ϕ z = 4
9



Model B: the non-linear case

F[ϕ] = ∫ d3x [ 1
2 (∇ϕ)2 +

1
2

m2 ϕ2 +
λ
4

ϕ4]
• Interactions renormalize . For chosen 

values of  it is possible to tune  
to hit the critical point.

m2

(T, λ) m2

• To determine  for an infinite system from finite volume calculations. Quantities like 

,  show peaks whose location depends on L.

m2
c

⟨M2⟩ ⟨M4⟩

• At the true critical point, leading order finite 
volume effects on the Binder cumulant  cancelU

U ≡ 1 −
⟨M4⟩

3(⟨M2⟩)2

• Model B configs have long thermalization time  with .τR ∼ Lz z ≈ 4

• Determine  using Model A (purely relaxational dynamics), lies in same static universality 

class, easier to thermalize .

m2
c

τR ∼ L2
T. Schaefer and V. Skokov PRD 014006 (2022) 10



Metropolis step for Model B

• Choose trial updates at  and  ⃗x ⃗x + ̂μ

ϕtrial(t + Δt, ⃗x) = ϕ(t, ⃗x) − qμ, ϕtrial(t + Δt, ⃗x + ̂μ) = ϕ(t, ⃗x + ̂μ) + qμ

• Compute the change in free energy due to 
these updates

qμ = 2 Γ T Δt ξμ

F[ϕ] = ∫ d3x [ 1
2 (∇ϕ)2 +

1
2

m2 ϕ2 +
λ
4

ϕ4]

(conserves )ϕ
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Metropolis step for Model B
• Choose a trial update at  and  ⃗x ⃗x + ̂μ

ϕtrial(t + Δt, ⃗x) = ϕ(t, ⃗x) − qμ, ϕtrial(t + Δt, ⃗x + ̂μ) = ϕ(t, ⃗x + ̂μ) + qμ

• The change in free energy ΔF( ⃗x, ⃗x + ̂μ) = ΔF( ⃗x)+ΔF( ⃗x + ̂μ) + q2
μ

qμ = 2 Γ T Δt ξμ

ΔF(x) = (d +
m2

2 ) (ϕ2
trial(x) − ϕ2(x)) +

λ
4 (ϕ4

trial(x) − ϕ4(x))

−(ϕtrial(x) − ϕ(x))
d

∑̂
μ=1

(ϕ(x + ̂μ) − ϕ(x − ̂μ))



13

Metropolis step for Model B
• Choose a trial update at  and  ⃗x ⃗x + ̂μ

ϕtrial(t + Δt, ⃗x) = ϕ(t, ⃗x) − qμ, ϕtrial(t + Δt, ⃗x + ̂μ) = ϕ(t, ⃗x + ̂μ) + qμ

• The change in free energy ΔF( ⃗x, ⃗x + ̂μ) = ΔF( ⃗x)+ΔF( ⃗x + ̂μ)+q2
μ

qμ = 2 Γ T Δt ξμ
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Metropolis step for Model B
• Choose trial updates at  and  ⃗x ⃗x + ̂μ

ϕtrial(t + Δt, ⃗x) = ϕ(t, ⃗x) − qμ, ϕtrial(t + Δt, ⃗x + ̂μ) = ϕ(t, ⃗x + ̂μ) + qμ

qμ = 2 Γ T Δt ξμ

• The change in free energy ΔF( ⃗x, ⃗x + ̂μ) = ΔF( ⃗x)+ΔF( ⃗x + ̂μ)+q2
μ

• Accept with probability P = min(1, exp(−ΔF/T))



The Metropolis scheme
• The Metropolis update reproduces the flux on average, and also its variance 

• Probability of a new configuration, 

• The equilibrium distribution  is sampled even if  is not small. 

• If  is not small, the diffusion eq. is approximately realized. 

exp(−F[ϕ]/T) Δt

Δt

⟨ ⃗q⟩ = − Δt Γ ⃗∇
δF
δϕ

+ 𝒪(Δt2)

⟨ ⃗q2⟩ = 2Γ T Δt + 𝒪(Δt2)

P (ϕ(t, ⃗x) → ϕnew(t, ⃗x)) ∼ exp [−(F[ϕnew] − F[ϕ])]

irrespective of order of updates. 
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Results: Dynamic scaling
• Scaling Hypothesis: Near a critical point 

the dynamic correlator,  ⟨ϕ(0, k) ϕ(t, − k)⟩

G(t, k) = G̃(t/ξz, kξ)
 is a universal function.G̃

• At the critical point , thus  
obtained in different volumes should 
collapse  

ξ ∼ L G(t, k)

G(t, k = 2π/L) → G̃ ( t
Lz

,2π)
if time is scaled by .Lz

Data collapse occurs for . Theoretical 
expectation 

z ≈ 3.97
z = 4 − η, η ≈ 0.03 •  is the dynamic scaling exponentz 16



• Part II: Coupling of the conserved order parameter to 
hydrodynamic modes (Model H) 

Based on C.C., J. Ott, T. Schaefer, V. Skokov 
PRL 133 (2024) 032301
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Coupling to a fluid (Model H)

∂ϕ
∂t

= Γ ∇2 δH
δϕ

− (∇ϕ ⋅
δH
δ ⃗πT ) + ζ

∂ ⃗πT

∂t
= η ∇2 δH

δ ⃗πT
+ ( ⃗∇ ϕ) ⋅

δH
δϕ

− ( δH
δ ⃗πT

⋅ ⃗∇ ) ⃗πT + ⃗ξ

H = ∫ d3x [ ⃗π2
T

2ρ
+

1
2 ( ⃗∇ ϕ)

2
+

1
2

m2ϕ2 +
λ
4

ϕ4]

• Couple the order parameter  to a fluid’s momentum density ϕ ⃗π

• Stochastic evolution equation of the momentum density

• The Hamiltonian

diffusion advection noise

diffusion advection noiseStress 
energy of ϕ

18
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Coupling to a fluid (Model H)

∂ϕ
∂t

= Γ ∇2 δH
δϕ

− (∇ϕ ⋅
δH
δπT ) + ζ

∂ ⃗πT

∂t
= η ∇2 δH

δ ⃗πT
+ ( ⃗∇ ϕ) ⋅

δH
δϕ

− ( δH
δ ⃗πT

⋅ ⃗∇ ) ⃗πT + ⃗ξ

H = ∫ d3x [ ⃗π2
T

2ρ
+

1
2 ( ⃗∇ ϕ)

2
+

1
2

m2ϕ2 +
λ
4

ϕ4]

• Couple the order parameter to a fluid’s momentum density ⃗π

• Evolution equation of the momentum density

• The Hamiltonian

For purposes of determining 
z It suffices to choose 

• Non-relativistic fluid 

• The momentum density is 
transverse  

There are shear waves but 
no sound. No coupling to 
energy density or pressure.

⃗∇ ⋅ ⃗π = 0
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Model H (deterministic part)

∂ϕ
∂t

+
⃗πT

ρ
⋅ ⃗∇ ϕ = 0,

∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT = ⃗∇ ϕ ⃗∇2ϕ

• Let’s consider only the non-dissipative part of the equations

The third-order term is necessary for 
conserving energy 

dH
dt

= ∫ d3x [ · ⃗πT ⋅
⃗πT

ρ
− ·ϕ∇2ϕ + V′￼(ϕ) ·ϕ] = 0

Third-order term, goes 
beyond usual Navier-
Stokes

where the equations of motion have been used along with standard continuum manipulations

∫x
V′￼(ϕ)

⃗πT

ρ
⋅ ∇ϕ = ∫x

⃗∇ ⋅ ( ⃗πT

ρ
V(ϕ)) = 0

πT
i

ρ ( πT
i

ρ
∇j) πT

i = ∇i( πT
i

ρ
π2

T

2ρ )
• These continuum manipulations are not necessarily allowed in the discretized theory.



Model H numerics (deterministic part)

·ϕ = −
1
ρ

πμ
T ∇c

μϕ, ·πμ
T = − ∇μ( 1

ρ
πT

μ πT
ν )

skew

+ (∇c
μϕ) (∇c

ν ∇c
νϕ)

·ϕ = ⃗∇ ⋅ ( ⃗πT

ρ
ϕ) ·πT

i = − PT
ij ∇k( 1

ρ
πk

Tπ j
T + ∇k ∇jϕ)• The equations in manifestly 

conserving form

• Use a skew symmetric derivative for the non-linear term

∇μ( 1
ρ

πT
μ πT

ν )
skew

≡
1
2

∇μ( 1
ρ

πT
μ πT

ν ) +
1
2

πT
μ

ρ
∇μπT

ν

along with a centred difference ∇c
μψ = (ψ(x + ̂μ) − ψ(x − ̂μ)/2

• The discretized evolution equations:

Morinishi, Lund, Vasilyev, Moin, 
Journal of computational physics 
(143, 90 (1998)
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Model H numerics (deterministic part)

·ϕ = −
1
ρ

πμ
T ∇c

μϕ

dT
dt

=
d
dt ∫ d3x [ π2

T

2ρ
+

(∇ϕ)2

2 ] = 0 conserves the kinetic energy of the 
system exactly:

• The equations are integrated in time using a Runge-Kutta scheme. After each step, 
project onto transverse part in Fourier space

• Total energy conservation in the deterministic step is found to hold to very good accuracy.

·πμ
T = − ∇μ( 1

ρ
πT

μ πT
ν )

skew

+ (∇c
μϕ) (∇c

ν ∇c
νϕ)

• The discretized eqs.

πT
μ = PT

μν πν PT
μν = δμν +

k̃μ k̃ν

k̃2
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Model H numerics (stochastic /dissipative part)
• For the fluctuating/dissipative part: 

• Similarly for the momentum densities: 

• Calculate change in energy. Accept/reject with P = min(1, exp(−ΔH/T))

ϕtrial(t + Δt, ⃗x) = ϕ(t, ⃗x) + qμ

ϕtrial(t + Δt, ⃗x + ̂μ) = ϕ(t, ⃗x + ̂μ) − qμ

qμ = 2 T Γ Δt ζμ

⟨ζμζν⟩ = δμν

πtrial
μ (t + Δt, ⃗x) = πμ(t, ⃗x) + r(ν)

μ

πtrial
μ (t + Δt, ⃗x + ̂ν) = πμ(t, ⃗x + ̂ν) − r(ν)

μ

r(ν)
μ = 2ηT Δt ζ(ν)

μ

Same as Model B update



Model H simulations
Order parameter field in 3d Order parameter + velocity field in 2d

Simulations by Josh Ott

24
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Results: Dynamics of momentum density

⟨πT
i (0, ⃗k) πT

j (0, − ⃗k)⟩ ≡ Cij(t, ⃗k), Cij(t, ⃗k) = (δij − ̂ki
̂kj) Cπ(t, k)

Cπ(t, k) = ρ T exp (−
η
ρ

k2 t)

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

t

1 k
2
d dt
ln
(C

⇡
(t
,k
))

⌘ = 0.01
⌘ = 0.05

• Consider the time-dependent correlation function of the momentum density

where

• In linearized hydrodynamics

• Thermal fluctuations and non-
linear effects modify linear hydro 
result (even away from )Tc

• Compute  in Model H to 

extract effective 

Cπ(t, k)
η



Dynamics: Loop corrections
Non-linear interactions between modes  can be represented diagrammatically ⃗πT, ϕ

Green’s functions for πT

Green’s functions for  ϕ

Self-advection of πT Coupling of 
 to πT ϕ

Corrections to momentum corr. function Corrections to corr. function of ϕ

Advection of  by ϕ πT

26
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Renormalized viscosity

∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT =

η
ρ

∇2 ⃗πT + ⃗∇ ϕ∇2ϕ + ⃗ξPure-diffusion

• For pure diffusion, the eq. is linear

• Effective viscosity becomes as 
small as the bare one



Renormalized viscosity

ηR = η +
7

60π2

ρTΛ
η

∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT =

η
ρ

∇2 ⃗πT + ⃗∇ ϕ∇2ϕ + ⃗ξ

The “stickiness of shear”

Self-advection

Effective viscosity levels off, then increases.

Thermal fluctuations + Non-linearity of hydro

shear viscosity has a minimum⟹

Schaefer & Chafin

Kovtun, Moore & RomatschkeIn analogy to “stickiness of sound” 28



29

Renormalized viscosity

ηR = η +
1

160π
Tξ0

Γ

∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT =

η
ρ

∇2 ⃗πT + ⃗∇ ϕ∇2ϕ + ⃗ξ

The renormalization of  due to coupling 
to the order parameter

η

Model H0

Much smaller effect than self-advection
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Renormalized viscosity

ηR = η +
7

60π2

ρTΛ
η

∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT =

η
ρ

∇2 ⃗πT + ⃗∇ ϕ∇2ϕ + ⃗ξ

Model H effective viscosity dominated by 
self-advection of πT

Model H
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Dynamics: Order parameter
• Using the time dependent correlation function of the order parameter

C(t, ⃗k) = ⟨ϕ(0, ⃗k) ϕ(t, − ⃗k)⟩

a wave-number dependent relaxation rate is defined C(t, ⃗k) ∼ exp(−Γk t)

• A model for  was proposed by Kawasaki:Γk

Γk =
Γ
ξ4 (kξ)2 (1 + (kξ)2) +

T
6πηRξ3

K(kξ)

Pure Model B prediction 
using mean field approx.

Arises from coupling 
between  and  ϕ πT

Kawasaki function

Diagrams computed with 
certain approximations 



Dynamics: Kawasaki approximation
• The Kawasaki approximation: Γk =

Γ
ξ4 (kξ)2 (1 + (kξ)2) +

T
6πηRξ3

K(kξ)

• Near critical point, relaxation-rate for wavenumbers  should cross over 
from  (pure diffusive dynamics) to  (pure Model H behavior).

k = k* ∼ 1/ξ
z = 4 z = 3

• Digression: Using  one can re-recompute the 

renormalization of  due to coupling of  to :

Γk
η πT ϕ

ηR = η [1 +
8

15π2
log ( ξ

ξ0 )] Near critical point, viscosity diverges, but only weakly

ηR ∼ ξxη with xη ≈ 0.05
32



Extraction of dynamic critical exponent (numerics)
• Compute time dependent correlator 

of the order parameter

C(t, ⃗k) = ⟨ϕ(0, ⃗k) ϕ(t, − ⃗k)⟩

at the critical point.

• Dynamic scaling at critical point : 

C(t, k) = C̃ (t/Lz, k L)

• Hold  fixed, vary lattice size. Extract  
by looking for data collapse.

kL z

z (η = 0.01) = 3.01

Model H0

k = 4π/L
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Cross-over of z

Γk =
Γ
ξ4 (kξ)2 (1 + (kξ)2) +

T
6πηRξ3

K(kξ)

• In Model H0,  can become 
quite small. 

•  Dynamic exponent crosses 
over from  (pure diffusion) 

to  (Model H expectation)

ηR

z = 4
z = 3

• Extract  for various z η

The Kawasaki 
approximation:

10�2 10�1 100 101

3.0

3.3

3.6

3.9

4.2

⌘
z e

↵

model H0
Kawasaki approximation
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Cross-over of z

• In full Model H,  cannot become 

too small  min( ) 

ηR
⟹ z ≈ 3.3

10�2 10�1 100 101

3.0

3.3

3.6

3.9

4.2

⌘R
z e

↵

model H0
model H• Dynamic scaling exponent as a 

function of renormalized viscosity.

•   for full Model H coincides 
with Model H0 
z

∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT =

η
ρ

∇2 ⃗πT + ⋯
∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT =

η
ρ

∇2 ⃗πT + ⋯Model H Model H0

35
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Evolution of higher moments

• Consider higher-point 
correlations 

• Correlation functions satisfy 
dynamical scaling 

• Relaxation rate depends on ’n’. 
Not compatible with mean field 
expectations 

Gn(t) = ⟨Mn(t)Mn(0)⟩

M(t) = ∫V
d3x ϕ(t, ⃗x)



Summary & Outlook
• Performed numerical simulations of stochastic fluid dynamics near a critical point. Observed 

renormalization of shear viscosity and dynamical scaling. 

• Dynamic scaling exponent depends sensitively on value of correlation length 
and effective shear viscosity.

• Self-coupling of momentum density is important in limiting the smallness of 
effective viscosity.

• Pure Model H behavior  requires both large  and small  .z ≈ 3 ξ ηR

To generalize this to relativistic fluids with non-trivial expansions and cooling, inclusion of 
sound modes and critical equation of state.

Thank you!
37



Backup: determination of  in Model Am2
c

• At a critical point, susceptibilities  diverge (infinite vol). In finite volume there are peaks. 

Possible strategy: Thermalize Model B configurations, compute  at different  and look for 
peaks.  

• Mean-field estimates that Model B configurations take  with z ~ 4 to thermalize. 
Computationally demanding. 

• Use a model in the same static universality class but with smaller   Model A, relaxational 
dynamics of an order-parameter (z = 2).

⟨M2⟩
⟨M2⟩ m2

τtherm ∼ Lz

z ⟹

∂ϕ
∂t

= − Γ
δF
δϕ

+ ζ

⟨ζ(t, ⃗x) ζ(t′￼, ⃗x′￼)⟩ = 2Γ T δ( ⃗x − ⃗x′￼) δ(t − t′￼)

F[ϕ] = ∫ d3x [ 1
2 (∇ϕ)2 +

1
2

m2 ϕ2 +
λ
4

ϕ4]



Backup: The Metropolis scheme in Model A
• Take a trial update  

• The change in free energy due to this update

• Accept the update with probability 

ϕ(t + Δt, x)trial = ϕ(t, x) + 2Γ T Δt θ, ⟨θ2⟩ = 1

ΔF = (d +
m2

2 ) (ϕ2
trial(x) − ϕ2(x)) +

λ
4 (ϕ4

trial(x) − ϕ4(x))

−(ϕtrial(x) − ϕ(x))
d

∑̂
μ=1

(ϕ(x + ̂μ) − ϕ(x − ̂μ))

p = min(1, exp(−ΔF/T))



Backup:   using Binder cumulantsm2
c

• Fluctuation observables like  and  shows peaks at .  

• The location of these peaks differs from infinite volume limit.

⟨M2⟩ ⟨M4⟩ m2
c

U = 1 −
⟨M4⟩

3(⟨M2⟩)2

At the true critical point, finite volume 
effects on the Binder cumulant U cancels

Strategy: Thermalize lattice using Metropolis 
update up to a long time,  

Compute  and estimate where the 
curves cross the infinite volume result

t ∼ L2

U(m2)



Backup: Correlation length in Model B

The static correlator in Fourier space

C(k) = ⟨ϕ(0, ⃗k) ϕ(0, − ⃗k)⟩

Extract correlation length by fitting with 
mean field expectation

C(k) ∼
1

k2 + 1/ξ2

The correlation length grows as

ξ ∼
1

(m2 − m2
c )ν  with ν ≈ 0.54



Backup: Relaxation time in Model B
• Compute the dynamic correlator 

C(t, k) = ⟨ϕ(0, ⃗k) ϕ(t, − ⃗k)⟩

• The correlator damps in time

C(t, k) ∼ exp(−t/τk)

Where  is a momentum-dependent 
relaxation time.

τk

• In figure,  for a given  (or ) is 
defined as  at  

τ m2 ξ
τk k = 1/ξ

• Relaxation time grows as τ ∼ ξz



Backup: The stickiness of sound

Linearized energy-momentum tensor in presence of noise

T00,ξ = δe T0i,ξ = − (e0 + P0) δui Tij,ξ = δij c2
s δe − η (∂iδuj + ∂jδui −

2
3

δij
⃗∇ ⋅ δ ⃗u) + ξij

Noise is Gaussian: ⟨ξij(x)ξkl(y)⟩ = 4 η TΔijkl δ4(x − y)

Averages of any quantity is obtained by using a functional integral ⟨𝒪⟩ ≡ ∫ Dξij e−Sξ 𝒪

Sξ = ∫ d3x ξij ( 1
8Tη

Δijkl) ξkl

Can compute any correlation functions, for eg., ⟨T12(x) T12(y) ⟩ ≡ G12,12(x, y)

Kovtun, Moore & Romatschke



Backup: The stickiness of sound
Beyond linearized regime, consider terms up to 2nd order in perturbation (also take low 
momentum limit) T12

ξ = (e0 + P0) δu1 δu2 + ξ12

The symmetric correlator 

In Fourier space, 

For example,  G01,01
sym = −

2T
ω (e0 +

k2η
iω − γη k2 ) γη = η/(e0 + P0)

Finally, one obtains

Renormalization of shear Kovtun, Moore & Romatschke


