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QCD phase diagram

Bhalerao, 1404.3294v1

Deconfined, 
chirally symmetric, 
high T and high  𝛍B

End of 1st order transition

Confined, broken chiral 
symmetry, low T and low 𝛍B

From effective 
models

From lattice QCD
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https://arxiv.org/search/nucl-th?searchtype=author&query=Bhalerao%2C+R+S


Heavy Ion Collisions

Heavy Ion Collision is highly 
dynamical:
● Short lived
● Small size
● Inhomogeneous
● Out of equilibrium evolution

LHCb collaboration, arXiv:2111.01607v1

Sahoo and Nayak, arXiv:2201.00202v1
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Fluctuations Near Critical Point

In critical region: 
correlation length → ∞ 
and fluctuations diverge Higher moments and their derived 

quantities are promising fluctuation 
observables close to critical point:

● Sensitive to powers of the 
correlation length

● Non-monotonic behavior
● Non-Gaussian behavior
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Fluctuations Near Critical Point

Large dip in kurtosis of net-proton number 
on expected crossover side of critical point
Herold, Nahrgang, Yan and Kobdaj 1601.04839v1
Nahrgang, Leupold, Herold, Bleicher 1105.0622
Bluhm, Jiang, Nahrgang, Pawlowski, Rennecke, Wink 1808.01377v1 

≅2.5e0 
freeze-out 
critical energy 
density

Signals of phase transition and 
critical point detected after 
freeze-out

©Gregoire Pihan
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https://arxiv.org/abs/1808.01377v1


Coupled fluid dynamics
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A dynamical model coupling a fluctuating initial state 
to a final hadronic phase where fluctuations survive is 
necessary to study out-of-equilibrium effects at the 
QCD phase transitions and critical point

Couple the dynamics of an order parameter to 
coarse-grained hydrodynamic evolution of the hot 
medium to study evolution of fireball created in HIC



Fluid dynamical description of HIC

● Successful and “simple” 
description of  systems 
created in HIC, even when 
they are small and rapidly 
evolving 
Romatschke and Romatschke, arXiv:1712.05815v3 ©Berndt Mueller, arXiv:1309.7616v2

● The Quark-Gluon Plasma is considered the most ideal fluid ever 
created RHIC, 2005

● Describes QGP-HG phase transition by including an adapted equation 
of state
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Fluid dynamical description of HIC

For time-dependent phase transitions, the dynamics of an order 
parameter needs to be explicitly included
Current models limited to event-averaged quantities.

Deterministic (Hydro+)
Stephanov, Yin 1712.10305
Rajagopal, Ridgway, Weller, Yin 1908.08539
An, Basar, Stephanov, Yee 1902.09517, 1912.13456
Pradeep, Rajagopal, Stephanov, Yin 2204.00639

Stochastic Fluid Dynamics
Challenge: lattice spacing 
dependence introduced by noise

2 approaches to couple the 
dynamics of an order parameter, 
to the hydrodynamics of the hot 
medium
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https://doi.org/10.48550/arXiv.1912.13456


Stochastic Chiral Fluid Dynamics

Explicitly propagate the fluctuating chiral order parameter in dynamically 
expanding fluid

noise

Damping 
coefficient

Source term gives 
rise to the coupling

Unphysical lattice spacing dependence 
poses a significant challenge to this model
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Relaxation Model
Focus on non-conserved order parameter in model A: Stochastic Relaxation Equation

Effective potential

The noise ξ is defined by

Ensures that 𝜑 relaxes to correct equilibrium value, 
guarantees proper equilibrium  distribution and 
satisfies fluctuation dissipation theorem
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Lattice Spacing Dependence

➔ UV divergences caused by the noise translate as non-physical lattice spacing 
dependence in numerical simulations

➔ Finite lattice requires a UV cutoff which contributes to the lattice spacing 
dependence

➔ Loop corrections in the 𝝋4 theory also introduce UV divergences

Jansen and Nickel

The tadpole diagram in the expansion of 2-point 
function gives rise to a correction term
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Lattice Spacing Dependence

Currently, going around the noise term includes:

● Coarse-graining over grid with larger spacing
Nahrgang et al. arXiv:1704.03553, Bluhm et a. arXiv:1804.03493

● Filtering large momentum modes Singh arXiv:1807.05451

● Smearing by a Gauss distribution
Murase and  Hirano arXiv:1601.02260, Hirano,  Kurita, and. Murase,arXiv:1809.04773

Effects unknown especially on fluctuation observables
Lattice theory may no longer correspond to continuum theory

Improve solution: lattice regularisation
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Numerical simulations

● 3D system at fixed temperature: cubic lattice of sides L=20 fm, volume L3

● N cells in each direction → Lattice spacing (use dx for simplicity)

 

● Discretize time: repeat simulations for a number of time steps until equilibrium 
is reached

● Periodic boundary conditions
● Code on GPU: input equations and parameters ➞ evaluate the dynamical 

variable ➞ derive relevant observables (correlation function, different 
moments, etc.)
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Linear Approximation of Veff  𝜖=1, λ=0

The 2-point function is 

Correlation length 

● Reproduced analytic result
● Benchmarked correlation 

function
● No dx dependence for 

finite distances: introduced 
close to 0 T = 1, 𝜖=1, rc=1, λ=0

14



Linear Approximation of Veff   𝜖=1, λ=0

Integrate correlation function in 1d to benchmark logarithmic dx dependence

● Reproduced analytic 
result

● Benchmarked dx 
dependence

➥ include nonlinear terms
X=3
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Observables: Mean, Variance and Kurtosis

Volume average of the order parameter: 

Mean ➜

We are interested in fluctuation variables:

  Variance ➜

➜

Where the volume-independent kurtosis is
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Lattice Regularisation

Equilibrium counterterm to correct Veff from mass renormalization procedure

● Σ≈3.1759, ζ≈0.09
● M renormalization scale
● Leading 1/dx dependence

Cassol-Seewald et al. 0711.1866
Farakos et al. 9412091, 9404201v1
Gleiser, Ramos 9311278v1

Equilibrium and dynamical evolution, 
with and without counterterm, for

● 𝜖<0  (broken symmetry)
● 𝜖 small and positive (close to 

critical point)
● 𝞴=0.25
● T=M=𝜂=1
● All quantities are dimensionless
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At equilibrium 𝜖=-1 Broken Symmetry

Lattice spacing dependence corrected by the same counterterm, correct value 
of mean recovered
Consistent with previous equilibrium results for the mean
Cassol-Seewald et al. 0711.1866 and references therein
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At equilibrium 𝜖=0.1 close to Critical Point 

Close to the critical point, as 𝜖 
decreases, the correlation 
length diverges

Long-range fluctuations add 
up and the variance increases 
with the volume

Same counterterm corrects lattice spacing dependence close to critical point
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Dynamical Evolution 𝜖=-1 Broken Symmetry

At early times and despite being evaluated in equilibrium conditions, the 
counterterm significantly alleviates the dx dependence
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Dynamical Evolution 𝜖=0.1 close to Critical Point

The counterterm causes positive 𝜖 to become negative and dx-dependent
Veff initially becomes a double well potential
For small fixed 𝜑0 the restoring force is different for different dx: initially 
the field moves towards dx-dependent positive minima instead of correct 
ϕ = 0
We adapt 𝜑0 such that

The fluctuations can then kick in and restore the flattened single well 
effective potential.
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Dynamical Evolution 𝜖=0.1 close to Critical Point

Mean: the dx-dependent counterterm artificially introduces a dx sensitivity at early 
times ➜ adapt 𝜑0(dx).
The dx-dependence is cured in the renormalized cases.
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Dynamical Evolution of Kurtosis 𝜘𝜎2

Higher order cumulants scale with higher powers of the correlation length, they 
are therefore considered more indicative of criticality

𝜘𝜎2 corresponds to the ratio of the 4th order cumulant to the variance

The kurtosis should take a non-zero negative value

For 𝜖=0.1, 𝜘𝜎2 shows only a small shift towards negative values: no solid 
conclusion can be reached with available statistics.

We then look at the kurtosis closer to the critical point and take 𝜖=0.01.
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Dynamical Evolution of Kurtosis 𝜘𝜎2 for 𝜖=0.01

Recover expected 
non-Gaussian behavior in 
renormalized system: kurtosis 
takes on a negative finite value

Higher order moments require 
more time to equilibrate
tfin=60 for bare system and tfin=300 
for renormalized system; 
Limited statistics ⇒ results in 
shaded areas for 4 values of dx

24



Carbon footprint

● Numerical calculations were carried out on GPUs at the in2p3 computing center
● Number of GPU/CPU usage hours and TDP (thermal design power) of GPU/CPU to 

evaluate energy consumption → average CO2 /kWh in France for 2023

Cautious estimate 1.8 tCO2eq
For results shown here, as well as tests, trials, errors and repeats

1 tCO2eq emitted for one passenger on a round trip flight Paris-New York or for an 
average car over 5000 km
TDP is used for simplicity, but is considered a poor proxy for actual energy 
consumption
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Summary

● Properly benchmarked our code
● Observed lattice spacing dependence of mean and variance in bare system
● Same counterterm cures dx dependence of mean and variance both in the 

vicinity of the critical point and in the broken symmetry phase 
● Recover correct behavior of mean and variance

○ Correct mean in chrally broken phase
○ Volume dependence of variance close to critical point

● Recover expected non-Gaussian behavior of kurtosis (finite non-zero value) in 
renormalized system
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Outlook

➔ Apply approach to the coupled chiral fluid dynamics: derive proper 

counterterm(s)

➔ Useful for studying diffusive dynamics of conserved order parameter

➔ Renormalize the full stochastic hydrodynamics to study heavy-ion 

collisions near a critical point, using realistic initial conditions for HIC and 

equation of state of QCD
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Fixed 𝜑0 for 𝜖=0.1
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𝜘𝜎2 for 𝜖=0.1
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