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Bulk evolution of linearized 
fluctuations



Introduction
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Fluctuations in general

• In viscous relativistic fluid dynamics


• Quantum fluctuations


• Initial fluctuations 


• Thermal fluctuations 


• related to susceptibilities and EoS -> phase structure of QCD


• fluctuation-dissipation relations
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Dynamical fluctuations

• Stochastic


• discretized noise sampled event-by-event 


• observables calculated after statistical averaging


• Hydro-kinetics


• deterministic kinetic equations for the two-point functions of fluid 
dynamical fields 


• linearization of stochastic fluid dynamics 


• Critical fluctuations - inclusion of non-linearities
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Stochastic fluctuations

        


• From fluctuation-dissipation relation





• Correlator of the noise





• Discretization of delta function leads to


• Lattice spacing dependence


• Large noise contributions can locally lead to negative densities

∂μTμν = 0,
∂μJμ = 0,

Tμν = Tμν
ideal + Tμν

viscous + Ξμν

Jμ = Jμ
ideal + Jμ

viscous + Iμ
noise

< uγ∂;γπμν > = −
πμν − πμν

NS

τπ
−

4
3

πμν∂;γuγ

∂tΞij = −
1
τπ

(Ξij − ξij)

⟨ξμν(x)ξαβ(x′￼)⟩ = [2ηT(ΔμαΔνβ + ΔμβΔνα) + 2(ζ −
2
3

η)TΔμνΔαβ]δ4(x − x′￼)

5



Linearized equations
• Introducing a perturbation to hydro equations





• Rewriting the equations as


, where  and 


• Decoupling for background and perturbations


 


• perturbations have zero mean over the ensemble average

∂ν (Tμν
0 + δTμν) = 0

∂0Qμ + ∂i
⃗F μ = 0 Qμ = T0μ Fiμ = Tiμ

∂0Q
μ
0 + ∂i

⃗F μ
0 = 0

∂0 δQμ + ∂i δ ⃗F μ = 0

6



Linearized equations
• Introducing the perturbation to primitive variables


 and  


• We arrive at the set of equations


ε = ε0 + δε
p = p0 + δp

uμ = uμ
0 + δuμ

πμν = πμν
0 + δπμν

Qμ
0 = (ε0 + p0)u0

0uμ
0 − p0gμ0 + πμ0

0

Fμi
0 = (ε0 + p0)uμ

0 ui
0 − p0gμi + πμi

0

δQμ = (ε0 + p0)(uμ
0 δu0 + u0

0δuμ) + (δε + δp)u0
0uμ

0 − δpgμ0 + δπμ0

δFμi = (ε0 + p0)(uμ
0 δui + ui

0δuμ) + (δε + δp)uμ
0 ui

0 − δpgμi + δπμi
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Linearized equations
• Linearizing the transport coefficients


 





• We get Israel-Stewart equations


η = η0 + δη
ζ = ζ0 + δζ

τπ = τπ0 + δτπ

τΠ = τΠ0 + δτΠ

< > =
1
2

Δμ
αΔν

β +
1
2

Δν
αΔμ

β −
1
3

ΔμνΔαβ = < >0 + < >δ

< uγ
0∂δ;γδπμν >0 + < δuγ∂0;γπ

μν
0 >0 + < uγ

0∂0;γπ
μν
0 >δ =

= −
δπμν − δπμν

NS

τπ0
−

πμν
0 − πμν

0NS

τ2
π0

δτπ −
4
3

(πμν
0 ∂δ;γδuγ + δπμν∂0;γu

γ
0)
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Test of linearized equations in box mode
• vHLLE - periodic boundaries, Cartesian coordinates, static background, NS limit


• Perturbation of sinus wave ε = 0.01 sin( 2π
L

x)

9



Test of linearized equations in box mode
• vHLLE - periodic boundaries, Cartesian coordinates, static background, NS limit


• Perturbation of sinus wave ε = 0.01 sin( 2π
L

x)

10



Test of linearized equations in box mode
• vHLLE - periodic boundaries, Cartesian coordinates, static background, NS limit


• Perturbation of sinus wave ε = 0.01 sin( 2π
L

x)

11



Introducing of stochastic noise to linearized equations
• Given 


 





•  has the same structure as 


 and 


∂tΞij = −
1
τπ

(Ξij − ξij)

⟨ξμν(x)ξαβ(x′￼)⟩ = [2ηT0(Δμα
0 Δνβ

0 + Δμβ
0 Δνα

0 ) + 2(ζ −
2
3

η)T0Δμν
0 Δαβ

0 ]δ4(x − x′￼)

ξμν πμν

Tμν = Tμν
id + Tμν

visc + Ξμν = Tμν
id + T′￼μν

visc δπ′￼μν = δπμν + ξμν

< uγ
0∂δ;γδπ′￼μν >0 + < δuγ∂0;γπ

μν
0 >0 + < uγ

0∂0;γπ
μν
0 >δ =

= −
δπ′￼μν − δπμν

NS − ξμν

τπ0
−

πμν
0 − πμν

0NS

τ2
π0

δτπ −
4
3

(πμν
0 ∂δ;γδuγ + δπ′￼μν∂0;γu

γ
0)
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Discretization and sampling of noise
• Discretizing the delta function





• Sampling from Gaussian with covariance





• Symmetric tensor


• Subtracting 1/3 of trace from spatial elements

⟨ξμν(x)ξαβ(x′￼)⟩ = [2η0T0(Δμα
0 Δνβ

0 + Δμβ
0 Δνα

0 ) + 2(ζ0 −
2
3

η0)T0Δμν
0 Δαβ

0 ] 1
ΔtΔV

⟨ξμν(x)ξαβ(x′￼)⟩ = 2η0T0(Δμα
0 Δνβ

0 + Δμβ
0 Δνα

0 )
1

ΔtΔV
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[C. Young, Phys.Rev.C 89 (2014) 2]

https://arxiv.org/pdf/1306.0472


Structure factor

• Static constant background


• Structure factor - correlation of fields  - power spectrum


 


• where A is normalization


• Related to susceptibilities via fluctuation-dissipation relation


• Equal time correlation - static structure factor


S(ω, ⃗k) = A ⋅ ⟨δÛ(ω, ⃗k)δÛ(ω′￼, − ⃗k)⟩

S( ⃗k) = A ⋅ ⟨δÛ( ⃗k)δÛ(− ⃗k)⟩
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Normalization of structure factor



• in NS limit in 1D





• dentifiing L and K matrices


 ,  and  where 


• Using the equation


 


The structure factor matrix      independent of k

∂tU = LU + KW

[ ∂tδε
∂tδux] = − ∂x

(ε0 + p0)δux

c2
s

ε0 + p0
δε

+ ∂x [
0

4
3

η
ε0 + p0

∂xδux] +
1

ε0 + p0
∂x [0

ξ]

L̂ = − ik
0 ε0 + p0
c2

s

ε0 + p0
−ik 4

3
η

ε0 + p0

K̂ = ik (
1 0
0 1

ε0 + p0
) = − K̂* CW = (0 0

0 ξ) ξ =
8
3

η0T0

L̂S + SL̂* = − K̂CWK̂*

S(k) = (
c−2

s (ε0 + p0)T0 0
0 (ε0 + p0)−1T0)
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[A. Donev et al., CAMCOS (2009)]

https://arxiv.org/pdf/0906.2425


Current status
• Using KISS FFT to transform fields to Fourier space


S(k) =
V

c2
s (ε0 + p0)T0

⟨δε(k)δε(−k)⟩
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https://github.com/mborgerding/kissfft


Conclusion and further steps
• Thermal fluctuations should be included - Fluctuation dissipation theorem


• Fluctuations provide good basis for studying phase diagram


• Critical fluctuation for studying critical point


• Stochastic fluid dynamics can include non-linear terms


• But it has some difficulties - fluctuation larger than background, 
discretization dependence


• Further steps


• Calculating static structure factor for finer grid


• Dynamic structure factor


• Renormalization of the grid dependence
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