

Tracing the conserved charges in high energy collisions

Hydrodynamics and related observables in heavy-ion collisions Oct. 31, 2024, Nantes, France

Grégoire Pihan¹, Akihiko Monnai², Bjoern Schenke³, Chun Shen^{1,3}

¹Wayne state University, Detroit, USA,
 ²Osaka Institute of technology, Osaka, Japan,
 ³Brookhaven National Lab, Upton, USA

What carries the baryon number?

How do we build a baryon from quarks?

 $B=rac{1}{3}(n_q-n_{ar{q}})$

This is an assumption!

What carries the baryon number?

String junction?

String junction: The most simple way to build a baryon from quarks

Non-perturbative configuration of gluons represented by a locally **gauge-invariant** state vector.

G.C Rossi and G.Veneziano PHYSICS REPORTS 63, No. 3 (1980)

$$B=\epsilon^{ijk}\Big[P\expig(ig\int_{x_1}^xA_\mu\mathrm{d}x^\muig)q(x_1)\Big]_i\Big[P\expig(ig\int_{x_2}^xA_\mu\mathrm{d}x^\muig)q(x_2)\Big]_j\Big[P\expig(ig\int_{x_3}^xA_\mu\mathrm{d}x^\muig)q(x_3)\Big]_k$$

String junction: The most simple way to build a baryon from quarks

Non-perturbative configuration of gluons represented by a locally **gauge-invariant** state vector.

G.C Rossi and G.Veneziano PHYSICS REPORTS 63, No. 3 (1980)

$$B=\epsilon^{ijk}\Big[P\expig(ig\int_{x_1}^{x}A_\mu\mathrm{d}x^\muig)q(x_1)\Big]_i\Big[P\expig(ig\int_{x_2}^{x}A_\mu\mathrm{d}x^\muig)q(x_2)\Big]_j\Big[P\expig(ig\int_{x_3}^{x}A_\mu\mathrm{d}x^\muig)q(x_3)\Big]_k$$

The string junction x carries the baryon number inside the baryon

Baryon stopping in central pp and AA collisions

D. Kharzeev, Physics Letters B 378, 238 (1996)

Baryon stopping and the junction

The baryon number remain attached to the nucleon

The baryon number to fluctuate towards mid-rapidity

Baryon stopping and the junction

The baryon number remain attached to the nucleon

The baryon number to fluctuate towards mid-rapidity

Baryon stopping and string junction

Baryon stopping and string junction

Insight from the isobar collisions at RHIC

Baryon Junction: carries no electric charge! -----

Decorrelation of B and Q! if B remains attached to the junction

Isobar Runs: Same number of nucleons A, different number of protons Z

Baryon stopping compared to electric charge stopping!

"Equal stoppings"

No longitudinal decorrelation from junction: **B and Q carried by** valence quarks!

"Different stoppings"

 $^{96}_{44}$ Ru

 ${}^{96}_{40}{
m Zr}$

B and Q are less correlated in the longitudinal direction: B is carried by the junction! 5

The iEBE-MUSIC framework

Open source hydrodynamics + hadronic transport hybrid framework

https://github.com/chunshen1987/iEBE-MUSIC

The iEBE-MUSIC framework

Open source hydrodynamics + hadronic transport hybrid framework

https://github.com/chunshen1987/iEBE-MUSIC

$$P(y^X_{P/T}) = (1-\lambda_X) y_{P/T}$$

$$P(y^X_{P/T}) = (1-\lambda_X)y_{P/T} + \lambda_X$$

$$P(y_{P/T}^{X}) = (1 - \lambda_X)y_{P/T} + \lambda_X \begin{cases} \frac{e^{(y_{P/T}^X - (y_P + y_T)/2)/2}}{4\sinh((y_P - y_T)/4)} \end{cases}$$

$$P(y_{P/T}^{X}) = (1 - \lambda_X)y_{P/T} + \lambda_X \begin{cases} \frac{e^{(y_{P/T}^{X} - (y_P + y_T)/2)/2}}{4\sinh((y_P - y_T)/4)} \\ \frac{double junction}{constant} \end{cases}$$

$$P(y_{P/T}^X) = (1-\lambda_X)y_{P/T} + \lambda_X rac{e^{(y_{P/T}^X - (y_P + y_T)/2)/2}}{4\sinh((y_P - y_T)/4)}$$

Net-baryon number:

$$\lambda_B=0.2$$

<u>Net-electric charge</u>: free parameter

$$\lambda_Q = \lambda_B$$

Equal stoppings

$$\lambda_Q
eq \lambda_B$$

Different stoppings

C. Shen and B. Schenke Phys. Rev. C **105**, 064905 (2022) GP, A. Monnai, B. Schenke, C. Shen Phys. Rev. Lett. **133**, 182301 STAR collaboration, Phys. Rev. C **79**, 034909, arxiv:2408.15441 Wood-Saxon potential: nuclear structure and neutron skin

$$R_{p,n}(heta,\phi)=R_{p,n}(1+eta_2Y_2^0(heta,\phi)+eta_3Y_3^0(heta,\phi))$$

	R _p	a _p	R _n	a _n	β ₂	β ₃
Ru	5.09	0.46	5.105	0.47	0.16	0.0
Zr	5.02	0.52	5.12	0.57	0.06	0.2

p: protons n: neutrons

Initial baryon and electric charge density rapidity distributions for isobar runs at $\sqrt{s_{
m NN}}=200~{
m GeV}$

Initial electric charge density rapidity distributions for different values of λ_Q

MUSIC with 4D equation of state

NEOS 4D equation of state

Taylor expansion at finite chemical potentials

$$\frac{P_{\text{Latt}}}{T^4} = \frac{P_0}{T^4} + \sum_{l,n,m} \frac{\chi_{l,n,m}^{B,Q,S}}{l!n!m!} \left(\frac{\mu_B}{T}\right)^l \left(\frac{\mu_Q}{T}\right)^n \left(\frac{\mu_S}{T}\right)^m$$

Hadron Resonance Gas

$$P_{ ext{HRG}}=\pm T\sum_i\intrac{g_i ext{d}^3k}{(2\pi)^3} ext{ln}\left[1\pm e^{(E_i(k)-\mu_i)/T}
ight]$$

 i : hadronic species $\mu_i=B_i\mu_B+Q_i\mu_Q+S_i\mu_S$

Matching

$$rac{P}{T^4} = rac{1}{2} [1-f(T,\mu_X)] rac{P_{HRG}}{T^4} + rac{1}{2} [1+f(T,\mu_X)] rac{P_{ ext{Latt}}}{T^4}$$
 is

No assumptions on the relation between conserved charge densities!

MUSIC with BQS conserved charges

$$egin{array}{ll} \partial_\mu T^{\mu
u} = 0 & N^\mu_X =
ho_X u^\mu \ & {\sf B}, {\sf Q} ext{ and } {\sf S} ext{ currents} \ & \partial_\mu N^\mu_X = 0 & {\sf evolve independently!} \end{array}$$

X = B, Q, S

MUSIC with 4D equation of state

MUSIC with 4D equation of state

Study cases

$$\lambda_Q=\lambda_B=0.2$$

Naive expectation from charge conservation

 $r\sim 1$

Case 2 "No extra Q stopping"

$$\lambda_Q=0,\lambda_B=0.2$$

No extra stopping mechanism for electric charge: Maximal difference between B and Q stopping at fixed λ_B

r > 1

Case 3 Case 1 + "No neutron skin"

$$egin{aligned} \lambda_Q &= 0, \lambda_B = 0.2 \ \mathrm{R}_p &= \mathrm{R}_n, a_p = a_n \end{aligned}$$

No extra stopping for electric charge and no structure as a function of centrality

r>1 $rac{dr}{dN_{
m part}}\sim 0$

Selection

In each centrality class

 $N_{
m ch,Ru}=N_{
m ch,Zr}$

Ratio

GP, A. Monnai, B. Schenke, C. Shen Phys. Rev. Lett. 133, 182301

Ratio

GP, A. Monnai, B. Schenke, C. Shen Phys. Rev. Lett. 133, 182301

Ratio

Baryon junction: take home

"Can gluon junction trace the baryon number?"

The isobar simulations are in quantitative agreement with the STAR measurement.

Strong evidence for the existence of the junction!

The ratio is sensitive to the Zr neutron skin Study of the nuclear structure in Heavy-ion collisions?

G. Giacalone Phys.Rev.Lett. 131 (2023) 20, 20

Pb neutron skin in Pb-Pb at LHC

Ultra-central collisions in ALICE Pb-Pb 5.02 TeV

A drop of $\langle n_p angle / \langle n_n angle$ in the ZDC!

Isobars:

Ratios involving dN_B/dy and dN_Q/dy :

Sensitive to protons and neutron distribution

Nuclear structure and neutron skin!

Pb neutron skin in p-Pb at LHC

Central collisions

more p-p collisions

More Q/B than baseline

Peripheral collisions

more p-n collisions

Less Q/B than baseline

$$R_{c_1,c_2}(y) = r_{c_1}(y)/r_{c_2}(y) \ c_1 > c_2$$

$$r_{
m (C)}(y)=rac{{
m d}N_Q}{dy}/rac{{
m d}N_B}{{
m d}y}(c) imes A/Z$$

$$R_{c_1,c_2}(y)\sim 1$$

$$R_{c_1,c_2}(y) < 1$$

No neutron skin Q depletion effect

Neutron skin Q depletion effect!

Initial stage pPb 72 GeV

1.1

1.0

10-20%

80-100%

Initial stage $pPb\,$ 72 GeV

Constraining the Pb neutron skin

SMOG 2 at LHCb!

The ratio $m R_{c_1,c_2}$ could be defined from proxies

net-pion/net-proton

Weaker signal but easier access experimentally!

Tracing the conserved charge in heavy-ion collisions:

Distributions of the conserved charges B and Q

Give access to protons and neutrons difference in stopping mechanisms

The baryon junction certainly carries the baryon number!

spatial distribution

The nuclear shape and neutron skin can be studied in heavy-ion collisions in this way

Future related work:

Predict the pPb at final stage Enhance statistics via machine learning Study the baryon junction in pPb net-proton number slope! backup

Comparison with STAR ratio

The ratio is defined as: $\,r_1^* = (B_{
m Ru} + B_{
m Zr})/(2\Delta Q) imes \Delta Z/A$

Experimental RuB ratio

$$B/\Delta Q imes \Delta Z/A$$

STAR does not measures neutrons, Evaluation of neutrons from deuterons yields via HRG model

 $N_B = (N_p - N_{ar p}) + (N_n - N_{ar n}) pprox (N_p - N_{ar p}) + ar p \sqrt{rac{d}{ar d}} - p \sqrt{rac{d}{ar d}}$

Net-charge difference:

Net-baryon number:

The electric charge is a non-trivial measurement at mid-rapidity (small yields!). Making use of the convenient double ratios to cancel uncertainties accessible in isobars collisions.

$$egin{aligned} \Delta Q &= [(N_\pi^+ + N_K^+ + N_p) - (N_\pi^- + N_K^- + N_{ar p})]_{ ext{Ru}} - []_{ ext{Zr}} \ R2_\pi &= rac{(N_\pi^+/N_\pi^-)_{ ext{Ru}}}{(N_\pi^+/N_\pi^-)_{ ext{Zr}}} pprox 1 + (N_\pi^+ - N_\pi^-)_{ ext{Ru}} - (N_\pi^+ - N_\pi^-)_{ ext{Zr}} \ \Delta Q &= N_\pi (R2_\pi - 1) + N_K (R2_K - 1) + N_p (R2_p - 1) \end{aligned}$$

STAR Collaboration, Phys Rev.99.064905

MUSIC tuning on PHOBOS Au+Au data

Backup: Gluon cloud interpretation

24

Proton, neutron yield vs STAR measurement

