

Efficient solver for relativistic hydrodynamics with implicit Runge-Kutta method

Nathan Touroux¹ Marlene Nahrgang, Masakiyo Kitazawa, Koichi Murase

October 31, 2024

¹Subatech, Osaka University, YITP

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
●○	00	000000	00000	O	O
QCD phas	e diagram				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● 2/18

Almond shape \rightarrow elliptic flow

J. Adam et al, PRL 116, 132302 (2016)

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
	●○	000000	00000	0	O
Relativistic h	ydrodynamics				

Energy-momentum tensor conservation:

$$\begin{split} \partial_{;\,\mu} T^{\mu\nu} &= \partial_{\mu} T^{\mu\nu} + \Gamma^{\mu}_{\ \alpha\mu} T^{\alpha\nu} + \Gamma^{\nu}_{\ \alpha\mu} T^{\mu\alpha} = 0 \\ T^{\mu\nu} &= \epsilon u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu} \\ \Delta_{\mu\nu} &= g_{\mu\nu} - u_{\mu} u_{\nu}, \qquad u^{\mu} u_{\mu} = 1, \end{split}$$

Israel-Stewart equations:

$$\begin{split} u^{\lambda}\partial_{;\lambda}\Pi &= -\frac{\Pi - \Pi_{NS}}{\tau_{\Pi}} - \frac{4}{3}\Pi\partial_{;\lambda}u^{\lambda} \\ \left\langle u^{\lambda}\partial_{;\lambda}\pi^{\mu\nu} \right\rangle &= -\frac{\pi - \pi_{NS}^{\mu\nu}}{\tau_{\pi}} - \frac{4}{3}\pi\partial_{;\lambda}u^{\lambda} \\ \Pi_{NS} &= -\zeta\partial_{;\lambda}u^{\lambda}, \\ \pi_{NS}^{\mu\nu} &= \eta \left(\Delta^{\mu\lambda}\partial_{;\lambda}u^{\nu} + \Delta^{\nu\lambda}\partial_{;\lambda}u^{\nu}\right) - \frac{2}{3}\eta\Delta^{\mu\nu}\partial_{;\lambda}u^{\lambda}, \\ \tau_{\pi} &= \tau_{\Pi} = \frac{5\eta}{\epsilon + P} \end{split}$$

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
00	○●	000000	00000	O	O
Relativistic H	ydrodynamics				

Rewriting the equations:

$$\partial_{\tau} \left(\tau T_{\mathrm{id}}^{\tau\nu} \right) = -\partial_{x} \left(\tau T^{x\nu} \right) - \partial_{y} \left(\tau T^{y\nu} \right) - \partial_{\eta} \left(T^{\eta\nu} \right) + \mathcal{A}(\partial_{\tau} u^{\nu}, \partial_{\tau} \Pi, \partial_{\tau} \pi^{\tau\nu}) \tag{1}$$

$$\partial_{\tau} \left(u^{\tau} \pi^{\mu \nu} \right) = -\partial_{x} \left(u^{x} \pi^{\mu \nu} \right) - \partial_{y} \left(u^{y} \pi^{\mu \nu} \right) - \partial_{\eta} \left(u^{\eta} \pi^{\mu \nu} \right) + B(\partial_{\tau} u^{\nu}, \partial_{i} u^{\nu}) \tag{2}$$

$$\partial_{\tau} \left(u^{\tau} \Pi \right) = -\partial_{x} \left(u^{x} \Pi \right) - \partial_{y} \left(u^{y} \Pi \right) - \partial_{\eta} \left(u^{\eta} \Pi \right) + C(\partial_{\tau} u^{\nu}, \partial_{i} u^{\nu})$$
(3)

where

$$A(\partial_{\tau} u^{\nu}, \partial_{\tau} \Pi, \partial_{\tau} \pi^{\tau \nu}) = I_{T}^{\nu} - \partial_{\tau} \left(\tau \left[-\Pi \Delta^{\tau \nu} + \pi^{\tau \nu} \right] \right), \tag{4}$$

$$B(\partial_{\tau} u^{\nu}, \partial_{i} u^{\nu}) = -\frac{\tilde{\pi}^{\mu\nu} - \tilde{\pi}^{\mu\nu}_{\rm NS}}{\tau_{\pi}} - \frac{1}{3} \tilde{\pi}^{\mu\nu} \left(\tilde{\partial}_{\lambda} \tilde{u}^{\lambda} - 4\frac{\tilde{u}^{\tau}}{\tau} \right)$$
(5)

$$-\left(\tilde{u}^{\nu}\tilde{\pi}^{\mu\beta}+\tilde{u}^{\mu}\tilde{\pi}^{\nu\beta}\right)\tilde{u}^{\lambda}\tilde{\partial}_{;\lambda}\tilde{u}_{\beta}+\frac{\tilde{u}^{\eta}}{\tau}I_{\pi}^{\mu\nu},\tag{6}$$

$$C(\partial_{\tau} u^{\nu}, \partial_{i} u^{\nu}) = -\frac{\tilde{\Pi} - \tilde{\Pi}_{\rm NS}}{\tau_{\Pi}} - \frac{1}{3}\tilde{\Pi}\left(\tilde{\partial}_{\lambda}\tilde{u}^{\lambda} - 4\frac{\tilde{u}^{\tau}}{\tau}\right),\tag{7}$$

<ロ> < 団> < 団> < 目> < 目> 三日 のへの 5/18

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
00	00	●00000	00000	0	O
Numerical s	cheme				

Hydro equations with the dynamical variables $y = (\tau T_{id}^{\tau\nu}, u^{\tau} \pi^{\mu\nu}, u^{\tau} \Pi)$:

 $\partial_t y = f(t,y)$

Kurganov-Tadmor space discretization: $f(t, y) = f_{KT}(t, y) + O(\Delta x^2)$

- Independent of time discretization
- Numerical diffusion $\propto \Delta x^2$
- $\bullet\,$ Flux limiter \to avoid numerical oscillations

Runge-Kutta time discretization

$$egin{aligned} y(t+\Delta t) &= y(t) + \Delta t \; \sum_{j=1}^n b_j k_j \ k_i &= f(t,y(t) + \Delta t \sum_{j=1}^n a_{ij} k_j) \qquad ``ec{K} &= ec{F}(ec{K})'' \end{aligned}$$

Introduction	Hydrodynamics 00	Methodology ○●○○○○	Benchmark 00000	Results O	Conclusion
Extending Ru	nge-Kutta				

Considering that

$$k_{i} = \left(\partial_{\tau} \left(\tau T_{\mathrm{id}}^{\tau \nu}\right), \partial_{\tau} \left(u^{\tau} \pi^{\mu \nu}\right), \partial_{\tau} \left(u^{\tau} \Pi\right)\right), \tag{8}$$

we can hope to express the right-hand-side time derivatives by extending Runge-Kutta as either:

implicit

explicit

$$k_i = f(t, y(t) + \Delta t \sum_{j=1}^n a_{ij}k_j, k_i)$$

$$k_1 = f(t, y(t) + \Delta t, k_n(t - \Delta t))$$

$$k_2 = f(t, y(t) + \Delta t a_{21}k_1, k_1)$$

$$k_3 = f(t, y(t) + \Delta t(a_{31}k_1 + a_{32}k_2), k_2)$$

•••

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
	00	○○●○○○	00000	O	O
Right_han	d_side time deriv	natives partial s	olving		

By considering $\partial_{\tau} (\tau T_{id}^{\tau\nu})$, $\partial_{\tau} (u^{\tau} \pi^{\mu\nu})$ and $\partial_{\tau} (u^{\tau} \Pi)$ known, we can express $\partial_{\tau} u^{\nu}$, $\partial_{\tau} \Pi$ and $\partial_{\tau} \pi^{\tau\nu^2}$:

$$\partial_{\tau}\pi^{\tau\nu} = \frac{\partial_{\tau} \left(u^{\tau}\pi^{\tau\nu} \right) - \pi^{\tau\nu}\partial_{\tau} u^{\tau}}{u^{\tau}}$$
(9)

$$\partial_{\tau} \Pi = \frac{\partial_{\tau} \left(u^{\tau} \Pi \right) - \Pi \partial_{\tau} u^{\tau}}{u^{\tau}}$$
(10)

$$\partial_{\tau} u^{\tau} = -\frac{u^{\mathsf{x}} \partial_{\tau} u^{\mathsf{x}} + u^{\mathsf{y}} \partial_{\tau} u^{\mathsf{y}} + u^{\eta} \partial_{\tau} u^{\eta}}{u^{\tau}}$$
(11)

$$\left(\partial_{\tau} \epsilon \quad \partial_{\tau} u^{\mathsf{x}} \quad \partial_{\tau} u^{\mathsf{y}} \quad \partial_{\tau} u^{\eta} \right)^{\mathrm{T}} = \mathbb{M}^{-1} \partial_{\tau} \mathcal{T}_{\mathrm{id}}^{\tau \nu}$$

$$(12)$$

$$\partial_{\tau} T_{\rm id}^{\tau\nu} = \frac{\partial_{\tau} \left(\tau T_{\rm id}^{\tau\nu} \right) - T_{\rm id}^{\tau\nu}}{\tau}$$
(13)

where the 4 by 4 matrix $\mathbb{M} = \begin{bmatrix} \frac{\partial \left(\partial_{\tau} T_{\mathrm{id}}^{\tau \nu}\right)}{\partial \left(\partial_{\tau} \epsilon \quad \partial_{\tau} u^{\mathsf{x}} \quad \partial_{\tau} u^{\mathsf{y}} \quad \partial_{\tau} u^{\eta}\right)} \end{bmatrix}$ can be inverted analytically.

²Inspired by rfh code (Koichi Murase)

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
	00	000●00	00000	0	O
Choice of	Runge-Kutta co	efficients			

Accuracy order:

 $||y^*(t) - y(t)|| < C\Delta t^{\rho}$

Second order choices:

	Heun	Gauss-Legendre 1 (GL1)
Туре	Explicit	Implicit
Stage <i>S</i> Order <i>p</i>	2 2	1 2
C _n a _{nm}	$ \begin{array}{c cccc} 0 & 0 & 0 \\ 1 & 1 & 0 \\ \hline & 0.5 & 0.5 \\ \end{array} $	0.5 0.5

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
	00	0000●0	00000	O	O
Implicit solve	r				

Solve implicit equation " $\vec{K} = \vec{F}(\vec{K})$ " by the fixed-point solver

$$ec{K}^{(l+1)} = ec{F}(ec{K}^{(l)})$$

 $ec{K}^{(0)} = ec{0}$ or last time step solution

Solve iteratively

$$ec{K}^{(0)}
ightarrow ec{K}^{(1)}
ightarrow ec{K}^{(2)}
ightarrow ...
ightarrow ec{K}^{(l+1)}$$

<ロト < 部 > < 王 > < 王 > 三 = の < で 10/18

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
00		○○○○○●	00000	0	O
Local optimiz	ation				

- Update all cells once to obtain $\vec{K}^{(1)}$
- **②** check the convergence in every cell $[\bullet]_j$:

$$\left\| [ec{F}(ec{K}^{(l)})]_j - [ec{K}^{(l)}]_j
ight\| < e rac{\langle T^{ au au}
angle}{\Delta au} igg(rac{\Delta au}{\Delta x} igg)^{(
ho+1)}$$

- To obtain $\vec{K}^{(l+1)}$ $(l+1 \ge 2)$, only update a cell if itself or any surrounding cells does not satisfy the threshold
- Sepeat (2) and (3) until all cells satisfy the threshold

This dramatically reduces the computation cost.

Disclaimer: This partial update breaks conservation and leads to inconsistencies, but this is controlled within the error threshold.

Error-cost comparison

12/18

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
00	00	000000	0●000	O	O
Heavy ion	collisions evolu	tion			

COMPANY CONTRACTOR					CONTRACTOR OF
Collision	thermalization	QGP	Particlization	Decay/free-streaming	
	Pre-hydrodynamic	B Hydrodynamics	Cooper-Frye	Cascade/Kinetic	
Trento	skipped	ImplHydro	frzout	UrQMD	

Parameters from: PRC 101, 024911 (2020)

Trento initial conditions: 2D ideal vs viscous

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
00	00	000000	0000●	O	O
÷					

Trento initial conditions: viscous 3D

16/18

Introduction	Hydrodynamics 00	Methodology 000000	Benchmark 00000	Results ●	Conclusion
Physical resu	lts				

Elliptic flow

Particle spectra

< □ > < @ > < 볼 > < 볼 > 볼| 늘 - 옛 < 약 - 17/18

Introduction	Hydrodynamics	Methodology	Benchmark	Results	Conclusion
00	00	000000	00000	O	●
Conclusion					

Achievement

- Implicit method can be more efficient and accurate than explicit
- First true 2nd order time integrator for viscous hydrodynamics
- Detects stiffness through convergence of the fixed-point iterator

Outlook

- Addapt Δt depending on convergence for unconditional stability
- Including other charges (baryon number, electric charge, ...)
- Including fluctuations

ImplHydro:

- arXiv:2306.12696
- Open source: https://github.com/xayon40-12/ImplHydro.git

Thank you for your attention

Enforcing positivity of the effective pressure

We need to garanty that

$$\epsilon + P(\epsilon) + \Pi + \lambda_{\min} \ge 0,$$
 (14)

where $\lambda_{\min} = \min_{\mu} \{\lambda^{\mu}\}$ is the smallest of the eigenvalues λ^{μ} of the shear tensor $\pi^{\mu\nu}$. If it is not the case, we rescale the bulk pressure and shear tensor as

2/5

In order to approximate the space derivatives $\partial_i u^{\mu}$ in A, B and C, we first reconstruct the values of the fields at the boundaries of cells using the cubic interpolation (here in the x direction by considering that j indexes the x coordinate):

$$[u^{\mu}]_{j\pm 1/2} \approx -\frac{1}{16} [u^{\mu}]_{j\pm 1/2-3/2} + \frac{9}{16} [u^{\mu}]_{j\pm 1/2-1/2} + \frac{9}{16} [u^{\mu}]_{j\pm 1/2+1/2} - \frac{1}{16} [u^{\mu}]_{j\pm 1/2+3/2}$$
(15)

and then perform the finite difference to approximate

$$\partial_x u^\mu \approx \frac{[u^\mu]_{j+1/2} - [u^\mu]_{j-1/2}}{\Delta x}.$$
 (16)

$$\begin{split} & \mathsf{KT}[f,\rho(f),y,\Delta x]_{i} = \frac{H_{i+1/2} - H_{i-1/2}}{\Delta x} \\ & H_{i+1/2} = \frac{f(y_{j+1/2}^{+}) + f(y_{j+1/2}^{-})}{2} + \frac{a_{i+1/2}}{2} \left(y_{j+1/2}^{+} - y_{i+1/2}^{-}\right) \\ & a_{i+1/2} = \max\left\{\rho\left(\frac{\partial f}{\partial y} \left(y_{i+1/2}^{+}\right)\right), \rho\left(\frac{\partial f}{\partial y} \left(y_{i+1/2}^{-}\right)\right)\right\} \\ & y_{i+1/2}^{+} = y_{i+1} - \frac{\Delta x}{2} (\partial_{x} y)_{i+1} \\ & y_{i+1/2}^{-} = y_{i} + \frac{\Delta x}{2} (\partial_{x} y)_{i} \\ & (\partial_{x} y)_{i} = \operatorname{minmod}\left(\theta \frac{y_{i} - y_{i-1}}{\Delta x}, \frac{y_{i+1} - y_{i-1}}{2\Delta x}, \theta \frac{y_{i+1} - y_{i}}{\Delta x}\right) \\ & 1 \le \theta \le 2 \end{split}$$

needs $y_{i-2}, y_{i-1}, y_i, y_{i+1}, y_{i+2}$.

<ロト < @ ト < 臣 ト < 臣 ト 王 王 の Q C 5/5

00000