The forgotten importance of impact parameter

Jean-Yves Ollitrault, IPhT Saclay

Workshop on Hydrodynamics and related observables in heavy-ion collisions Subatech, Nantes, Oct. 30, 2024

Centrality in experiment

• Analyses of experimental data at the LHC are always done in

• A specific observable is used as a centrality classifier: particle

• 0 – 5 % most central \equiv 5 % of events with largest N_{ch} or E_T .

- centrality classes.
- multiplicity N_{ch} in a detector (ATLAS), number of hits in a scintillator (ALICE), energy E_T deposited in a calorimeter (CMS, ATLAS).
-

Centrality in theory

- Centrality originally refers to impact parameter $b \equiv$ distance between the centers of colliding nuclei A and B.
-
- The *true centrality* is $c \equiv \pi b^2/\sigma_{PbPb}$ \cdot $c < 0.05$ corresponds to the 5 $\%$ of events with the smallest *b* .
- In this talk, "fixed centrality" means "fixed impact parameter".

Outline

- 1. Puzzling observations in ultracentral collisions
- 2. Reconstructing the probability distribution of the true centrality *c*
- collisions
- 4. Understanding mean transverse momentum $\left(\left[p_T \right] \right)$ fluctuations in ultracentral collisions

3. Understanding anisotropic flow (v_n) fluctuations in ultracentral **Alqahtani Bhalerao Giacalone Kirchner JYO [2407.17308](https://arxiv.org/abs/2407.17308)**

5. Summary and perspectives

Das Giacalone Monard JYO [1708.00081](https://arxiv.org/abs/1708.00081)

Samanta Bhatta Jia Luzum JYO [2303.15323](https://arxiv.org/abs/2303.15323) Samanta Picchetti Luzum JYO [2306.09294](https://arxiv.org/abs/2306.09294)

1. Puzzling observations in ultracentral collisions

6

 $[p_T] \equiv$ transverse momentum per particle in an event

For very large N_{ch} (ultracentral collisions):

- The mean value increases
- The relative variance k_2 decreases
- The relative skewness k_3 decreases

] [GeV]

 \mathbf{r}

Event-by-event fluctuations of $[p_T]$

ATLAS [2407.06413](https://arxiv.org/abs/2407.06413)

Correlation between $[p_T]$ and anisotropic flow v_n

 $p_n \equiv$ Pearson correlation coefficient bety

$$
\mathbf{ween}\ [p_T]\ \mathbf{and}\ v_n^2
$$

Bożek [1601.04513](https://arxiv.org/abs/1601.04513)

• Differs depending on whether centrality is defined using N_{ch} or $E_T^{}$

-
- Decreases for ultracentral collisions

$$
nc_n\{4\} \equiv \frac{\langle v_n^4 \rangle}{\langle v_n^2 \rangle^2} - 2
$$

 $= -1$ no fluctuations Gaussian fluct. $= 0$

ATLAS observes $nc_2{4} > 0$ in ultracentral collisions, and the value depends on the centrality classifier

ATLAS [1904.04808](https://arxiv.org/abs/1904.04808)

Scaled cumulant (see talk by Koichi on Tuesday)

• In this talk, I show that these peculiarities are simple consequences of

• A fixed value of the centrality classifier N_{ch} or E_T corresponds to a range of *true centralitie*s, which can be precisely determined from data.

• The general observation is that correlations and fluctuations decrease for ultracentral collisions. This is due to the gradual disappearance of

- centrality fluctuations:
-
- centrality fluctuations: $c \approx 0$ for ultracentral (see next part).
- theorem, analyticity, symmetry (I'll use follow this colour code throughout this presentation)

• *No hydrodynamic modeling* here, just minimal theory input: central limit

2. Reconstructing the probability distribution of the true centrality *c*

- First, solve the inverse problem: what is the distribution of E_{T} (or $\overline{E_{T}}$) at fixed centrality? *Nch*
- **Then apply Bayes' theorem:** $P(c|E_T) =$

$$
|E_T\rangle = \frac{P(E_T|c)P(c)}{P(E_T)} = \frac{P(E_T|c)}{P(E_T)}
$$

Das Giacalone Monard JYO [1708.00081](https://arxiv.org/abs/1708.00081)

Input: distribution of the centrality classifier

We need experiments to provide the histogram of the centrality classifier. Not all collaborations agree to share these data !

Basic assumption: Gaussian fluctuations

We assume that the fluctuations of E_T at fixed c are Gaussian: The width $\sigma_{E_T}(c=0)$ can be read off from the tail of the distribution.

-
- $P(E_T | c)$ is a Gaussian distribution, mean $\overline{E_T}$ and width $\sigma_{\!_T}$ are smooth functions of c .

Fitting the distribution of E_T

The fit returns the mean value $\overline{E_T}(c)$ and the width $\sigma_{\!\stackrel{}{E_T}}\!(c=0).$ *The variation of* $\sigma_{E_T^T}\!(c)$ *cannot be determined from data.*

We fit the distribution of E_T as an integral of Gaussians over the centrality $c.$

13 *This is why we focus on 0-5% most central collisions, where* $\sigma_{\!E_T^T}\!(c) \simeq \sigma_{\!E_T^T}\!(0)$

The knee

We define the knee of the distribution of E_T as the mean value of E_T for $c=0.$ This is an output of the fit, and it is determined very precisely (typically 0.3% accuracy). We propose to call *ultracentral* the events above the knee.

Central versus ultracentral collisions

Many analyses use 0-5% as the most central bin.

Central versus ultracentral collisions

Ultracentral collisions are a much smaller fraction *(note: knee corresponds approximately to the max. slope of histogram on linear scale)*

Distribution of centrality from Bayes' theorem 10⁵

c

The distribution $p(c|E_T)$ is also Gaussian to a good approximation, with a std. dev. $\sigma_c \simeq 0.85\,\%$. For N_{ch} , $\sigma_c \simeq 1.3$ % (not shown).

As E_T increases, the distribution of centrality gets shifted towards smaller values.

Distribution of centrality from Bayes' theorem

As E_T increases, the distribution of centrality gets shifted towards smaller values.

20

Above the knee of the distribution of E_T , the distribution hits the boundary at $c = 0$. No longer a Gaussian, but a *truncated* Gaussian.

21

c

Above the knee of the distribution of E_T , the distribution hits the boundary at $c = 0$. No longer a Gaussian, but a *truncated* Gaussian.

The larger E_T , the narrower the distribution: centrality fluctuations disappear.

3. Understanding anisotropic flow (v_n) fluctuations in ultracentral collisions

1st step: Gaussian model

We assume that the fluctuations of elliptic flow $\nu_{2x} \equiv \langle \cos(2\varphi) \rangle, \nu_{2y} \equiv \langle \sin(2\varphi) \rangle$ at fixed *c* are Gaussian in the *intrinsic* frame where $x \parallel$ impact parameter: $p(v_{2x}, v_{2y}) = \frac{1}{\pi \epsilon^2} \exp \left(-\frac{1}{2} \frac{2x}{\epsilon^2} - \frac{2y}{\epsilon^2}\right).$ 1 $\pi\sigma_{\nu}^2$ exp ([−] $(v_{2x} - \overline{v})$ $2 + v_2^2$ 2*y* σ_v^2)

the mean elliptic flow in the reaction plane, $\overline{\nu}$, and the std. dev. of flow fluctuations σ_{ν} are smooth functions of c, which are our fit parameters. Note that azimuthal symmetry requires $\overline{v}(c = 0) = 0$.

For v_3 and v_4 , same, with $\overline{v}(c) = 0$ (triangular flow is solely due to fluctuations)

-
-

Voloshin Poskanzer Tang Wang [0708.0800](https://arxiv.org/abs/0708.0800)

Averaging over centrality

The moments of the distribution of v_2 at fixed c are those of the Gaussian: $v_2\{2\}\equiv \left(\langle v_2^2\rangle\right)^{1/2}$ = $\sqrt{\bar{v}^2+\sigma_v^2}$ (flow in reaction plane+fluctuations) $v_2{4} \equiv (2\langle v_2^2 \rangle^2 - \langle v_2^4 \rangle)^{1/4} = \bar{v}$ (higher-order cumulants=flow in reaction plane) $\langle v_2^2 \rangle = \overline{v}^2 + \sigma_v^2$ $\langle v_2^4 \rangle = \overline{v}^4 + 4\overline{v}^2 \sigma_v^2 + 2\sigma_v^4$ 1/2 $\bar{v}^2 + \sigma_v^2$ *v* 1/4 $=$ $\bar{\nu}$

In reality, centrality fluctuates: For a given value of E_T (or N_{ch}), we average moments over c using the probability distribution $P(c\,|\, E_T)$, before evaluating the cumulant $nc_2{4}.$

For v_3 and v_4 , same, with $\bar{v} = 0$.

- If experiments were carried out at fixed centrality, the Gaussian model would give
	-

Fitting ATLAS data

In particular, we get the change of sign of $nc_2{4}$ "for free".

Implies that v_2 is driven by the true centrality, rather than N_{ch} or E_T .

The simple Gaussian model reproduces all elliptic flow (v_2) data: It fits simultaneously cumulants of order 2, 4, 6 are, with both centrality classifiers.

Output of fit

Our fit returns the variation of the mean elliptic flow in the reaction plane and of the width of flow fluctuations with the *true centrality* (only look at solid lines...)

This facilitates comparison between theory and data. Running hydro calculations at fixed impact parameter is straightforward.

- Event-by-event hydrodynamic simulations have established that v_n is proportional to the initial anisotropy *εn* to a good approximation: $v_n = \kappa_n \varepsilon_n$
- ε_n is bounded by unity: $\varepsilon_x^2 + \varepsilon_y^2 < 1$
- This implies that the distribution of $(\varepsilon_x, \varepsilon_y)$ is narrower than a Gaussian. Generates a negative $nc_n\{4\}$.
- This effect explains both $v_2{4} > 0$ in p +Pb, and v_3 {4} > 0 in Pb+Pb.

2nd step: Non-Gaussian corrections

Yan JYO [1312.6555](https://arxiv.org/abs/1312.6555)

- We add the leading non-Gaussian corrections to the distribution at fixed *c*: I extra fit parameter for v_3 and v_4 (kurtosis), 2 for v_2 (skewness and kurtosis).
- Fit quality much improved for $nc_3{4}$ and $nc_4{4}$

Refitting ATLAS data

Are non-Gaussianities universal?

- Larger fluctuations are less Gaussian.
- Simple scaling arguments show thatthe ratio $nc_n\{4\}/\langle \varepsilon_n^2 \rangle$ should depend weakly on system size (cf. ratio of kurtosis/variance, Nadine's talk on Tuesday).
- Initial state calculations at fixed *c* using the Trento model consistently return $nc_n\{4\}/\langle \varepsilon_n^2 \rangle \simeq -2$

(speculative) data-driven estimate of hydro response

- If $v_n = \kappa_n \varepsilon_n$, where κ_n is the hydrodynamic response coefficient, then the boundary condition $\varepsilon_n < 1$ implies $v_n < \kappa_n$.
- Smaller κ_n implies less space for long tails, hence larger deviation from Gaussian.
- The larger non-Gaussianity for v_4 than for v_3 is in fact a natural consequence of the smaller hydrodynamic response in the higher harmonic.
- Assuming a universal non-Gaussianity at fixed c , $nc_n\{4\}/\langle \varepsilon_n^2 \rangle \simeq -2$, we obtain a data-driven estimate $0.09 < \kappa_4 < 0.11$.
- Bounds are tighter on κ_4 than on κ_2 and κ_3 .
- Potentially interesting as κ_4 is more sensitive to viscosity than κ_2 or κ_3 .

ATLAS sees a fall of the variance of $[p_T]$ by a factor ~ 2 around the knee.

We model this in a way analogous to *vn* fluctuations, by assuming that fluctuations of $[p_T]$ at fixed c are Gaussian.

4. Understanding data on [pt] fluctuations

Var(p

t) (MeV/c)

 $\boldsymbol{\sim}$

Natural extension:

- Fluctuations of $[p_T]$ are Gaussian.
-

• Major difference is: the correlation between $[p_T]$ and N_{ch} is essential.

Fluctuations at fixed centrality

What we have learned so far:

- Fluctuations of N_{ch} are Gaussian
- Fluctuations of the anisotropic flow vector $(v_{n,x},v_{n,y})$ are (almost) Gaussian.
- One can neglect the correlation between $(v_{n,x}, v_{n,y})$ and N_{ch} .

Event-by-event hydrodynamics at fixed *c*

Gardim Giacalone Luzum JYO [Nature Phys. 16 \(2020\) 6, 615](https://arxiv.org/abs/1908.09728)

Gaussian parametrization

- We assume that the joint distribution of N_{ch} and [p_T] is a correlated Gaussian, which has 5 parameters. • 2 parameters are already known, \textsf{I} (mean p_t) is irrelevant. • We assume that σ_{p_T} is a power law of multiplicity, and that r is constant: $\frac{1020}{5000}$ 1040 1060 1080 1100 1120 1140 1160 $[\mathbf{p}]$ $_{\rm t}$] [MeV/c]
- 3 fit parameters adjusted to ATLAS data.

Averaging over centrality

- The distribution of $[p_T]$ at fixed N_{ch} and c is also a Gaussian (nice property of the multidimensional Gaussian distribution). 1160 $_{\rm t}$] [MeV/c]
- Procedure $=$ as for v_n : 1. compute the moments $\langle [p_T]^n \rangle$ at fixed N_{ch} and c . 2. average them over c . 3. evaluate cumulants at fixed N_{ch} (variance, skewness), as measured in experiment. *n* \rangle at fixed N_{ch} and c

 $[\mathbf{p}]$

Fit results: P(Nch,δpt)

Gaussian distributions at fixed *c*

1. fluctuations from the variation of b *(several ellipses contribute)*

Fit results: P(Nch,δpt)

At fixed N_{ch}, two contributions to the width in δp_t

2. fluctuations of δp_t at fixed **b** and N_{ch} (height *of a single ellipse)*

Fit results: P(Nch,δpt)

At fixed N_{ch}, two contributions to the width in $δp_t$

Only this second term remains in ultracentral collisions 2.

Fit results: P(Nch,δpt)

At fixed N_{ch}, two contributions to the width in δp_t

Var(p t) (MeV/c) $\boldsymbol{\sim}$

Our simple model naturally explains the observed fall in ultracentral collisions. It is the combination of two effects **Thermalization**

Fit results: Var([pt]) versus Nch

ATLAS data model fit

2. Centrality fluctuations

Non-Gaussian fluctuations

- We predicted a significant skewness and kurtosis of $[p_{T}]$ fluctuations around the knee.
- Consider for simplicity that at fixed N_{ch} , $[p_T]$ increases linearly with centrality c.
- The distribution of centrality c is a truncated Gaussian around the knee.
- The skewness and kurtosis of $[p_{T}]$ fluctuations are those of the truncated Gaussian.

Samanta Picchetti Luzum JYO [2306.09294](https://arxiv.org/abs/2306.09294)

Our Gaussian model underestimates the skewness. Needs to be improved by skewing the Gaussian (intrinsic skewness).

Summary

- The quantum uncertainty on impact parameter is negligible in Pb+Pb collisions at the LHC: δb=4x10-7fm
- Both the magnitude and orientation of impact parameter are classical quantities.
- Pb+Pb collisions with the same impact parameter differ only by quantum fluctuations.
- The impact parameter is an essential quantity for hydro modeling, as it determines the geometry.
- For technical reasons, this classical quantity cannot be measured, and it plays the role of a hidden variable, whose relevance is not always realized, both by theorists and experimentalists.

Perspectives

- be generalized to many other correlations.
- Bożek's correlator between $[p_T]$ and v_n is also largely driven by centrality fluctuations: at fixed N_{ch} , collisions with larger c have both larger $[p_T]$ and larger v_n .
- v_3 (see talk by Magdalena on Monday).
- I want to extend this approach to semi-central collisions, but the consider this a severe limitation for phenomenology.

• I have shown only two types of observables, but the same approach can

magnitude of centrality fluctuations is only known in central collisions. I

Alqahtani Giacalone JYO, work in progress

 \cdot A similar reasoning applies to symmetric cumulants between, say, v_2 and