The forgotten importance of impact parameter

Jean-Yves Ollitrault, IPhT Saclay

Workshop on Hydrodynamics and related observables in heavy-ion collisions Subatech, Nantes, Oct. 30, 2024

- centrality classes.
- multiplicity N_{ch} in a detector (ATLAS), number of hits in a ATLAS).

Centrality in experiment

Analyses of experimental data at the LHC are always done in

• A specific observable is used as a centrality classifier: particle scintillator (ALICE), energy E_T deposited in a calorimeter (CMS,

• 0-5% most central $\equiv 5\%$ of events with largest N_{ch} or E_T .

Centrality in theory

- Centrality originally refers to impact parameter $b \equiv$ distance between the centers of colliding nuclei A and B.
- The true centrality is $c \equiv \pi b^2 / \sigma_{PbPb}$
- c < 0.05 corresponds to the 5 % of events with the smallest b.
- In this talk, "fixed centrality" means "fixed impact parameter".

Outline

- I. Puzzling observations in ultracentral collisions
- 2. Reconstructing the probability distribution of the true centrality *C*
- collisions
- in ultracentral collisions

5. Summary and perspectives

Das Giacalone Monard JYO 1708.00081

3. Understanding anisotropic flow (v_n) fluctuations in ultracentral Algantaní Bhalerao Gíacalone Kírchner JYO 2407.17308

4. Understanding mean transverse momentum ($[p_T]$) fluctuations

Samanta Bhatta Jía Luzum JYO 2303.15323 Samanta Picchetti Luzum JYO 2306.09294

I. Puzzling observations in ultracentral collisions

 $\mathbf{X}_{\mathbf{V}}$

6

 $[p_T] \equiv \text{transverse momentum}$ per particle in an event

For very large N_{ch} (ultracentral collisions):

- The mean value increases
- The relative variance k_2 decreases
- The relative skewness k_3 decreases

Event-by-event fluctuations of $[p_T]$

ATLAS 2407.06413

Correlation between $[p_T]$ and anisotropic flow v_n

 $\rho_n \equiv$ Pearson correlation coefficient betv

- Decreases for ultracentral collisions

ween
$$[p_T]$$
 and v_n^2

Bożek 1601.04513

• Differs depending on whether centrality is defined using N_{ch} or E_T

Scaled cumulant (see talk by Koichi on Tuesday)

$$nc_n\{4\} \equiv \frac{\langle v_n^4 \rangle}{\langle v_n^2 \rangle^2} - 2$$

= -1 no fluctuations = 0Gaussian fluct.

ATLAS observes $nc_2\{4\} > 0$ in ultracentral collisions, and the value depends on the centrality classifier

ATLAS 1904.04808

- centrality fluctuations:
- centrality fluctuations: $c \approx 0$ for ultracentral (see next part).
- theorem, analyticity, symmetry (I'll use follow this colour code throughout this presentation)

• In this talk, I show that these peculiarities are simple consequences of

• A fixed value of the centrality classifier N_{ch} or E_T corresponds to a range of true centralities, which can be precisely determined from data.

 The general observation is that correlations and fluctuations decrease for ultracentral collisions. This is due to the gradual disappearance of

No hydrodynamic modeling here, just minimal theory input: central limit

2. Reconstructing the probability distribution of the true centrality c

- First, solve the inverse problem: what is the distribution of E_T (or N_{ch}) at fixed centrality?
- . Then apply Bayes' theorem: P(c)

$$|E_{T}) = \frac{P(E_{T}|c)P(c)}{P(E_{T})} = \frac{P(E_{T}|c)}{P(E_{T})}$$

Das Giacalone Monard JYO 1708.00081

Input: distribution of the centrality classifier

We need experiments to provide the histogram of the centrality classifier. Not all collaborations agree to share these data !

Basic assumption: Gaussian fluctuations

We assume that the fluctuations of E_T at fixed c are Gaussian: The width $\sigma_{E_T}(c=0)$ can be read off from the tail of the distribution.

 $P(E_T | c)$ is a Gaussian distribution, mean $\overline{E_T}$ and width σ_{E_T} are smooth functions of c.

Fitting the distribution of E_T

The fit returns the mean value $\overline{E_T}(c)$ and the width $\sigma_{E_T}(c=0)$. The variation of $\sigma_{E_{\tau}}(c)$ cannot be determined from data.

We fit the distribution of E_T as an integral of Gaussians over the centrality c.

This is why we focus on 0-5% most central collisions, where $\sigma_{E_T}(c) \simeq \sigma_{E_T}(0)$ 13

We define the knee of the distribution of E_T as the mean value of E_T for c = 0. This is an output of the fit, and it is determined very precisely (typically 0.3% accuracy). We propose to call *ultracentral* the events above the knee.

The knee

Central versus ultracentral collisions

Many analyses use 0-5% as the most central bin.

Central versus ultracentral collisions

Ultracentral collisions are a much smaller fraction (note: knee corresponds approximately to the max. slope of histogram on linear scale)

Distribution of centrality from Bayes' theorem

С

The distribution $p(c | E_T)$ is also Gaussian to a good approximation, with a std. dev. $\sigma_c \simeq 0.85$ % . For N_{ch} , $\sigma_c \simeq 1.3\%$ (not shown).

Distribution of centrality from Bayes' theorem

As E_T increases, the distribution of centrality gets shifted towards smaller values.

As E_T increases, the distribution of centrality gets shifted towards smaller values.

Above the knee of the distribution of E_T , the distribution hits the boundary at c = 0. No longer a Gaussian, but a truncated Gaussian.

20

С

Above the knee of the distribution of E_T , the distribution hits the boundary at c = 0. No longer a Gaussian, but a truncated Gaussian.

21

The larger E_T , the narrower the distribution: centrality fluctuations disappear.

3. Understanding anisotropic flow (v_n) fluctuations in ultracentral collisions

Ist step: Gaussian model

We assume that the fluctuations of elliptic flow $v_{2x} \equiv \langle \cos(2\varphi) \rangle, v_{2y} \equiv \langle \sin(2\varphi) \rangle$ at fixed *c* are Gaussian in the *intrinsic* frame where $x \parallel$ impact parameter: $p(v_{2x}, v_{2y}) = \frac{1}{\pi \sigma_v^2} \exp\left(-\frac{(v_{2x} - \overline{v})^2 + v_{2y}^2}{\sigma_v^2}\right).$

the mean elliptic flow in the reaction plane, \overline{v} , and the std. dev. of flow fluctuations σ_v are smooth functions of c, which are our fit parameters. Note that azimuthal symmetry requires $\overline{v}(c=0) = 0$.

For v_3 and v_4 , same, with $\overline{v}(c) = 0$ (triangular flow is solely due to fluctuations)

Voloshín Poskanzer Tang Wang 0708.0800

Averaging over centrality

The moments of the distribution of v_2 at fixed c are those of the Gaussian: $\langle v_2^2 \rangle = \overline{v}^2 + \sigma_v^2$ $\langle v_2^{\overline{4}} \rangle = \overline{v}^4 + 4\overline{v}^2\sigma_v^2 + 2\sigma_v^4$ $v_2\{2\} \equiv (\langle v_2^2 \rangle)^{1/2} = \sqrt{\bar{v}^2 + \sigma_v^2}$ (flow in reaction plane+fluctuations) $v_2\{4\} \equiv \left(2\langle v_2^2 \rangle^2 - \langle v_2^4 \rangle\right)^{1/4} = \bar{v}$ (higher-order cumulants=flow in reaction plane)

 $nc_{2}\{4\}.$

For v_3 and v_4 , same, with $\overline{v} = 0$.

- If experiments were carried out at fixed centrality, the Gaussian model would give

In reality, centrality fluctuates: For a given value of E_T (or N_{ch}), we average moments over c using the probability distribution $P(c | E_T)$, before evaluating the cumulant

Fitting ATLAS data

The simple Gaussian model reproduces all elliptic flow (v_2) data: It fits simultaneously cumulants of order 2, 4, 6 are, with both centrality classifiers.

In particular, we get the change of sign of nc_2 {4} "for free".

Implies that v_2 is driven by the true centrality, rather than N_{ch} or E_T .

Output of fit

Our fit returns the variation of the mean elliptic flow in the reaction plane and of the width of flow fluctuations with the *true centrality* (only look at solid lines...)

This facilitates comparison between theory and data. Running hydro calculations at fixed impact parameter is straightforward.

2nd step: Non-Gaussian corrections

- Event-by-event hydrodynamic simulations have established that v_n is proportional to the initial anisotropy ε_n to a good approximation: v_n = κ_nε_n
 ε is bounded by unity: ε² + ε² < 1
- ε_n is bounded by unity: $\varepsilon_x^2 + \varepsilon_y^2 < 1$
- This implies that the distribution of $(\varepsilon_x, \varepsilon_y)$ is narrower than a Gaussian. Generates a negative $nc_n\{4\}$.
- This effect explains both $v_2{4} > 0$ in p+Pb, and $v_3{4} > 0$ in Pb+Pb.

Yan JYO <u>1312.6555</u>

Refitting ATLAS data

- We add the leading non-Gaussian corrections to the distribution at fixed c: | extra fit parameter for v_3 and v_4 (kurtosis), 2 for v_2 (skewness and kurtosis).
- Fit quality much improved for $nc_{3}{4}$ and $nc_{4}{4}$

Are non-Gaussianities universal?

- Larger fluctuations are less
 Gaussian.
- Simple scaling arguments show that the ratio $nc_n \{4\}/\langle \varepsilon_n^2 \rangle$ should depend weakly on system size (cf. ratio of kurtosis/variance, Nadine's talk on Tuesday).
- Initial state calculations at fixed *c* using the Trento model consistently return $nc_n \{4\}/\langle \varepsilon_n^2 \rangle \simeq -2$

(speculative) data-driven estimate of hydro response

- If $v_n = \kappa_n \varepsilon_n$, where κ_n is the hydrodynamic response coefficient, then the boundary condition $\varepsilon_n < 1$ implies $v_n < \kappa_n$.
- Smaller κ_n implies less space for long tails, hence larger deviation from Gaussian.
- The larger non-Gaussianity for v_4 than for v_3 is in fact a natural consequence of the smaller hydrodynamic response in the higher harmonic.
- Assuming a universal non-Gaussianity at fixed c, $nc_n \{4\}/\langle \varepsilon_n^2 \rangle \simeq -2$, we obtain a data-driven estimate $0.09 < \kappa_4 < 0.11$.
- Bounds are tighter on κ_4 than on κ_2 and κ_3 .
- Potentially interesting as κ_4 is more sensitive to viscosity than κ_2 or κ_3 .

4. Understanding data on [pt] fluctuations

ATLAS sees a fall of the variance of $[p_T]$ by a factor ~ 2 around the knee.

We model this in a way analogous to v_n fluctuations, by assuming that fluctuations of $[p_T]$ at fixed c are Gaussian.

 $Var(p_t) (MeV/c)^2$

Fluctuations at fixed centrality

What we have learned so far:

- Fluctuations of N_{ch} are Gaussian
- Fluctuations of the anisotropic flow vector $(v_{n,x}, v_{n,y})$ are (almost) Gaussian.
- One can neglect the correlation between $(v_{n,x}, v_{n,y})$ and N_{ch} .

Natural extension:

- Fluctuations of $[p_T]$ are Gaussian.

• Major difference is: the correlation between $[p_T]$ and N_{ch} is essential.

Event-by-event hydrodynamics at fixed c

 Strong correlation 		1160
between N_{ch} and $[p_T]$.	[pt] [MeV/c]	1140 -
• In hydro, $[p_T]$ is		1120 -
proportional to the		1100 -
temperature of the QGP.		1080 -
• The increase of $[p_T]$ with		1060 -
N_{ch} is driven by the speed		1040 -
of sound of the QGP.		1020
 Consequence of 		5000
thermalization.		

Gardím Gíacalone Luzum JYO Nature Phys. 16 (2020) 6, 615

Gaussian parametrization

- We assume that the joint distribution of N_{ch} and 1160 $[p_T]$ is a correlated 1140 Gaussian, which has 5 1120 [p_t] [MeV/c] parameters. 1100 • 2 parameters are already 1080 known, I (mean p_t) is 1060 irrelevant. 1040 - We assume that σ_{p_T} is a 1020 power law of multiplicity, 5000 and that r is constant: • 3 fit parameters adjusted
- to ATLAS data.

Averaging over centrality

- The distribution of $[p_T]$ at fixed N_{ch} and c is also a 1160 Gaussian (nice property of 1140 the multidimensional 1120 Gaussian distribution). 1100 • Procedure = as for v_n : 1080
- Procedure = as for v_n:
 I. compute the moments

 ([p_T]ⁿ) at fixed N_{ch} and c.
 2. average them over c.
 3. evaluate cumulants at

 fixed N_{ch} (variance,

 skewness), as measured in

Gaussian distributions at fixed *c*

At fixed N_{ch} , two contributions to the width in δp_t

fluctuations from the variation of b (several ellipses contribute)

At fixed N_{ch}, two contributions to the width in δp_t

fluctuations of δp_t at 2. fixed **b** and N_{ch} (height of a single ellipse)

At fixed N_{ch}, two contributions to the width in δp_t

Only this second 2. term remains in ultracentral collisions

Fit results: Var([pt]) versus Nch

 $Var(p_t) (MeV/c)^2$

ATLAS data model fit

Our simple model naturally explains the observed fall in ultracentral collisions. It is the combination of two effects Thermalization

2. Centrality fluctuations

3500 4000

Non-Gaussian fluctuations

Samanta Picchetti Luzum JYO 2306.09294

- around the knee.
- centrality c.
- knee.
- The skewness and kurtosis of $[p_T]$ fluctuations are those of the truncated Gaussian.

• We predicted a significant skewness and kurtosis of $[p_T]$ fluctuations

• Consider for simplicity that at fixed N_{ch} , $[p_T]$ increases linearly with

• The distribution of centrality c is a truncated Gaussian around the

New ATLAS analysis

Our Gaussian model underestimates the skewness. Needs to be improved by skewing the Gaussian (intrinsic skewness).

Summary

- The quantum uncertainty on impact parameter is negligible in Pb+Pb collisions at the LHC: $\delta b = 4 \times 10^{-7} \text{fm}$
- Both the magnitude and orientation of impact parameter are classical quantities.
- Pb+Pb collisions with the same impact parameter differ only by quantum fluctuations.
- The impact parameter is an essential quantity for hydro modeling, as it determines the geometry.
- For technical reasons, this classical quantity cannot be measured, and it plays the role of a hidden variable, whose relevance is not always realized, both by theorists and experimentalists.

Perspectives

- be generalized to many other correlations.
- Bożek's correlator between $[p_T]$ and v_n is also largely driven by centrality fluctuations: at fixed N_{ch} , collisions with larger c have both larger $[p_T]$ and larger v_n .
- v_3 (see talk by Magdalena on Monday).
- I want to extend this approach to semi-central collisions, but the consider this a severe limitation for phenomenology.

• I have shown only two types of observables, but the same approach can

Algantaní Giacalone JYO, work in progress

• A similar reasoning applies to symmetric cumulants between, say, v_2 and

magnitude of centrality fluctuations is only known in central collisions. I