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Centrality in experiment

•  Analyses of experimental data at the LHC are always done in 
centrality classes.

•  A specific observable is used as a centrality classifier: particle 
multiplicity  in a detector (ATLAS), number of hits in a 
scintillator (ALICE), energy  deposited in a calorimeter (CMS, 
ATLAS).

• most central  of events with largest   or . 

Nch
ET

0 − 5 % ≡ 5 % Nch ET
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Centrality in theory

•  Centrality originally refers to impact 
parameter  distance between the 
centers of colliding nuclei A and B.

• The true centrality is 
•   corresponds to the  of 

events with the smallest 
• In this talk, "fixed centrality" means 

"fixed impact parameter". 

b ≡

c ≡ πb2/σPbPb
c < 0.05 5 %

b .

B

A
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Outline

1. Puzzling observations in ultracentral collisions
2. Reconstructing the probability distribution of the true 

centrality   
3. Understanding anisotropic flow ( ) fluctuations in ultracentral 

collisions 
4. Understanding mean transverse momentum ( ) fluctuations 

in ultracentral collisions

5. Summary and perspectives

c
vn
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1. Puzzling observations in ultracentral collisions
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Event-by-event fluctuations of   [pT]

transverse momentum 
per particle in an event

For very large  (ultracentral 
collisions): 

• The mean value increases
• The relative variance  

decreases
• The relative skewness  

decreases 

[pT] ≡

Nch
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Correlation between  and anisotropic flow [pT] vn

Pearson correlation coefficient between  and ρn ≡ [pT] v2
n Bożek 1601.04513

ATLAS 2205.00039

• Differs depending on whether centrality is defined using  or  
• Decreases for ultracentral collisions

Nch ET

https://arxiv.org/abs/1601.04513
https://arxiv.org/abs/2205.00039
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Anisotropic flow  fluctuationsvn
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https://arxiv.org/abs/1904.04808
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• In this talk, I show that these peculiarities are simple consequences of  
centrality fluctuations: 

• A fixed value of the centrality classifier  or  corresponds to a 
range of true centralities, which can be precisely determined from data.

• The general observation is that correlations and fluctuations decrease 
for ultracentral collisions.  This is due to the gradual disappearance of 
centrality fluctuations:  for ultracentral (see next part). 

• No hydrodynamic modeling here, just minimal theory input: central limit 
theorem, analyticity, symmetry (I'll use follow this colour code 
throughout this presentation)

Nch ET

c ≈ 0
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2. Reconstructing the probability distribution of 
the true centrality   c

• First, solve the inverse problem: what is the distribution of  (or 
) at fixed centrality? 

• Then apply Bayes' theorem:  

ET
Nch

P(c |ET) =
P(ET |c)P(c)

P(ET)
=

P(ET |c)
P(ET)

Das Giacalone Monard  JYO 1708.00081

https://arxiv.org/abs/1708.00081
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Input: distribution of the centrality classifier

We need experiments to provide the histogram of the centrality classifier.
Not all collaborations agree to share these data !  

 1904.04808 1904.04808

https://arxiv.org/abs/1904.04808
https://arxiv.org/abs/1904.04808
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Basic assumption: Gaussian fluctuations

We assume that the fluctuations of  at fixed  are Gaussian: 
 is a Gaussian distribution, mean  and width  are smooth functions of . 

The width  can be read off from the tail of the distribution.  

ET c
P(ET |c) ET σET

c
σET

(c = 0)

101

102

103

104

105

1.5 2 2.5 3 3.5 4 4.5 5

ATLAS data

N
ev
en
ts

ET [TeV]

Distribution of 
for  
(head-on collisions)

ET
c = 0



13

Fitting the distribution of ET

We fit the distribution of  as an integral of Gaussians over the centrality . 
The fit returns the mean value  and the width .
The variation of  cannot be determined from data. 
This is why we focus on 0-5% most central collisions, where 
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ET(c) σET

(c = 0)
σET

(c)
σET

(c) ≃ σET
(0)

101

102

103

104

105

1.5 2 2.5 3 3.5 4 4.5 5

ATLAS data
fit

N
ev
en
ts

ET [TeV]

different Gaussians 
successive 
increments of  by 
1% 

≡

c



14

The knee

We define the knee of the distribution of  as the mean value of  for . 
This is an output of the fit, and it is determined very precisely (typically 0.3% accuracy).
We propose to call ultracentral the events above the knee. 
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Central versus ultracentral collisions

Many analyses use 0-5% as the most central bin. 

5% 5%
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Central versus ultracentral collisions

Ultracentral collisions are a much smaller fraction
(note:  knee corresponds approximately to the max. slope of histogram on linear scale)

0.34% 0.47%
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Distribution of centrality from Bayes' theorem
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For , (not shown). 
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3. Understanding anisotropic flow ( ) 
fluctuations in ultracentral collisions

vn
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1st step: Gaussian model

We assume that the fluctuations of elliptic flow 
 at fixed  are Gaussian 

in the intrinsic frame where  impact parameter: 

.

the mean elliptic flow in the reaction plane, , and the std. 
dev. of flow fluctuations  are smooth functions of , 
which are our fit parameters. 
Note that  azimuthal symmetry requires .

For  and , same, with  (triangular flow is 
solely due to fluctuations)

v2x ≡ ⟨cos(2φ)⟩, v2y ≡ ⟨sin(2φ)⟩ c
x ∥

p(v2x, v2y) =
1

πσ2
v

exp (−
(v2x − v)2 + v2

2y

σ2
v )

v
σv c

v(c = 0) = 0

v3 v4 v(c) = 0

Voloshin Poskanzer Tang Wang  
0708.0800

https://arxiv.org/abs/0708.0800
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Averaging over centrality

The moments of the distribution of   at fixed  are those of the Gaussian: 

If experiments were carried out at fixed centrality, the Gaussian model would give

=  (flow in reaction plane+fluctuations)

 (higher-order cumulants=flow in reaction plane)

In reality, centrality fluctuates: For a given value of  (or ), we average moments 
over  using the probability distribution  , before evaluating the cumulant 

. 

For  and , same, with .

v2 c
⟨v2

2⟩ = v2 + σ2
v

⟨v4
2⟩ = v4 + 4v2σ2

v + 2σ4
v

v2{2} ≡ (⟨v2
2⟩)1/2 v̄2 + σ2

v

v2{4} ≡ (2⟨v2
2⟩2 − ⟨v4

2⟩)1/4 = v̄

ET Nch
c P(c |ET)

nc2{4}

v3 v4 v = 0
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Fitting ATLAS data

The simple Gaussian model 
reproduces all elliptic flow ( ) data: 
It fits simultaneously cumulants of 
order 2, 4, 6 are, with both centrality 
classifiers.

In particular, we get the change of sign 
of  "for free". 

Implies that  is driven by the true 
centrality,  rather than  or  .

v2

nc2{4}

v2
Nch ET
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Output of fit

Our fit returns the variation of the 
mean elliptic flow in the reaction plane 
and of the width of flow fluctuations 
with the true centrality 
(only look at solid lines...) 

This facilitates comparison between 
theory and data. Running hydro 
calculations at fixed impact parameter 
is straightforward. 
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2nd step: Non-Gaussian corrections

• Event-by-event hydrodynamic 
simulations have established that  is 
proportional to the initial anisotropy  
to a good approximation:  

•  is bounded by unity: 
• This implies that the distribution of 

 is narrower than a Gaussian. 
Generates a negative . 

• This effect explains both  in 
p+Pb, and  in Pb+Pb.  

vn
εn

vn = κnεn
εn ε2

x + ε2
y < 1

(εx, εy)
ncn{4}

v2{4} > 0
v3{4} > 0

Yan  JYO  1312.6555

https://arxiv.org/abs/1312.6555
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Refitting ATLAS data

• We add the leading non-
Gaussian corrections to the 
distribution at fixed : 1 extra fit 
parameter for  and  
(kurtosis), 2 for  (skewness and 
kurtosis). 

• Fit quality much improved for 
 and 

c
v3 v4

v2

nc3{4} nc4{4}
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Are non-Gaussianities universal? 

• Larger fluctuations are less 
Gaussian. 

• Simple scaling arguments show 
thatthe ratio  should 
depend weakly on system size (cf. 
ratio of kurtosis/variance, Nadine's 
talk on Tuesday). 

• Initial state calculations at fixed  
using the Trento model consistently 
return  

ncn{4}/⟨ε2
n⟩

c

ncn{4}/⟨ε2
n⟩ ≃ − 2

-2.5

-2

-1.5

-1
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0
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Krt ε3
Krt ε4
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(speculative) data-driven estimate of hydro response
• If , where  is the hydrodynamic response coefficient, then 

the boundary condition  implies . 
• Smaller  implies less space for long tails, hence larger deviation from 

Gaussian. 
• The larger non-Gaussianity for  than for  is in fact a natural 

consequence of the smaller hydrodynamic response in the higher 
harmonic. 

• Assuming a universal non-Gaussianity at fixed , , 
we obtain a data-driven estimate . 

• Bounds are tighter on  than on  and .
• Potentially interesting as  is more sensitive to viscosity than  or .

vn = κnεn κn
εn < 1 vn < κn

κn

v4 v3

c ncn{4}/⟨ε2
n⟩ ≃ − 2

0.09 < κ4 < 0.11
κ4 κ2 κ3

κ4 κ2 κ3
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ATLAS sees a fall of 
the variance of  
by a factor  
around the knee. 

We model this in a 
way analogous to  
fluctuations, by 
assuming that 
fluctuations of  at 
fixed  are Gaussian. 

[pT]
∼ 2

vn

[pT]
c

4. Understanding data on [pt] fluctuations
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https://arxiv.org/abs/2205.00039
https://inspirehep.net/files/4ec69ffb771afdd184a54dc7f0efbfee
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What we have learned so far: 
• Fluctuations of  are Gaussian
• Fluctuations of the anisotropic flow vector  are (almost) 

Gaussian. 
• One can neglect the correlation between  and . 

Natural extension: 
• Fluctuations of  are Gaussian.
• Major difference is: the correlation between  and  is essential. 

Nch
(vn,x, vn,y)

(vn,x, vn,y) Nch

[pT]
[pT] Nch

Fluctuations at fixed centrality
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Event-by-event hydrodynamics at fixed c

• Strong correlation 
between  and .

• In hydro,  is 
proportional to the 
temperature of the QGP.

• The increase of  with 
 is driven by the speed 

of sound of the QGP.  
• Consequence of 
thermalization. 

Nch [pT]
[pT]

[pT]
Nch 1 point = 1 collision

We simulate 150 collisions

entropy density increases 

temperature 
increases

Gardim Giacalone Luzum  JYO 
 Nature Phys. 16 (2020) 6, 615
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Gaussian parametrization
• We assume that the joint 

distribution of  and 
 is a correlated 

Gaussian, which has 5 
parameters. 

• 2 parameters are already 
known, 1 (mean ) is 
irrelevant.

• We assume that  is a 
power law of multiplicity, 
and that  is constant:

• 3 fit parameters adjusted 
to ATLAS data.   

Nch
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Averaging over centrality
• The distribution of  at 

fixed  and  is also a 
Gaussian (nice property of 
the multidimensional 
Gaussian distribution). 

• Procedure = as for :  
1. compute the moments 

 at fixed  and .  
2. average them over . 
3. evaluate cumulants at 
fixed   (variance, 
skewness), as measured in 
experiment.

[pT]
Nch c

vn

⟨[pT]n⟩ Nch c
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Nch
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Fit results: P(Nch,δpt)

Gaussian 
distributions at 
fixed c
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1. 

At fixed Nch, two 
contributions to the 
width in δpt

fluctuations from the 
variation of b (several 
ellipses contribute) 

Fit results: P(Nch,δpt)

38



2. fluctuations of δpt at 
fixed b and Nch (height 
of a single ellipse)

At fixed Nch, two 
contributions to the 
width in δpt

Fit results: P(Nch,δpt)
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Only this second 
term remains in 
ultracentral collisions 

2.

At fixed Nch, two 
contributions to the 
width in δpt

Fit results: P(Nch,δpt)

40



Fit results: Var([pt]) versus Nch
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Our simple model 
naturally explains the 
observed fall in 
ultracentral collisions. It is 
the combination of two 
effects 
1. Thermalization
2. Centrality fluctuations

41



Non-Gaussian fluctuations

• We predicted a significant skewness and kurtosis of  fluctuations 
around the knee. 

• Consider for simplicity that at fixed ,   increases linearly with 
centrality . 

• The distribution of centrality  is a truncated Gaussian around the 
knee. 

• The skewness and kurtosis of  fluctuations are those of the 
truncated Gaussian. 

[pT]

Nch [pT]
c

c

[pT]

Samanta Picchetti Luzum JYO 2306.09294
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https://arxiv.org/abs/2306.09294


New ATLAS analysis
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ATLAS 2407.06413

Our Gaussian model 
underestimates the skewness. 
Needs to be improved by 
skewing the Gaussian (intrinsic 
skewness). 

https://arxiv.org/abs/2407.06413
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Summary
• The quantum uncertainty on impact parameter is negligible in Pb+Pb 

collisions at the LHC: δb=4x10-7fm
• Both the magnitude and orientation of impact parameter are  classical 

quantities. 
• Pb+Pb collisions with the same impact parameter differ only by 

quantum fluctuations.
• The impact parameter is an essential quantity for hydro modeling, as it 

determines the geometry. 
• For technical reasons, this classical quantity cannot be measured, and it 

plays the role of a hidden variable, whose relevance is not always 
realized, both by theorists and experimentalists. 
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Perspectives
• I have shown only two types of observables, but the same approach can 

be generalized to many other correlations. 

• Bożek's correlator between  and  is also largely driven by 
centrality fluctuations: at fixed , collisions with larger  have both 
larger  and larger . 

• A similar reasoning applies to symmetric cumulants between, say,  and 
 (see talk by Magdalena on Monday). 

• I want to extend this approach to semi-central collisions, but the 
magnitude of centrality fluctuations is only known in central collisions. I 
consider this a severe limitation for phenomenology. 

[pT] vn
Nch c

[pT] vn

v2
v3

Alqahtani Giacalone JYO, work in progress 


