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• Introduction: Heavy-ion collisions and multi-stage physics models 

• Part 1 : Emulators 

Model emulators using Gaussian Processes 

Existing emulators: PCGP, PCSK.  New emulators: LCGP and AKSGP 

• Part 2 : Quantifying theoretical uncertainties 

Tensions between extracted specific viscosities in different heavy-ion studies. 

Quantifying theoretical uncertainties: Model discrepancy 

Example: Ball drop experiment 

• Summary

Overview
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In collaboration with Richard Furnstahl, Ulrich Heinz, Matthew Pratola

In collaboration with Moses Chan, Richard Furnstahl, Ulrich Heinz, and Matthew Pratola 
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Heavy-ion collisions
    Quark Gluon Plasma (QGP) phase: 
    Signs of “fluid” formation. 
     Two decades of research. 

• Equation of state?  
Hydro input taken from lattice QCD. 

• Transport properties of formed QGP: 
Coefficient of shear viscosity:   
Coefficient of bulk viscosity:  
First principles calculation have large uncertainties. 
Needs to be inferred from experiments.

P(T, μ), ϵ(T, μ)

η
ζ



Challenges: models are multi-stage, uncertain, and expensive 2
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Simulation models

4multi-stage models
Slide adapted from D. Liyanage



Simulation models
TRENTo

Free- 
stream

MUSIC

SMAS

JETSCAPE SIMS calibration 
D. Everett et al. 2010.03928, 2011.01430 

GRAD

SMASH

Pb - Pb at 2.76 TeV 
≈100 Observables multi-stage models

Slide adapted from D. Liyanage
4



Simulation models

VAH

Viscous Anisotropic 
Hydrodynamics Model
M. McNelis et al. 2101.02827

iEBE-MUSIC
https://github.com/
chunshen1987/iEBE-MUSIC

Many more models.. 

AMPT
Z. Lin et al. nucl-th/0411110

. . .

Trajectum
G. Nijs et al. 2010.15134

D. Liyanage et al. 2302.14184

TRENTo

Free- 
stream

MUSIC

SMAS

JETSCAPE SIMS calibration 
D. Everett et al. 2010.03928, 2011.01430 

GRAD

SMASH

Pb - Pb at 2.76 TeV 
≈100 Observables multi-stage models

PTMA

Slide adapted from D. Liyanage
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TRENTo

Free- 
stream

MUSIC

SMAS

JETSCAPE SIMS calibration 
D. Everett et al. 2010.03928, 2011.01430 

GRAD

SMASH

multi-stage models
Slide adapted from D. Liyanage

•N    : normalization 
•p     : generalized mean power 
•w    : nucleon width 
•    : multiplicity fluct. variance 
•dmin : min. dist. betw. nucleons
𝜎𝑘

•  : free-stream time scale  
•  : energy density scaling of 
𝜏𝑟
𝛼𝑠 𝜏𝑟

•Tsw : switching temperature 
•(  :  shear viscosity  
•   : bulk viscosity 

𝜂/𝑠)(𝑇 )
(𝜁/𝑠)(𝑇 )

Model parameters

Pb - Pb at 2.76 TeV 
≈100 Observables 

≈15 model parameters 
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TRENTo

Free- 
stream
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SMAS

JETSCAPE SIMS calibration 
D. Everett et al. 2010.03928, 2011.01430 

GRAD

SMASH

multi-stage models
Slide adapted from D. Liyanage

•N    : normalization 
•p     : generalized mean power 
•w    : nucleon width 
•    : multiplicity fluct. variance 
•dmin : min. dist. betw. nucleons
𝜎𝑘

•  : free-stream time scale  
•  : energy density scaling of 
𝜏𝑟
𝛼𝑠 𝜏𝑟

•Tsw : switching temperature 
•(  :  shear viscosity  
•   : bulk viscosity 

𝜂/𝑠)(𝑇 )
(𝜁/𝑠)(𝑇 )

Model parameters

Pb - Pb at 2.76 TeV 
≈100 Observables 

≈15 model parameters 

Bayesian studies require >  CPU hours. 
Need for fast and accurate model surrogates.

109
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Part 1 : Gaussian process Model emulators   
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Gaussian process Formal definition: A Gaussian process (GP) is a collection of random 
variables, any finite number of which have a joint Gaussian distribution.

Intuitive explanation: A Gaussian 
process (GP) represents an infinite 
set of functions, all derived from a 
specific “generating” function (the 
covariance kernel). The distribution 
of values these functions take at any 
input point is Gaussian.
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Formal definition: A Gaussian process (GP) is a collection of random 
variables, any finite number of which have a joint Gaussian distribution.

Some draws from a GP with different covariance kernel

Gaussian process

Intuitive explanation: A Gaussian 
process (GP) represents an infinite 
set of functions, all derived from a 
specific “generating” function (the 
covariance kernel). The distribution 
of values these functions take at 
any input point is Gaussian.
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By Cdipaolo96 - Own work, CC BY-SA 4.0 

Training data

Formal definition: A Gaussian process (GP) is a collection of random 
variables, any finite number of which have a joint Gaussian distribution.

Some draws from a GP with different covariance kernel

GP emulator training:  
Before training (prior) —> Training 
on data (posterior): keep only the 
curves passing through the data and 
optimize the hyper-parameters of 
covariance function accordingly —> 
Predict with uncertainty.

Gaussian process

Intuitive explanation: A Gaussian 
process (GP) represents an infinite 
set of functions, all derived from a 
specific “generating” function (the 
covariance kernel). The distribution 
of values these functions take at any 
input point is Gaussian.

https://commons.wikimedia.org/w/index.php?curid=47589433
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• Basis Representation Gaussian Process: Trains reduced number of GP’s than number of observables. 

PCGP :  Principle component based Gaussian Process. Consider mean, but ignores variance of data from simulation.  
 

PCSK  : Principle component based Gaussian Process. Consider mean, but ignores variance of data from simulation 
                  during hyperparameter optimization. Considers variance in posterior predictive distribution. 
 

LCGP : Transformation basis for data is estimated during GP training to allow variations in observable error.  
                 Adjusts mean and covariance from GP predictions according to variations in observable error. 
 
 

• Automatic kernel selection Gaussian Process (AKSGP): Trains independent GP’s for each observable. 

Account for both means and variances of data from simulation during GP training, ensuring that optimized 
hyperparameters are informed by both. 

The appropriate covariance kernel is automatically selected from a predefined list of kernels.

Gaussian Process based model emulators

M. Plumlee, Ö. Sürer,  S. Wild, M. Chan 
BAND SURMISE package

M. Chan,  PhD Thesis  
High-Dimensional Gaussian Process Methods for Uncertainty Quantification

D. Hidden, et. al. 
https://doi.org/10.1198/016214507000000888

D. Liyanage, Ö. Sürer, M. Plumlee, W. Matthew, U. Heinz,  
Phys. Rev. C. 108.054905

New emulator

New emulator

Existing emulator

Existing emulator

https://surmise.readthedocs.io
https://mosesyhc.owlstown.net/media_files/9039
https://doi.org/10.1198/016214507000000888
https://doi.org/10.1103/PhysRevC.108.054905
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Performance: PCGP_scikit < PCSK < PCGP < LCGP < AKSGP
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Performance: PCGP_scikit < PCSK < LCGP < PCGP < AKSGP



Different metrics for comparing Emulators
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Ongoing work in collaboration with Moses Chan, Richard Furnstahl, Ulrich Heinz, and Matthew Pratola 

Mean (standard deviation) over 5-fold cross validation (split training and test data randomly 5 times)

AKSGP kernel list: (RBF, Matern 1/2, Matern 3/2, Matern 5/2). Easily extendable to more kernels (non-stationary, anisotropic)

0 is  best

0 is  best

0 is best

0 is  best

0.95 is  best



Part 2 : Quantifying theoretical uncertainties
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Model prediction

TRENTo

Free- 
stream

MUSIC

SMAS

GRAD

SMASH

Best fit (MAP) output from 
the calibrated Models: 

Scikit GP 
RBF kernel
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stream

MUSIC
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GRAD
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VAH
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Best fit (MAP) output from 
the calibrated Models: 

Model prediction Scikit GP 
RBF kernel

PCSK 
 
MATERN kernel

11

BAND SURMISE package 
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BAND SURMISE package 

• MAP predictions for VAH+PTMA are in 
slightly better agreement with experimental 
data than SIMS+14-moment model.  

• How to quantify the level of improvement? 
Are the inferred physical parameters 
statistically compatible? How to quantify 
their theory uncertainty? 
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BAND SURMISE package 

• MAP predictions for VAH+PTMA are in 
slightly better agreement with experimental 
data than SIMS+14-moment model.  

• How to quantify the level of improvement? 
Are the inferred physical parameters 
statistically compatible? How to quantify 
their theory uncertainty? 

• Our aim — Correct inference of physical 
parameters.
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Tension between different studies
Coefficient of shear viscosity: η

JETSCAPE SIMS calibration 
D. Everett et al. 2010.03928, 2011.01430 

Viscous Anisotropic 
Hydrodynamics Model
M. McNelis et al. 2101.02827
D. Liyanage, O. Surer,  et al. 2302.14184

Three different models: Grad, CE, PTB

• Posterior distributions for  
differ between models but are 
mutually statistically compatible. 

 
 
 
 

η/s



12

Tension between different studies
Coefficient of bulk viscosity: ζCoefficient of shear viscosity: η

JETSCAPE SIMS calibration 
D. Everett et al. 2010.03928, 2011.01430 

Viscous Anisotropic 
Hydrodynamics Model
M. McNelis et al. 2101.02827
D. Liyanage, O. Surer,  et al. 2302.14184

Three different models: Grad, CE, PTB

• Posterior distributions for  
differ between models but are 
mutually statistically compatible. 

• Larger model differences seen in 
posterior distributions for , but 
still statistically compatible. 

η/s

ζ/s
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Accounting for theoretical uncertainties: Model discrepancy
George Box: “All models are wrong, but some are useful”
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Accounting for theoretical uncertainties: Model discrepancy
George Box: “All models are wrong, but some are useful”

• All theories are approximations of an underlying truth and should be applied only within their domains of 
validity. Extending a theory beyond its scope not only leads to incorrect parameter estimates, rendering 
them as mere fitting variables, but also reduces the utility of the data. Therefore, it is essential to account 
for the uncertainties in the theory. 

• Consideration of theoretical uncertainties for the complex multi-stage heavy-ion models is beyond current 
theoretical capabilities. As a first step, we develop a statistical framework to model this uncertainty. 
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Truth Observation errorPhysical observation

y(ti) = ζ(ti) + ϵ(ti) Statistical equation

Accounting for theoretical uncertainties: Model discrepancy
George Box: “All models are wrong, but some are useful”



• All theories are approximations of an underlying truth and should be applied only within their domains of 
validity. Extending a theory beyond its scope not only leads to incorrect parameter estimates, rendering 
them as mere fitting variables, but also reduces the utility of the data. Therefore, it is essential to account 
for the uncertainties in the theory. 

• Consideration of theoretical uncertainties for the complex multi-stage heavy-ion models is beyond current 
theoretical capabilities. As a first step, we develop a statistical framework to model this uncertainty. 

• Possible framework: GP based model discrepancy by O’Hagan et. al. 
 
 
 
 
 
 

13

Model Observation errorPhysical observation

y(ti) = η(ti, θ) + ϵ(ti) But truth may not be among the models considered

Accounting for theoretical uncertainties: Model discrepancy
George Box: “All models are wrong, but some are useful”



• All theories are approximations of an underlying truth and should be applied only within their domains of 
validity. Extending a theory beyond its scope not only leads to incorrect parameter estimates, rendering 
them as mere fitting variables, but also reduces the utility of the data. Therefore, it is essential to account 
for the uncertainties in the theory. 

• Consideration of theoretical uncertainties for the complex multi-stage heavy-ion models is beyond current 
theoretical capabilities. As a first step, we develop a statistical framework to model this uncertainty. 

• Possible framework: GP based model discrepancy by O’Hagan et. al. 
 
 
 
 
Model  as a Gaussian process. Choice of covariance kernel motivated from the physics. δ(ti)
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Model Accounts for discrepancy 
between model and truth

Observation errorPhysical observation

y(ti) = η(ti, θ) + δ(ti) + ϵ(ti)
M. Kennedy, A. O’Hagan, Bayesian calibration of computer models, 
https://doi.org/10.1111/1467-9868.00294 

J. Brynjarsdóttir and A. OʼHagan, 
https://iopscience.iop.org/article/10.1088/0266-5611/30/11/114007   

D. Higdon, M. Kennedy, et. al.,  
https://doi.org/10.1137/S1064827503426693

Accounting for theoretical uncertainties: Model discrepancy
George Box: “All models are wrong, but some are useful”

https://doi.org/10.1111/1467-9868.00294
https://iopscience.iop.org/article/10.1088/0266-5611/30/11/114007
https://doi.org/10.1137/S1064827503426693
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Gaussian process: flexible modeling

Correlation length   ->ℓ

Stationary vs non-stationary kernel -> 

Variation over a length of 1 Variation over a length of 3

Stationary Non-stationary

Gaussian kernel: k(xi, xj) = c̄2 exp (−
d(xi, xj)2

2ℓ2 )
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A simple example: ball drop experiment

• A ball is dropped from a tower of height 60 m 

• Velocity and height are measured at different 
times. Measurements are uncertain. 
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A simple example: ball drop experiment

• A ball is dropped from a tower of height 60 m 

• Velocity and height are measured at different 
times. Measurements are uncertain. 

• Reality has air resistance. 
 
Drag force:  

EoM:  

fD = − (bv + cv2) v̂
m

dv
dt

= mg − bv − cv2v̂ ,
dh
dt

= − v
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A simple example: ball drop experiment

Goal is to measure the acceleration due to gravity .g (9.8 m/s2)

• A ball is dropped from a tower of height 60 m 

• Velocity and height are measured at different 
times. Measurements are uncertain. 
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Physics model
• Physics theory considered ignores air resistance. 

EoM:   

• Bayesian inference considers the parameters  and  to be random variables.

v = v0 + gt h = h0 − v0t −
1
2

gt2

g v0

Priors

Physics input:  always positiveg
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Bayesian inference without model discrepancy
• Inferred values of parameters are far from truth : ,  

• Parameter inference incorrect and confident. 

g (9.8) v0 (0)

Maximum likelihood 
True value 

Priors

Mean  above/below mean±1σ
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Bayesian inference without model discrepancy

Maximum likelihood 
True value 

Priors

Mean • Inferred values of parameters are far from truth : ,  

• Parameter inference incorrect and confident. 

• Model prediction seems bad for velocity, but shows good 
agreement for height. 

g (9.8) v0 (0) above/below mean±1σ
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Maximum likelihood 
True value 

Priors

Mean • Added discrepancy term .  
Stationary covariance (RBF kernel). 

• Parameter inference still incorrect but less confident. 

δ(ti) above/below mean±1σ

With model discrepancy (physics uninformed)

k(ti, tj) = c̄2 exp (−
d(ti, tj)2

2ℓ2 )
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With model discrepancy (physics informed-I)
• We know model ignores air drag, so let variance of discrepancy 

GP increase with time. Non-stationary covariance.

k(ti, tj) = c̄2titj exp (−
d(ti, tj)2

2ℓ2 )
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Maximum likelihood 
True value 

Priors

Mean  above/below mean±1σ

• Parameter inference more accurate and confident for .  

Still incorrect but less confident for .

v0
g

k(ti, tj) = c̄2titj exp (−
d(ti, tj)2

2ℓ2 )

• We know model ignores air drag, so let variance of discrepancy 
GP increase with time. Non-stationary covariance.

With model discrepancy (physics informed-I)



k(ti, tj) = c̄2t2
i t2

j exp (−
d(ti, tj)2

2ℓ2 )

20

Maximum likelihood 
True value 

Priors

Mean  above/below mean±1σ

• Parameter inference more accurate and confident for  and .v0 g

• We know model ignores air drag, so let variance of discrepancy GP 
increases with time. Non-stationary covariance.

• Additionally, say we know from physics that the rate at which the model 
deviates from truth in time is quadratic (this can be a parameter).

With model discrepancy (physics informed-II)



k(ti, tj) = c̄2t2
i t2

j exp (−
d(ti, tj)2

2ℓ2 )

20

Maximum likelihood 
True value 

Priors

Mea  aa±1σ

• Paaaaafi a v0 g

• We know model ignores aaaaa
aaaaa

• Additionaaaaa
aaaaaaa

With model discrepancy (physics informed-II)

Revised George Box: “All models are wrong, but some 
models that know when they are wrong, are useful.”



Summary
• Expensive heavy-ion model simulations demands fast and accurate model emulators. 

• Quantifying theoretical uncertainties is a necessity for correct parameter inference.  

                  

                  



Summary

                  

                  

Thank You!

• Expensive heavy-ion model simulations demands fast and accurate model emulators. 

• Quantifying theoretical uncertainties is a necessity for correct parameter inference.  



Backup



Transport coefficients from different calculations

O. Soloveva, D. Fuseau, J. Aichelin, E. Bratkovskaya, 2011.03505 Valeriya Mykhaylova Thesis

Large Uncertainties

https://inspirehep.net/files/73a076d03abe7a044bb6ce620967a6b3


QCD phase diagram

Foka, Panagiota et al - arXiv:1702.07233

https://cds.cern.ch/search?f=author&p=Foka%2C%20Panagiota&ln=en
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Initial Energy Deposition (TRENTO)
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Pb-Pb @ 2.76 TeV + = 0.4fm
arXiv:1904.08290v1

Parameter Symbol

reduced thickness 8
nucleon width +

energy 
normalization

9

multiplicity
fluctuation

:!

min. distance btw. 
nucleons

,"#$

Parametrization for energy deposition at proper time b = 0;

+
,"#$

&! controls 
‘contrast’

Slide adapted from D. Everett
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Pre-hydro (freestreaming)

Parameter Symbol

ref. proper time <%
energy 

dependence
⍺

Δτ

Freestream massless particles:

Take initial momentum-distribution 
isotropic in transverse plane

f(t,x;p) = f(t0,x� v�t;p)

<latexit sha1_base64="V33MlHMhTvHZnxuxYoi0gQI48tg=">AAACPXicbVDLSgMxFM3UV62vqks3wSJU0DIjFQURCrrQXYW+oC0lk2ba0MyD5E6xDPNjbvwHd+7cuFDErVvTB8W2Xgice8495N5jB4IrMM1XI7G0vLK6llxPbWxube+kd/cqyg8lZWXqC1/WbKKY4B4rAwfBaoFkxLUFq9q9m6Fe7TOpuO+VYBCwpks6Hnc4JaCpVrrkZOEEN1wCXduJHmN8NW2C+BhfY623zJmJ02nTjxu3TADBMGtrpTNmzhwVXgTWBGTQpIqt9Euj7dPQZR5QQZSqW2YAzYhI4FSwONUIFQsI7ZEOq2voEZepZjS6PsZHmmljx5f6eYBH7F9HRFylBq6tJ4crqnltSP6n1UNwLpsR94IQmEfHHzmhwODjYZS4zSWjIAYaECq53hXTLpGEgg48pUOw5k9eBJWznJXPnT/kM4X7SRxJdIAOURZZ6AIV0B0qojKi6Am9oQ/0aTwb78aX8T0eTRgTzz6aKePnF/W9rV0=</latexit>
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<latexit sha1_base64="D0lEhEJuQUEA9a0bGG57cRNY3HI=">AAACnHicbVFraxQxFM2Mr7q+Vv0kggQXYQu6zJRKC0Us2A8tIlTY3RY265DJZjqhmUzIo7iE/Kr+k37z35h5iLX1wiUn5+Tc3NzkkjNtkuRXFN+5e+/+g42Hg0ePnzx9Nnz+Yq5rqwidkZrX6jTHmnIm6Mwww+mpVBRXOacn+fmXRj+5oEqzWkzNWtJlhc8EKxjBJlDZ8HL6w6HKImH9GBlss3ITfoKoUJi4dp/4bi09REyYXlohWTLvtpBkgS+xcdK3ha7vQk3YlA/2Jj0cw67ke4gqbMq8cD99NoUfOs8fTvqGRAeUG9wa9uBfKSib2XCUTJI24G2Q9mAE+jjOhldoVRNbUWEIx1ov0kSapcPKMMKpHyCrqcTkHJ/RRYACV1QvXTtcD98FZgWLWoUM72/Z6w6HK63XVR5ONl3qm1pD/k9bWFPsLh0T0hoqSHdRYTk0NWx+Cq6YosTwdQCYKBZ6haTEYfom/OcgDCG9+eTbYL41SbcnH79vj/aP+nFsgNfgLRiDFOyAfXAIjsEMkOhV9Dk6jI7iN/FB/DX+1h2No97zEvwT8fw3/N7N3w==</latexit>

�⌧ = ⌧R

✓
h✏i
✏R

◆↵

<latexit sha1_base64="fMipYqFzF1Azoh/E5jNy8JFA3Jc="></latexit>

Slide adapted from D. Everett



Viscous Hydro
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Parameter Symbol

temperature of 
kink

@&

shear at kink ( AB C)'#$'
shear low-T slope D()*
shear high-T slope D+#,+

temperature of 
bulk peak

@-

bulk at peak ( AE C)"./
bulk width +-

bulk skewness λ

shear relax. time F0

The	viscosity	of	QGP:

Quantify	transport	properties	:	
shear	and	bulk	viscosities	

⌧⇡⇡̇
hµ⌫i + ⇡µ⌫ = 2⌘�µ⌫ + ...

<latexit sha1_base64="mCFiiPsYYC6d7XWvnPeMyBOK5Ic="></latexit>

⌧⇧⇧̇+⇧ = �⇣✓ + ...

<latexit sha1_base64="cUBmAGzI4vQemO4xPjjR4IXzUjw="></latexit>

!

η

Slide adapted from D. Everett



Viscous Hydro
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Parameter Symbol

temperature of 
kink

@&

shear at kink ( AB C)'#$'
shear low-T slope D()*
shear high-T slope D+#,+

temperature of 
bulk peak

@-

bulk at peak ( AE C)"./
bulk width +-

bulk skewness λ

shear relax. time F0

Viscosity	parameterizations:

iG

λ
( () *)"#$

JE
( (, *)%&'%

-(&)(
-*+,.-

Slide adapted from D. Everett



Heavy-ion simulation 

• Simulation model takes parameter  as input and produces as 

outputs (observables). Number of model parameters , and number of outputs . 
 

• The simulation model is stochastic:  For a given , model can produce different outputs on each run (event). 
Physics model output is  distributions. 
 

• Model is computationally expensive: ≈1000 CPU hours needed to run 2500 events at one parameter set . 
Bayesian posterior inference requires model simulations at  samples of parameter space. 
>  CPU hours required. Inference is out of reach without emulation. 
 

• Need for fast and accurate model surrogates to perform any Bayesian study. 
Gaussian process based model emulators are used in heavy-ion studies.

θ ∈ ℝd y(θ) ∈ ℝp, y(θ) = (y1(θ), …, yp(θ))T

d = 17 p = 110

θ
p = 110

θ
> 106

109

uncertain

expensive

(JETSCAPE model for Pb-Pb collisions at  TeV)sNN = 2.76



Gaussian Process based model emulators
• We want emulators to “interpolate” in the   (=17) dimensional parameter space. 

Consider the mean values of the  (=110) distributions for each   .  

For  (=500) training set  (Latin Hypercube Sampling), define a 
 matrix:   

Standardize dataset by removing mean and scaling to unit variance  
for all -distributions:  

Principal Component Analysis  Reduce dimensionality of dataset 

Transform by doing PCA and keep  principal components. 
In most applications,  is sufficient to describe almost all the  
variance in the original dataset. 

• Train  independent Gaussian process corresponding to the  reduced  
observables (means). Each Gaussian process is  dimensional.

d

p θi : y(θi)

n {θ1, …, θn}
n × p M ≡ {y(θ1), …, y(θn)}

p M → M̃

→

q < p
q ≪ p

q q
d



Metrics for comparing emulators
Root mean squared error (RMSE): Compares mean of two distributions: square root of the mean squared error. 

 Empirical coverage: Measures how often the mean of true distribution  fall within the predicted confidence 
                                                               interval of the approximate distribution . Does not involve variance of the true distribution . 

Kullback–Leibler divergence:  Compares distributions.  Expected excess “surprise” from using approximate distribution   
                                                                          instead of true distribution . 

Hellinger distance: Compares distributions. amount of overlap between two distributions. 

Wasserstein distance: Compares distributions. Amount of work required to turn one distribution into another.

95 % P 95 %
Q P

Q
P

∝ 1−


