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Overview

- Introduction: Heavy-ion collisions and multi-stage physics models
- Partl:Emulators
o Model emulators using Gaussian Processes

o Existing emulators: PCGP, PCSK. New emulators: LCGP and AKSGP

In collaboration with Moses Chan, Richard Furnstahl, Ulrich Heinz, and Matthew Pratola

- Part 2 : Quantitying theoretical uncertainties
o Tensions between extracted specific viscosities in different heavy-ion studies.
o Quantifying theoretical uncertainties: Model discrepancy
In collaboration with Richard Furnstahl, Ulrich Heinz, Matthew Pratola

o Example: Ball drop experiment

e Summary



Heavy-ion collisions
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Kinetic o : y 1 :
made by Chun Shen freeze-out Signs of “fluid” formation.

Hadronization b, b Two decades of research.
Initial energy /
density

- Equation of state? P(T, u), e(T, u)
Hydro input taken from lattice QCD.

- Transport properties of formed QGP:
Coetficient of shear viscosity: i

collision ~—— - 7
overlap zone .- i Coefficient of bulk viscosity: ¢
i First principles calculation have large uncertainties.
pre- Needs to be inferred from experiments.

equilibrium . _
namics viscous hydrodynamics

free streaming
e

collision evolution
t~0fm/c tT~1fm/c Tt ~ 10 fm/c T ~ 101 fm/c

Challenges: models are multi-stage, uncertain, and expensive 2



Measuremeﬂts (in transverse plane at midrapidity) Centrality

0-5% 5-10% 20-30% 40-50 %

Particle yields for . .
/ Charged particle yield: Observables
kaons, pions and type
protons:
CMS Experiment at LHC, CERN dET / d}/]
Lumi section: 173 dNCh/d;,I
dN,
Mean transverse
energy: dy
<2} Observables
. (= 100)
iptic, triangular and .
uadrangular flows: Spy
(Pr)
Mean transverse < Pr >
momentum fluctuations:

Mean transverse momenta of kaons, pions, protons: ,
<PT>7T» <PT> % <PT>p
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JETSCAPE SIMS calibration
D. Everett et al. 2010.03928, 2011.01430
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JETSCAPE SIMS calibration
D. Everett et al. 2010.03928, 2011.01430

Simulation models
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JETSCAPE SIMS calibration

D. Everett et al. 2010.03928,

2011.01430

Model parameters
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JETSCAPE SIMS calibration
D. Everett et al. 2010.03928, 2011.01430
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Part 1: Gaussian process Model emulators



. Formal definition: A Gaussian process (GP) is a collection of random
GaUSS]-a-n prOceSS variables, any finite number of which have a joint Gaussian distribution.

Intuitive explanation: A Gaussian
process (GP) represents an infinite
set of functions, all derived from a
specific “generating” function (the
covariance kernel). The distribution
of values these functions take at any
Input point is Gaussian.
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. Formal definition: A Gaussian process (GP) is a collection of random
GaUSSIan prOceSS variables, any finite number of which have a joint Gaussian distribution.

Intuitive explanation: A Gaussian
process (GP) represents an infinite
set of functions, all derived from a
specific “generating” function (the
covariance kernel). The distribution
of values these functions take at any
Input point is Gaussian.

GP emulator training:

Before training (prior) —> Training
on data (posterior): keep only the
curves passing through the data and
optimize the hyper-parameters of
covariance function accordingly —>
Predict with uncertainty.

Some draws from a GP with different covariance kernel

Gaussian, £ =1 Exponential, £ = 3 Matern52, £ = 3

Posterior . Prediction with Uncertainty
By Cdipaold96 - Own work, CC BYZSA 4.0 1. T T T T
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https://commons.wikimedia.org/w/index.php?curid=47589433

(Gaussian Process based model emulators

- Basis Representation Gaussian Process: Trains reduced number of GP’s than number of observables.

o PCGP : Principle component based Gaussian Process. Consider mean, but ignores variance of data from simulation.

.. D. Hidden, et. al.
Existing emulator https://doi.org/10.1198/016214507000000888

o PCSK : Principle component based Gaussian Process. Consider mean, but ignores variance of data from simulation
during hyperparameter optimization. Considers variance in posterior predictive distribution.

EXlStlIlg emulator D. Liyanage, O. Siirer, M. Plumlee, W. Matthew, U. Heinz, M. Plumlee, O. Siirer, S. Wild, M. Chan
Phys. Rev. C. 108.054905 BAND SURMISE package

o LCGP : Transformation basis for data is estimated during GP training to allow variations in observable error.
Adjusts mean and covariance from GP predictions according to variations in observable error.

M. Chan, PhD Thesis
High-Dimensional Gaussian Process Methods for Uncertainty Quantification

New emulator

- Automatic kernel selection Gaussian Process (AKSGP): Trains independent GP’s for each observable.

o Account for both means and variances of data from simulation during GP training, ensuring that optimized
hyperparameters are informed by both.

o The appropriate covariance kernel is automatically selected from a predefined list of kernels.

New emulator


https://surmise.readthedocs.io
https://mosesyhc.owlstown.net/media_files/9039
https://doi.org/10.1198/016214507000000888
https://doi.org/10.1103/PhysRevC.108.054905
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Predictions on training data
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Predictions on test data
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Ditterent metrics for comparing Emulators

Mean (standard deviation) over 5-fold cross validation (split training and test data randomly 5 times)

PCGP PCGP _scikit PCSK LCGP AKSGP

0.249 0.284 0.273 0.28 0.267 <« 0is best
RMSE (0.009) (0.012) (0.010) (0.009) (0.003)

0.937 0.985 0.912 0.961 0.888 €—— (0.95is best
95% Coverage (0.007) (0.004) (0.008) (0.006) (0.006)

79.032 185.705 94.445 113.52 70.927 < Q1is best
KL Divergence (5.801) (17.342) (5.998) (7.317) (6.555)

0.687 0.742 0.696 0.721 0.676 <—— Ois best
Hellinger Distance (0.004) (0.004) (0.004) (0.004) (0.003)

0.270 0.422 0.290 0.345 0.258 <« (isbest
Wasserstein Distance (0.011) (0.021) (0.012) (0.015) (0.005)

AKSGP kernel list: (RBF, Matern 1/2, Matern 3/2, Matern 5/2). Easily extendable to more kernels (non-stationary, anisotropic)

Ongoing work in collaboration with Moses Chan, Richard Furnstahl, Ulrich Heinz, and Matthew Pratola



Part 2 : Quantifying theoretical uncertainties



Model prediction

Best fit (MAP) output from
the calibrated Models:
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Model prediction

Best fit (MAP) output from
the calibrated Models:
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Model prediction

Best fit (MAP) output from
the calibrated Models:

MAP predictions for VAH+PTMA dare In

slightly better agreement with experimental
data than SIMS+14-moment model.

How to quantify the level of improvement?
Are the inferred physical parameters
statistically compatible? How to quantify
their theory uncertainty?
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Model prediction

Best fit (MAP) output from
the calibrated Models:

MAP predictions for VAH+PTMA dare In
slightly better agreement with experimental
data than SIMS+14-moment model.

How to quantify the level of improvement?
Are the inferred physical parameters
statistically compatible? How to quantify
their theory uncertainty?

Our aim — Correct inference of physical
parameters.
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Tension between different studies

Coefficient of shear viscosity: i
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Tension between different studies
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All theories are approximations of an underlying truth and should be applied only within their domains of
validity. Extending a theory beyond its scope not only leads to incorrect parameter estimates, rendering

them as mere fitting variables, but also reduces the utility of the data. Therefore, it is essential to account
for the uncertainties in the theory.

Consideration of theoretical uncertainties for the complex multi-stage heavy-ion models is beyond current
theoretical capabilities. As a first step, we develop a statistical framework to model this uncertainty.
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Possible framework: GP based model discrepancy by O'Hagan et. al.

Y (ti) = (ti) + € (f,-) Statistical equation
\ l \ J \ l

| \ |

Physical observation  Truth Observation error
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Accounting for theoretical uncertainties: Model discrepancy
George Box: “All models are wrong, but some are useful”

All theories are approximations of an underlying truth and should be applied only within their domains of
validity. Extending a theory beyond its scope not only leads to incorrect parameter estimates, rendering
them as mere fitting variables, but also reduces the utility of the data. Therefore, it is essential to account
for the uncertainties in the theory.

Consideration of theoretical uncertainties for the complex multi-stage heavy-ion models is beyond current
theoretical capabilities. As a first step, we develop a statistical framework to model this uncertainty.

Possible framework: GP based model discrepancy by O'Hagan et. al.

y) = n(;, 0) +  e(t) But truth may not be among the models considered
\ J \ J \ l
v r

|
Physical observation  Model Observation error
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Accounting for theoretical uncertainties: Model discrepancy
George Box: “All models are wrong, but some are useful”

- All theories are approximations of an underlying truth and should be applied only within their domains of
validity. Extending a theory beyond its scope not only leads to incorrect parameter estimates, rendering
them as mere fitting variables, but also reduces the utility of the data. Therefore, it is essential to account
for the uncertainties in the theory.

- Consideration of theoretical uncertainties for the complex multi-stage heavy-ion models is beyond current
theoretical capabilities. As a first step, we develop a statistical framework to model this uncertainty.

- Possible framework: GP based model discrepancy by OHagan et. al. M- Kennedy, A. O°Hagan, Bayesian calibration of computer models,
https://doi.org/10.1111/1467-9868.00294

y(tl) — n(tp H) + 5(tl) + E(tl) J. Brynjarsdottir and A. O’Hagan,
\ ' l | Y J \ ' l | ' l https://iopscience.iop.org/article/10.1088/0266-5611/30/11/114007
Physical observation Model Accounts for discrepancy Observation error D. Higdon, M. Kennedy, et. al.,
between model and truth https://doi.org/10.1137/51064827503426693

Model o(¢,) as a Gaussian process. Choice of covariance kernel motivated from the physics.
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https://iopscience.iop.org/article/10.1088/0266-5611/30/11/114007
https://doi.org/10.1137/S1064827503426693

Gaussilan process: flexible modeling

d(xia x])Z
2072

Gaussian, £ =1 Gaussian, £ = 3
Gaussian kernel: k(x;, x;) = ¢”exp (— ) 2

Correlation length £ ->

0 2 4 6 8 10 0 2 1 6 8 10
1 1
Variation over a length of 1 Variation over a length of 3
Gaussian, £ =1 x; x; Gaussian, ( =1

10 A

Stationary vs non-stationary kernel ->

0 1 - et

—10 -

1 | 1 1 1
2 1 6 8 10

Stationary Non-stationary




A simple example: ball drop experiment

- A ballis dropped from a tower of height 60 m }: 60.0 I} I

4 pt
- Velocity and height are measured at different I I}:
times. Measurements are uncertain.

velocity

t

I Observed: 2 std I Observed: 2 std

0.0 02 04 0.6 0.8 1.0 0.0 02
time

0.4

't

0.6

time

t

0.8

t

1.0

15



A simple example: ball drop experiment

- A ball is dropped from a tower of height 60 m

- Velocity and height are measured at different
times. Measurements are uncertain.

>
- Reality has air resistance. 9
Q2
Drag force: £, = — (bv + cv?) ¥
dadv 5 A dh 1
EoM: m— = mg — bv — cv°V, — = —V
dt dt
—  Truth ' —  Truth
0 I Observed: 2 std I Observed: 2 std
56.5
0.0 02 04 0.6 0.8 1.0 0.0 0.2 04

time

time

0.6

0.8

1.0

15



A simple example: ball drop experiment

- A ballis dropped from a tower of height 60 m

- Velocity and height are measured at different
times. Measurements are uncertdin.

) I III :[ 59:5

velocity

; II 57.0

I Observed: 2 std

0.0 02 04 0.6 0.8 1.0
time

Goal is to measure the acceleration due to gravity g (9.8 m/s?).

IHI

't
:

I Observed: 2 std I

0.0 02 04 0.6 0.8 1.0
time

15



Physics model

- Physics theory considered ignores air resistance.
|
EoM: v=v,+ gt h = ho—vot—agtz

- Bayesian inference considers the parameters g and v, to be random variables.

Bayesian updating of knowledge

«—

pr(0|Yexp, I) X pr(Yexp|@, 1) X pr(0|I)
— —

posterior likelihood prior

0.14
0.12
0.10

0.08

p(g)

Priors =p

0.06

0.04

Physics input: g always positive ﬁ}

P(Vo)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
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Bayesian inference without model discrepancy

Mean  +16 above/below mean . Inferred values of parameters are far from truth : g (9.8), v, (0)

« Parameter inference incorrect and confident.

Maximum likelihood
True value
Priors

17



Bayesian inference without model discrepancy

Mean

. g=5.32

+

+ 16 above/below mean

010 |
010 |

Maximum likelihood
True value
Priors

S

[

o

(o))

PN

|+
-l OO
=l

. Inferred values of parameters are far from truth : g (9.8), v, (0)

« Parameter inference incorrect and confident.

- Model prediction seems bad for velocity, but shows good
agreement for height.

6
60.0
5
I 59.5
4 I 59.0
= =
8 3 I ) 58.5
—= o)
o c
S
5 58.0
57 5
1
II Model: 95% CI 57.0 Model: 95% CI
0 ¥ Observed: 2 std ¥ Observed: 2 std
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

time time 17



With model discrepancy (physics uninformed)

Mean

+ 16 above/below mean

Maximum likelihood
True value
Priors

| Vo = 0.5

fa— ————— — ——----:f Nw i

- Added discrepancy term o(#,).

d(t,, 1)
Stationary covariance (RBF kernel). k(1) = ¢®exp 4

207

« Parameter inference still incorrect but less confident.

7
60.0
6
59.5
5
I 59.0
4
2 I - 98.5
8 S
? 3 2
2 I 58.0
2 57.5
1 57.0
I Model: 95% CI 56.5 Model: 95% CI
0 I $ Observed: 2 std ' $ Observed: 2 std
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

fime fime 18



With model discrepancy (physics informed-I)

- We know model ignores air drag, so let variance of discrepancy
GP increase with time. Non-stationary covariance.

Model: 95% CI
I Observed: 2 std

0.4
fime

0.6 0.8

1.0

s e

d(t, 1)
262

IH{
58.0 I

57.0 Model: 95% CI I
I Observed: 2 std

1.0 19

0.0 0.2 0.4 0.6

fime

0.8



With model discrepancy (physics informed-I)

- We know model ignores air drag, so let variance of discrepancy
GP increase with time. Non-stationary covariance.

- d(t;, 1)
Kt ) :@Xp 272
Maximum likelihood

True value - Parameter inference more accurate and contident for v,
Priors

Mean  *+1o6 above/below mean

Still incorrect but less confident for g.

= oorii

N
Q- 59.0 :{
: : f
¥ 5 5 88.5 I
Q '@ 8
58.0
Qb :{
p.
57.5
O P\ T R $ R
Q 0 Q 57.0
Model: 95% CI ‘ Model: 95% CI
g Vo I Observed: 2 std I Observed: 2 std
0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 19

fime fime



With model discrepancy (physics informed-II)

Mean  *+1o6 above/below mean

Maximum likelihood
True value
Priors

- We know model ignores air drag, so let variance of discrepancy GP
increases with time. Non-stationary covariance.

- Additionally, say we know from physics that the rate at which the model
deviates from truth in time is quadratic (this can be a parameter).

k(1) =

60
10
59
8
58
> © -
8 5
o 2
B
4 5 II
56
2
Model: 95% CI 55 Model: 95% CI
0 $ Observed: 2 std $ Observed: 2 std
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 20

fime ime



With model discrepancy (physics informed-II)

Revised George Box: “All models are wrong, but seme
models that know when they are wrong, are useful.”



Ssummary

- Expensive heavy-ion model simulations demands fast and accurate model emulators.

- Quantifying theoretical uncertainties is a necessity for correct parameter inference.

Physics
Model List
{fi(z:0)}

Model Emulation . -
Computational Tool A mulator

[ Physi )
1ysics ] .
Problem >/ DO—b.serz]'?gorLs ‘
Statement = Y W nrrors Model Calibration Parameter &
Quantities Statistical Computational Tool B > Dti%Cfepzllcy' 11:’&‘%- Bayesian Analysis of Nuclear Dynamics
of interest Q . Mﬁ:. Likelihood ST Iy F& V1 YN I
ormulation _ .
X Physwcs Fxpert ,_> > My = f k B Ok;
Input Tools Erior " a : w
A& B — Model Mixing . Model & Pre-
- Computational Tool C dictive Samples
. S
2 Y
E-Xp(?:‘l‘lln(?nt-al -~ Experimental -~
Goals Choice &
Utility . Potential Experimental Design . F;otel eid
VLY Experiments x Computational Tool D |- cntial
U(x,Q.y) Reduction in
Physics FExpert Y Uncertainty
. J
¢ Yyvyy
Case Study = —
Reference
Tool -
Case Study Database BANDs
Input Tool C — —




Summary

- Expensive heavy-ion model simulations demands fast and accurate model emulators.

- Quantifying theoretical uncertainties is a necessity for correct parameter inference.
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Transport coetticients from different calculations

10" —

PV L R | | | | |
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O. Soloveva, D. Fuseau, J. Aichelin, E. Bratkovskaya, 2011.03505 Valeriya Mykhaylova Thesis

Large Uncertainties


https://inspirehep.net/files/73a076d03abe7a044bb6ce620967a6b3

QCD phase diagram

Early Universe The Phases of QCD
LHC Experiments

O
—
-
i
(O
.
)
Q.
5
|_

Critical Point

Color/

Hadron Gas /
Superconductor

Nuclear /
/ Vacuum Matter Neutron Stars
-

900 MeV
Baryon Chemical Potential

Foka, Panagiota et al - arXiv:1702.07233


https://cds.cern.ch/search?f=author&p=Foka%2C%20Panagiota&ln=en

Initial Energy Deposition (TRENTO) cleon vidh

normalization

Parametrization for energy deposition at proper time T = 0"

multiplicity Oy
fluctuation

min. distance btw. dmin

>

nucleons

10 fm

0. controls
‘contrast’

<

Pb-Pb @ 2.76 TeV w = 0.4fm
arXiv:1904.08290v]1

Slide adapted from D. Everett 24



ref. proper time Tp
Pre-hydro (freestreaming) ey

Freestream massless particles:

ft,x;p) = f(to,x — VAL; p)

Take initial momentum-distribution
isotropic in transverse plane

Slide adapted from D. Everett 25



temperature of I,
. kink
VI S c 0 U S HYd rO shear at kink (U/S)kink
shear low-T slope A1ow

The viscosity of QGP:
Tnﬂ—l—H = —(0+ ...

Teft W) o = 2ok 4 ..

shear high-T slope  apjgn

temperature of Iz
bulk peak

bulk at peak ((/S)max

bulk width wq
bulk skewness A
Quantify transport properties : h | '
. .. . ti
shear and bulk viscosities shear relax. fime T
26

Slide adapted from D. Everett



Viscous Hydro

Viscosity parameterizations:

0.2 0.6

/5 mas 0.4
0.2 4 %ow .
1/ $xink | == e *
0.0 0.0 i
0.15 0.25 0.35 0.15 §.25 0.35

T [GeV]

T [GeV]

Slide adapted from D. Everett

temperature of 1,
kink

shear at kink (n/S)kink
shear low-T slope Alow
shear high-T slope  apjgn

temperature of Iz
bulk peak

bulk at peak ((/S)max

bulk width W,

bulk skewness A

shear relax. time b,
2]



He av'y- j_On Sj_mU]_ atiOn (JETSCAPE model for Pb-Pb collisions at W = 2.76 TeV)

Simulation model takes parameter @ € R as input and produces y(6) € R?, y(0) = (v(0), ..., yp(é’))Tas
outputs (observables). Number of model parameters d = 17, and number of outputs p = 110.

The simulation model is stochastic: For a given @, model can produce different outputs on each run (event).

Physics model output is p = 110 distributions.

Model is computationally expensive: =1000 CPU hours needed to run 2500 events at one parameter set .

Bayesian posterior inference requires model simulations at > 10° samples of parameter space.
. . . . expensive
>10° CPU hours required. Inference is out of reach without emulation. D

Need for fast and accurate model surrogates to perform any Bayesian study:.
Gaussian process based model emulators are used in heavy-ion studies.



(Gaussian Process based model emulators

We want emulators to “interpolate” in the d (=17) dimensional parameter space.

° Consider the mean values of the p (=110) distributions for each € : y(&:).

° For n (=500) training set {0y, ..., 0} (Latin Hypercube Sampling), define a
n X p matrix: M = {y(6y), ..., y(0,)}

o Standardize dataset by removing mean and scaling to unit variance
for all p-distributions: M — M

° Principal Component Analysis = Reduce dimensionality of dataset

° Transform by doing PCA and keep g < p principal components.

In most applications, g K p is sufficient to describe almost all the
variance in the original dataset.

Train g independent Gaussian process corresponding to the g reduced
observables (means). Each Gaussian process is d dimensional.

Factorial

Random

Latin hypercube

Iy

Iy

21 (83(70)




Metrics for comparing emulators

o Root mean squared error (RMSE): Compares mean of two distributions: square root of the mean squared error.

O

O

95 % Empirical coverage: Measures how often the mean of true distribution P fall within the 95 % predicted confidence
interval of the approximate distribution (. Does not involve variance of the true distribution P.

Kullback-Leibler divergence: Compares distributions. Expected excess “surprise” from using approximate distribution O

instead of true distribution P.

Hellinger distance: Compares distributions. &« 1—amount of overlap between two distributions.

o Wasserstein distance: Compares distributions. Amount of work required to turn one distribution into another.

0.40 -

0.35 A

0.30 A

0.25 4

0.20 -

0.15 A

0.10 -

0.05 -

0.00 -

- Approx. distribution
- True distribution

Metric

RMSE

95% Coverage

KL Divergence
Hellinger Distance
Wasserstein Distance

0.000000
1.000000
1.604120
0.404261
1.449490

0.40 7" == Approx. distribution
- True distribution
0.35 A :
0.30 A
0.25 A
0.20 A
0.15 A
0.10 4
0.05 4
0.00 A
-8 -6 -2
Metric
RMSE 2.000000
95% Coverage 0.000000
KL Divergence 2.000000
Hellinger Distance 0.627271
Wasserstein Distance 2.000000

0.40 -

0.35 A

0.30 A

0.25 -

0.20 -

0.15 -

0.10 A

0.05 4

0.00 A

—— Approx. distribution
- True distribution

Metric

RMSE

95% Coverage

KL Divergence
Hellinger Distance
Wasserstein Distance

2.000000
1.000000
3.604120
0.524207
2.470024




