

1

Workshop Hydrodynamics and related observables in heavy-ion collisions

Study of collective phenomena via the production of heavy quarks and quarkonia in hadronic collisions with ALICE

Victor Valencia Torres¹

On behalf of ALICE Collaboration

1. SUBATECH (IMT Atlantique, Nantes Université, CNRS/IN2P3), Nantes, France

- 1) Introduction
 - Production of heavy-flavor and quarkonia in Pb-Pb collisions
 - Flow observables

- 1) Introduction
 - Production of heavy-flavor and quarkonia in Pb-Pb collisions
 - Flow observables
- 2) Flow measurements in the heavy-sector with Run 2 data $-v_2$ from large to small systems

- 1) Introduction
 - Production of heavy-flavor and quarkonia in Pb-Pb collisions
 - Flow observables
- 2) Flow measurements in the **heavy-sector** with **Run 2 data** $-v_2$ from large to small systems
- 3) New **flow** measurements of J/ψ using **Run 3 data** - $v_2^{J/\psi}$ using event plane and multi-particle cumulants methods - Perspective in Run 3

Heavy-flavor and Quarkonia in Pb–Pb collisions

🏶 🏶

Heavy-flavor and Quarkonia in Pb–Pb collisions

- 🍪 🍪

- Heavy-quark production occurs at early times of the collision
- $\rightarrow M_{c,b} > \wedge_{QCD}$ (pQCD applicable)
- \rightarrow Sensitive to the medium evolution

•

🚓 😵

- $\rightarrow M_{c,b} > \wedge_{QCD}$ (pQCD applicable)
- → Sensitive to the medium evolution

Open heavy-flavor hadrons (made up of **light** and **heavy** quarks) allow to study the transport coefficient of **QGP**, investigating **charm thermalization**

🚯 👫

- Heavy-quark production occurs at early times of the collision
- $\rightarrow M_{c,b} > \wedge_{QCD}$ (pQCD applicable)
- \rightarrow Sensitive to the medium evolution

- Open heavy-flavor hadrons (made up of light and heavy quarks) allow to study the transport coefficient of QGP, investigating charm thermalization
- Quarkonium states (c-c̄ or b-b̄ quark pairs) dissociate in QGP through a color screening mechanism →T.Matsui and H.Satz, PLB 178 (1986) 416-422

🚯 🚭

- $\rightarrow M_{c,b} > \wedge_{QCD}$ (pQCD applicable)
- \rightarrow Sensitive to the medium evolution

- Open heavy-flavor hadrons (made up of light and heavy quarks) allow to study the transport coefficient of QGP, investigating charm thermalization
- Quarkonium states (c-c̄ or b-b̄ quark pairs) dissociate in QGP through a color screening mechanism →T.Matsui and H.Satz, PLB 178 (1986) 416-422
- Charmonium state (c-c̄ quark pairs) at LHC can be produced through recombination of uncorrelated c-c̄ pairs (regeneration)
 → P.Braun-Munzinger and J.Stachel, PLB 490 (2000) 196 → Robert L. Thews et al, PRC 63 (2001) 054905

Anisotropy of particle momentum distribution

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{1}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \psi_n)] \right) \quad \textcircled{v}_1 \quad \textcircled{v}_2 \quad \swarrow_3 \quad v_4$$

$$v_n = \langle \cos[n(\varphi - \psi_n)] \rangle$$

Anisotropy of particle momentum distribution

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{1}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \psi_n)] \right) \quad \textcircled{v}_1 \quad \textcircled{v}_2 \quad \swarrow_3 \quad v_4$$
$$v_n = \langle \cos[n(\varphi - \psi_n)] \rangle$$

victor.valencia.torres@cern.ch

ubatech

- **D mesons: lightest hadrons** with a **charm** quark
 - Pronounced flow attributed to the thermalization of light quarks (u, d, s) and charm quark in the QGP
- J/ψ : Significant flow at mid and forward rapidities \rightarrow Flow at low p_T explained by regenerated J/ψ

victor.valencia.torres@cern.ch

- **D mesons: lightest hadrons** with a **charm** quark
 - Pronounced flow attributed to the thermalization of light quarks (u, d, s) and charm quark in the QGP
- J/ψ : Significant flow at mid and forward rapidities \rightarrow Flow at low p_T explained by regenerated J/ψ
- Y(1S): Elliptic flow compatible with zero
 → Do beauty quarks thermalize in QGP?

victor.valencia.torres@cern.ch

- **D mesons: lightest hadrons** with a **charm** quark
 - Pronounced flow attributed to the thermalization of light quarks (u, d, s) and charm quark in the QGP
- J/ψ : Significant flow at mid and forward rapidities \rightarrow Flow at low p_T explained by regenerated J/ψ
- Y(1S): Elliptic flow compatible with zero
 → Do beauty quarks thermalize in QGP?

 $\rightarrow v_2^{\Upsilon(1\mathbf{S})} \ll v_2^{\mathrm{J/\psi}} < v_2^{\mathrm{D}\,\mathrm{mesons}}$

→ Charm quarks exhibit a collective behaviour!

\rightarrow What about smaller systems?

*p*_∓ (GeV̄/́*c*)

Anisotropy of particle momentum distribution

Prompt D (ALICE) PbPb 5.02 TeV 30-50% |y| < 0.8</p>

Y(1S) (ALICE) PbPb 5.02 TeV 5-60% 2.5 < y < 4

20

mesons

Y(1S)

10

Inclusive J/ψ (ALICE) *PbPb 5.02 TeV* 30-50% 2.5 < y < 4
 Inclusive J/ψ (ALICE) *PbPb 5.02 TeV* 30-50% lyl < 0.9

 $\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{1}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2\nu_n \cos[n(\varphi - \psi_n)] \right)$

 $v_n = \langle \cos[n(\varphi - \psi_n)] \rangle$

0.2

0.15

0.1

0.05

-0.05

0

boundino.github.io/hinHFplot

ALICE, PLB 813 (2021) 136054

ALICE, JHEP 10 (2020) 141

< <

30

ALICE, JHEP 10 (2020) 141

ALICE, PRL 123 (2019) 192301

ubatech

 v_4

ALICE detector in Run 2

→ Central barrel

- ITS Inner Tracking System Tracking, vertex reconstruction, multiplicity estimation
- **TPC Time Projection Chamber** PID, tracking
- **TOF Time Of Flight detector** PID

ALICE detector in Run 2

 \rightarrow Inclusive hadrons can be **measured down to** $p_T = 0$ (at midrapidity and forward rapidity)

Heavy-flavor/Quarkonia flow measurements

→ Flow measurements: **analysis techniques**

Heavy-flavor/Quarkonia flow measurements

→ Flow measurements: **analysis techniques**

• Event plane

 $v_n \{EP\} = \langle \langle \cos n(\varphi - \psi_n) \rangle / R_n^{EP} \rangle$

Heavy-flavor/Quarkonia flow measurements

→ Flow measurements: **analysis techniques**

Scalar product

 $\rightarrow \psi_n$ symmetry plane

٠

→ Flow measurements: **analysis techniques**

$$v_n \{EP\} = \langle \langle \cos n(\boldsymbol{\varphi} - \boldsymbol{\psi}_n) \rangle / R_n^{EP} \rangle$$

Scalar product

Two-particle correlation

 $v_n \{2PC\}^2 = \langle \langle \cos n(\varphi_1 - \varphi_2) \rangle \rangle$

 $v_n'\{SP\} = \left\langle \langle \mathbf{Q}_n' \mathbf{Q}_n^* \rangle / R_n^{SP} \right\rangle$

•

ullet

٠

•

Heavy-flavor/Quarkonia flow measurements Q'_n → Flow measurements: **analysis techniques** $v_n \{EP\} = \langle \langle \cos n(\boldsymbol{\varphi} - \boldsymbol{\psi}_n) \rangle / R_n^{EP} \rangle$ **Event plane** $v_n'\{SP\} = \left\langle \langle \mathbf{Q}_n' \mathbf{Q}_n^* \rangle / R_n^{SP} \right\rangle$ **Scalar product** φ_1 \rightarrow Q-vector Q_n $v_n \{2PC\}^2 = \left\langle \left\langle \cos n(\varphi_1 - \varphi_2) \right\rangle \right\rangle$ **Two-particle correlation** $\rightarrow \psi_n$ symmetry plane $c_n\{4\} = -v_n\{4\}^4 = \langle (\cos n(\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4)) \rangle$ **Multi-particle cumulant** $arphi_1$ $-\langle \langle \cos n(\varphi_1 - \varphi_3) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_4) \rangle \rangle$ $-\langle \langle \cos n(\varphi_1 - \varphi_4) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_3) \rangle \rangle$

ubatech

 $\rho(in\varphi_i)$

-- X

 φ Azimuthal angle

of the particle

M_A Multiplicity

of the collision

•

ullet

۲

 Q'_n

decays

ubatech

 $\rho(in\varphi_j)$

v_2 of *prompt* **D**⁺_s mesons in **Pb–Pb** collisions (Run 2)

→ D mesons with different light flavours (u,d,s) exhibit similar flow

 v_2 of *non-prompt* **D**⁰ mesons in **Pb–Pb** collisions (Run 2)

 v_2 of *non-prompt* **D**⁰ mesons in **Pb–Pb** collisions (Run 2)

- → The non-prompt D⁰-meson v_2 is found to be positive with a significance of 2.7 σ
- → Non-prompt D^0 is lower by 3.2 σ than prompt **D**-meson v_2 in the range 2 < p_T < 8 GeV/*c*

victor.valencia.torres@cern.ch

 v_2 of *non-prompt* **D**⁰ mesons in **Pb–Pb** collisions (Run 2)

- → The non-prompt D⁰-meson v_2 is found to be positive with a significance of 2.7 σ
- → Non-prompt D^0 is lower by 3.2 σ than prompt **D**-meson v_2 in the range 2 < p_T < 8 GeV/*c*
- → Hybrid transport model LIDO reproduces the data (Linearized Boltzmann with diffusion)
 Weiyao Ke et al, PRC 98 (2018) 064901
 Weiyao Ke et al, PRC 100 (2019) 064911
- → Decay kinematics doesn't seem to play a significant role in the beauty-hadron v_2 measurements.

Workshop Hydrodynamics 2024

victor.valencia.torres@cern.ch

- Positive muon v_2 measured for the first time over a wide p_T interval with a significance of 4.7 σ for 2 < p_T < 6 GeV/c
- **HF**- μ dominate for $p_T > 2$ GeV/c

 \rightarrow Heavy quarks flow (at mid and high p_{T}) in **p–Pb collisions**!

- →AMPT (A Multi-Phase Transport model)
 Z. W. Lin, PRC 72 (2005) 064901
- →CGC (Color Glass Condensate model) Cheng Zhang et al, PRC 122 (2019) 172302

Models

reproduce the **data** qualitatively

Collective behavior in Pb–Pb collisions

quarks in the QGP

ubatech

- Collective behavior in Pb–Pb collisions
 - **Significant** $J/\psi v_2$ over a wide p_T range
 - \rightarrow J/ ψ flow at low p_T interpreted as a consequence of regeneration
 - → Result support thermalization of charm quarks in the QGP
- Collective behavior in small systems?
 - → Initial state dynamics effects?
 → QGP in small systems?
 - Non-negligible J/ψ v₂ at high p_T in p–Pb collisions
 - J/ψ v₂ compatible with 0 (within uncertainties) in pp collisions

 $v_2^{\mathsf{pp}} \ll v_2^{\mathsf{p-Pb}} \le v_2^{\mathsf{Pb-Pb}}$

Pb–Pb

v_2 from large to small systems in Run 2

Subatech

J/ψ **C**

 Significant J/ψ v₂ is observed (Regeneration at low p_T)

→Results support the charm quark thermalization scenario in QGP.

Y(1S)

• Elliptic flow of $\Upsilon(1S)$ compatible with zero.

Non-prompt D $_0$ –meson v_2 is **positive**.

→ Transport models describe the measurement within uncertainties.

- Similar magnitude as Pb–Pb at high p_{T.}
- \rightarrow Imply charm quark flows at high $p_{T.}$

Workshop Hydrodynamics 2024

victor.valencia.torres@cern.ch

First J/ψ signal extraction in pp

Flow of J/ψ in Run 3 - Scalar product and Event plane ubatech p_n $\mathbf{Q}^{\mathsf{B}}_n$ $\mathbf{Q}^{\mathsf{A}}_n$ С Β ITS + !TPC MCH + MID FT0-A **FT0C** -3.3 -2.5 -2.1 -4.0 -0.8 0 0.8 3.5 4.9 Barrel Q-vector $\rightarrow Q_n = \sum_{i=1}^{M} e^{(in\phi_i)} = Q_n^X + iQ_n^Y$ Symmetry plane $\rightarrow \Psi_n = \frac{1}{n} \arctan(\frac{Q_n^Y}{Q_n^X})$ Scalar product $\begin{bmatrix} v_n^{\mu\mu} = \left\langle \left\langle p_n \mathbf{Q}_n^{*A} \right\rangle / R_n \right\rangle = \sqrt{\langle v_n^2 \rangle} \\ R_n = \sqrt{\frac{\langle \mathbf{Q}_n^A \mathbf{Q}_n^{*B} \rangle \langle \mathbf{Q}_n^A \mathbf{Q}_n^{*C} \rangle}{\langle \mathbf{Q}_n^B \mathbf{Q}_n^{*C} \rangle}} \\ R_n = \sqrt{\frac{\langle \mathbf{Q}_n^A \mathbf{Q}_n^{*B} \rangle \langle \mathbf{Q}_n^A \mathbf{Q}_n^{*C} \rangle}{\langle \mathbf{Q}_n^B \mathbf{Q}_n^{*C} \rangle}} \\ Final Plane <math display="block">\begin{bmatrix} v_n^{\mu\mu} = \left\langle \left\langle \cos n(\varphi - \Psi_n^A) \right\rangle / R_n \right\rangle = \sqrt{\langle v_n^2 \rangle} \\ R_n = \sqrt{\langle \cos n(\Psi_n^B - \Psi_n^C) \rangle} \end{bmatrix}$

Flow of J/ψ in Run 3 - Event plane results

victor.valencia.torres@cern.ch

$Q_{n,k}\equiv\sum_{i=1}^{M}w_{i}^{k}$ e	$S_{p,k} \equiv \left[\sum_{i=1}^{M} w_i^k\right]^p$, $\mathcal{M}_{abcd\cdots} \equiv \sum_{i,j,k,l,\ldots=1}^{M'} w_i^a w_j^b w_k^c w_l^d \cdots$.	<i>p_n</i> (dim <u>P</u> <u>MCH + MID</u> -4.0 -2.5	uon) Q_n (barrel tracks) $ITS + TPC$ η -0.8 0 0.8	
POI correlators	$\langle 4' angle = igg[p_{n,0} Q_{n,1} Q_{n,1}^* Q_{n,1}^*$	REF correlators		
$ ightarrow$ Average over tracks $\langle 2' angle = rac{p_{n,0}Q^*_{n,1}-s_{1,1}}{m_pS_{1,1}-s_{1,1}},$	$\begin{split} & \left[- \frac{1}{q_{2n,1}Q_{n,1}^*Q_{n,1}^* - p_{n,0}Q_{n,1}Q_{2n,2}^*} \\ & - 2 \cdot S_{1,2}p_{n,0}Q_{n,1}^* - 2 \cdot s_{1,1} \left Q_{n,1} \right ^2 \\ & + 7 \cdot q_{n,2}Q_{n,1}^* - Q_{n,1}q_{n,2}^* \\ & + q_{2n,1}Q_{2n,2}^* + 2 \cdot p_{n,0}Q_{n,3}^* \\ & + 2 \cdot s_{1,1}S_{1,2} - 6 \cdot s_{1,3} \right] / \mathcal{M}_{0111}', \end{split}$	ightarrowAverage over tracks ($\begin{split} \langle 4 \rangle &= \bigg[\left Q_{n,1} \right ^4 + \left Q_{2n,2} \right ^2 - 2 \cdot \mathfrak{Re} \left[Q_{2n,2} Q_{n,1}^* Q_{n,1}^* \right] \\ &+ 8 \cdot \mathfrak{Re} \left[Q_{n,3} Q_{n,1}^* \right] - 4 \cdot S_{1,2} \left Q_{n,1} \right ^2 \\ &- 6 \cdot S_{1,4} - 2 \cdot S_{2,2} \bigg] / \mathcal{M}_{1111} , \end{split}$,1]
\rightarrow Average over all events	-	\rightarrow Average over all even	nts	
$\langle \langle 2' \rangle angle = rac{\sum_{i=1}^{N} (\mathcal{M}'_{01})_i \langle 2' angle_i}{\sum_{i=1}^{N} (\mathcal{M}'_{01})_i} , \ \mathcal{M}'_{01} \equiv \sum_{i=1}^{m_p} \sum_{i,j=1}^{M'} w_j$	$egin{aligned} &\langle\langle 4' angle angle =& rac{\sum_{i=1}^{N} (\mathcal{M}_{0111}')_i \langle 4' angle_i}{\sum_{i=1}^{N} (\mathcal{M}_{0111}')_i} , \ &\mathcal{M}_{0111}' \equiv& \sum_{i=1}^{m_p} \sum_{j,k,l=1}^{M'} w_j w_k w_l \end{aligned}$	$egin{aligned} \langle\langle 2 angle angle &=rac{\sum_{i=1}^{N}(\mathcal{M}_{11})_{i}}{\sum_{i=1}^{N}(\mathcal{M}_{11})_{i}}\ &\mathcal{M}_{11}\equiv\sum_{i,j=1}^{M}'w_{i}w_{j} \end{aligned}$	$\frac{i\langle 2\rangle_i}{1)_i}, \qquad \langle\langle 4\rangle\rangle = \frac{\sum_{i=1}^N (\mathcal{M}_{1111})_i \langle 4\rangle_i}{\sum_{i=1}^N (\mathcal{M}_{1111})_i},$ $\mathcal{M}_{1111} \equiv \sum_{i,j,k,l=1}^M w_i w_j w_k w_l$	

victor.valencia.torres@cern.ch

Subatech

• Fluctuations in the positions of nucleons in the overlap region.

.....

Initial state

Event 1

• Fluctuations in the positions of nucleons in the overlap region.

Fluctuation ratio $\sigma/\langle v2 \rangle$

Х

CC

. J/ψ

If $\sigma/\langle v_2^{J/\psi} \rangle$ does not show a p_T dependence, the observed fluctuations are likely due to variations in the initial-state geometry!

Perspectives in Run 3

- → New flow methods will be used thanks to the Run 3 continuous readout!
- →Run 3 flow measurements using different methods -

At mid-rapidity:

- \rightarrow Flow of $e^{\pm}\,$ from charm and beauty decays in Pb-Pb

 - \rightarrow Flow of J/ψ in pp

- Scalar product
- Event plane
- Multi-particle cumulant → Fluctuation Ratio!

At forward-rapidity:

ubote

→ Flow of μ^{\pm} from charm and beauty decays

 \rightarrow Flow of J/ ψ prompt and non-prompt in Pb–Pb

→ Thanks to the new Muon Forward Tracker (MFT) detector

victor.valencia.torres@cern.ch

BACK UP

Workshop Hydrodynamics 2024

ALICE detector in Run 3

ITS ①
 → Vertex identification

TPC (2)

 \rightarrow Charged particles tracking

FTOC 3

- \rightarrow Centrality estimation of collisions
- Front Absorber 4 \rightarrow Reduce flux of hadrons by a factor of 100 MCH 5
- \rightarrow Muon tracking system
- Muon Filter (6)
- \rightarrow Punch through hadrons
- MID (7)
- \rightarrow Particle identification of muons

HE-WU-RAPP

- Run 2 values were obtained with Scalar product method.
- **Data** could be **contaminated by non-flow** (especially at high- p_T)
- Larger Run 3 sample would provide better precision measurement for v₂ up to higher p_T and for higher harmonic orders.

 V_2

In $p-Pb \rightarrow$ no expected J/ ψ regeneration (no expected QGP formation)

ubatech

where charm quark thermalized in **QGP**!