
Towards a fluid-dynamic description of

an entire heavy-ion collision: from the

colliding nuclei to the quark-gluon

plasma phase

2410.08169

Andreas Kirchner, Federica Capellino,

Eduardo Grossi, Stefan Floerchinger

Hydrodynamics and related

observables in heavy-ion collisions, Oktober 2024
1



Overview

Introduction

Nuclei as static fluids

Interactionless limit

Fluid dynamics

& equation of state

Results

Conclusion & Outlook

2



Introduction

3



Standard model of HIC
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Observables
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� Exp. data described well by fluid dynamics

across different energies & systems

� Largest uncert. from fluid fields in initial state 5



Initial state models
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2208.06839

� Many models for IC

(TrenTo, IP-Glasma,

CGC,

free-streaming,...)

� Require add.

parameters (e.g.

Norm., τhydro, p,

µQs
,τfs/EKT)

� Fixed by fit/Bayesian

analysis 6



All fluid description?

� Fluid dynamics valid outside eq. (holographic

models, eff. kin. theory)

→ Can fluid dynamics describe soft QCD?

→ Only inputs from QFT (EoS, transport

coefficients)

� Idea not new: Weizäcker 1938 (liquid drop

model), Landau 1953 (ideal fluid dynamics)

and Stöcker et al., Katscher et al., Houvinen

et al. & Karpenko et al. (multi fluid model)
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Nuclei as static fluids
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One nucleus
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Fluid description:

∇µT
µν = 0

∇µN
µ = 0

First order phase trans.

ensures stability!
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Two approaching nuclei
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v − v

Decomposition

given by

Nµ = nuµ + νµ,

T µν = ϵuµuν + (p+

πbulk)∆
µν + πµν

Fluid fields for full collision system via

Landau frame matching T µ
νu

ν = −ϵuµ
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Stability conditions

� Gradients in T , µ, uµ → dispersion

� Isolated nuclei at first order phase trans. → T

& µ const.

� v changes sign around z = 0

→ Gradient in uµ

→ Initially: n = 0, ϵ = 0 ⇒ Gradients no

physical meaning

� Picture breaks down when nuclei start to

overlap 12
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Interactionless limit
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Interactionless limit

� QCD formally free at asymptotically

high energies

→ Nuclei pass through each other

→ Use matching to gain insights into

expectations of collision dynamics

� Fluid fields are obtained via matching

procedure at different times
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Matching procedure

Composite system:

Nµ = nuµ+νµ, T µν = ϵuµuν+(p+πbulk)∆
µν+πµν

Extract fluid fields via

� T µ
νu

ν = −ϵuµ

� p+ πbulk =
1
3∆

µνTµν

� πµν = T µν − ϵuµuν − [p+ πbulk]∆
µν

� Solve nuµ + νµ = Nµ
→ +Nµ

← for n, νi
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Fluid fields
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Large densities & viscous corrections require

careful treatment of evolution equations
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Temperature & chemical potential
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Apply EoS to obtain T & µ:

� T → 0 & µ→ 0.93MeV for low densities

� Indications of expected trajectory, but T much

to high

� Description including interactions needed 18
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Fluid dynamics

& equation of state
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Second-order fluid dynamics

� Fluid dynamics based on conservation laws

→ Additional constituent relations needed for

viscous fields

→ Israel-Stewart equations derived from

∇µS
µ ≥ 0

→ Entropy production

∇µS
µ =

π2
bulk

ζT +
πµνπµν

2ηT +
(ϵ+p)2νµνµ
κ(nT )2

� Additional transport coefficients: viscosities &

conductivities (η, ζ, κ) and relaxation times

(τshear, τbulk, τheat) 21



Fluid dynamics outside equilibrium

� IS-theory includes relaxation times

τbulku
µ∂µπbulk+ ζ∇µu

µ+ πbulk+ . . . = 0

→ Equations remain valid outside

equilibrium

→ Glasma behaves like fluid

→ Kin. th. & fluid dynamics can give

equivalent results

22



Equation of state

crossover

HRG

Nucleon-
meson model

LatticeQCD

Composite equation of

state from LQCD,

HRG & nucleon-meson

model interpolated by

transfer functions

At phase transition: T & µ not sufficient for

description

→ Additional parameters needed: Volume ratio

parameter r 23



Equation of State

T [GeV]
0 1 2 3

p/
T

4

0

1

2

3

4

5

6

𝜇/T

0

1

2

𝜇 [GeV]
0.75 0.80 0.85 0.90

p
[M

eV
/
fm

3 ]

0

1

2

3

T [MeV]

0

10

25

� Smooth transition between LQCD &

HRG

� Includes first order phase transition
24



Model system

� High compression & expansion of nuclear

matter during initial moments of collision

� Model by homogen. universe filled with nucl.

matter ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2)

� Fluid fields reduce to Φ(t) = (T, µ, πbulk)

� Expansion rate given by H = ȧ(t)
a(t) = −

∂tn
3n
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Results
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Fluid solutions
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� Viscosity creates heat and bulk pressure

� Dynamics independent of initial r
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Phase diagram & entropy prod.
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� Initial & final point of trajectory in phase

diagram are not same due to viscosity

� Entropy production follows Hubble rate after

delay
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Produced entropy
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� More entropy produced for higher γ and

viscosity

� Dynamics almost independent of τbulk for τbulk
small enough
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Final temperature
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� Final temp. scales with

viscosity & inverse

relaxation time

� T (t = tf) independent

of relax. time for τbulk
small enough

� Any value of T (t = tf)

can be obtained
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Conclusion

First steps toward fluid-dynamic description:

� Established set of equations & EoS to describe

soft part of HIC

� Study entropy production during compression

& expansion

� Bulk visc. & relaxation time can be chosen

such that T (t = tf) is similar to temp. found

in initial moments of fireball
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Outlook

� Apply QFT calculations to model

� More realistic 1 + 1D setup → Includes

shear viscosity & baryon diffusion

� Include fluctuations & correlations
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Thank you for your attention!
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Bulk viscosity parametrization
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Massieu potential

� Massieu potential w = βp

� Phase coexistence w = (1− r)w′ + rw′′

� Evolution eq.for volume ratio parameter

uµ∂µr = − np(γ)G
pq(γ,r)fq

nr(γ)Grs(γ,r)[c′′s(γ)−c′s(γ)]

� Modified conservation equation

uµ∂µγn +Gnm(γ, r)
[
fm − [c′′m − c′m]

np(γ)G
pq(γ,r)fq

nl(γ)G
ls(γ,r)[c′′s −c′s]

]
= 0.



Combining the EoS

� Composite EoS

p = 1
2(1− f )pHRG +

1
2(1 + f )pLQCD

� Transfer function

f (T, µ) = tanh
(
T−Ttrans(µ)

∆Ttrans

)
with

Ttrans(µ) = 0.1GeV + 0.28µ− 0.2GeV−1µ2 &

∆Ttrans = 0.1Ttrans(µ = 0)



LQCD & HRG

Lattice EoS: Expansion around eq. pressure

pLQCD(T, µ) = p(T ) +
∑

n=2,4,6
χn(T )
n! µn

Hadron resonance gas: Total pressure is

sum of partial pressures

pHRG(T, µ) =
∑

baryons dipF (T,Biµ;mi) +∑
mesons dipB(T, 0;mi)



Nucleon-meson model
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� Effective model for cold,

dense nuclear matter

� Interactions via scalar,

pseudo-scalar and vector

meson exchange

Apply mean-field approximation → Fields

self-consistently determined by gap equations

⇒ First-order phase transition captured



Fluid-dynamic EoM

� EoM are set of coupled, first-order PDEs

with discontinuous initial conditions

→ Weal solutions need to be expected

� Uniqueness of weak solutions given by

Rankine-Hugoniot condition
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