Towards a fluid-dynamic description of an entire heavy-ion collision: from the colliding nuclei to the quark-gluon plasma phase

2410.08169

Andreas Kirchner, Federica Capellino, Eduardo Grossi, Stefan Floerchinger

Hydrodynamics and related observables in heavy-ion collisions, Oktober 2024

Overview

[Introduction](#page-1-0)

[Nuclei as static fluids](#page-7-0) [Interactionless limit](#page-12-0) [Fluid dynamics](#page-18-0) [& equation of state](#page-18-0) [Results](#page-25-0) [Conclusion & Outlook](#page-31-0)

[Introduction](#page-1-0)

Standard model of HIC

Observables

- Exp. data described well by fluid dynamics across different energies & systems
- Largest uncert. from fluid fields in initial state 5

Initial state models

- Many models for IC (TrenTo, IP-Glasma, CGC, free-streaming,...)
- \bullet Require add. parameters (e.g. Norm., τ_{hydro} , p , μ_{Q_s} , $\tau_{\mathsf{fs}/\mathsf{EKT}})$
- Fixed by fit/Bayesian analysis ⁶

All fluid description?

 Fluid dynamics valid outside eq. (holographic models, eff. kin. theory)

 \rightarrow Can fluid dynamics describe soft QCD? \rightarrow Only inputs from QFT (EoS, transport coefficients)

■ Idea not new: Weizäcker 1938 (liquid drop model), Landau 1953 (ideal fluid dynamics) and Stöcker et al., Katscher et al., Houvinen et al. & Karpenko et al. (multi fluid model)

Overview

[Introduction](#page-1-0)

[Nuclei as static fluids](#page-7-0)

- [Interactionless limit](#page-12-0)
- [Fluid dynamics](#page-18-0)
- [& equation of state](#page-18-0)

[Results](#page-25-0)

[Conclusion & Outlook](#page-31-0)

[Nuclei as static fluids](#page-7-0)

One nucleus

First order phase trans. ensures stability! $(T=0, \mu=\mu_{\rm crit})$

Fluid description: $\nabla_{\mu}T^{\mu\nu}=0$ $\nabla_{\mu}N^{\mu}=0$

Two approaching nuclei

Fluid fields for full collision system via Landau frame matching $T^{\mu}_{\;\;\nu} u^{\nu} = -\epsilon u^{\mu}$

Stability conditions

- Gradients in T , μ , $u^{\mu} \rightarrow$ dispersion
- $\bullet\;$ Isolated nuclei at first order phase trans. $\to T$ & μ const.
- v changes sign around $z = 0$ \rightarrow Gradient in u^{μ} \rightarrow Initially: $n = 0$, $\epsilon = 0 \Rightarrow$ Gradients no physical meaning
- Picture breaks down when nuclei start to overlap and the set of t

Overview

[Introduction](#page-1-0)

[Nuclei as static fluids](#page-7-0)

[Interactionless limit](#page-12-0)

[Fluid dynamics](#page-18-0)

[& equation of state](#page-18-0)

[Results](#page-25-0)

[Conclusion & Outlook](#page-31-0)

[Interactionless limit](#page-12-0)

Interactionless limit

- QCD formally free at asymptotically high energies \rightarrow Nuclei pass through each other \rightarrow Use matching to gain insights into expectations of collision dynamics
- Fluid fields are obtained via matching procedure at different times

Matching procedure

Composite system:

 $N^{\mu}=nu^{\mu}+\nu^{\mu},~T^{\mu\nu}=\epsilon u^{\mu}u^{\nu}+(p+\pi_{\text{bulk}})\Delta^{\mu\nu}+\pi^{\mu\nu}$ Extract fluid fields via

•
$$
T^{\mu}_{\ \nu}u^{\nu} = -\epsilon u^{\mu}
$$

$$
\bullet~~p+\pi_{\rm bulk}=\tfrac{1}{3}\Delta^{\mu\nu}T_{\mu\nu}
$$

•
$$
\pi^{\mu\nu} = T^{\mu\nu} - \epsilon u^{\mu} u^{\nu} - [p + \pi_{\text{bulk}}] \Delta^{\mu\nu}
$$

• Solve
$$
nu^{\mu} + \nu^{\mu} = N^{\mu}_{\rightarrow} + N^{\mu}_{\leftarrow}
$$
 for *n*, ν^{i}

Fluid fields

Large densities & viscous corrections require careful treatment of evolution equations

Temperature & chemical potential

Apply EoS to obtain T & μ :

- $T \to 0$ & $\mu \to 0.93$ MeV for low densities
- \bullet Indications of expected trajectory, but T much to high
- \bullet Description including interactions needed 18

Overview

[Introduction](#page-1-0)

[Nuclei as static fluids](#page-7-0) [Interactionless limit](#page-12-0) [Fluid dynamics](#page-18-0) [& equation of state](#page-18-0) [Results](#page-25-0)

[Conclusion & Outlook](#page-31-0)

[Fluid dynamics](#page-18-0) [& equation of state](#page-18-0)

Second-order fluid dynamics

- Fluid dynamics based on conservation laws \rightarrow Additional constituent relations needed for viscous fields
	- \rightarrow Israel-Stewart equations derived from $\nabla_{\mu}S^{\mu}\geq 0$ \rightarrow Entropy production $\nabla_\mu S^\mu = \frac{\pi_{\text{bulk}}^2}{\zeta T} + \frac{\pi^{\mu\nu}\pi_{\mu\nu}}{2\eta T} + \frac{(\epsilon+p)^2 \nu^\mu \nu_\mu}{\kappa (nT)^2}$ $\kappa(nT)^2$
- Additional transport coefficients: viscosities & conductivities (η, ζ, κ) and relaxation times $(\tau_{\text{shear}}, \tau_{\text{bulk}}, \tau_{\text{heat}})$ 21

Fluid dynamics outside equilibrium

- **•** IS-theory includes relaxation times
	- $\tau_{\mathsf{bulk}} u^\mu \partial_\mu \pi_{\mathsf{bulk}} + \zeta \nabla_\mu u^\mu + \pi_{\mathsf{bulk}} + \ldots = 0$ \rightarrow Equations remain valid outside equilibrium
	- \rightarrow Glasma behaves like fluid \rightarrow Kin. th. & fluid dynamics can give equivalent results

Equation of state

Composite equation of state from LQCD, HRG & nucleon-meson model interpolated by transfer functions

At phase transition: T & μ not sufficient for description

 \rightarrow Additional parameters needed: Volume ratio $parameter r$ 23

Equation of State

- **Smooth transition between LQCD & HRG**
- **•** Includes first order phase transition

Model system

- High compression & expansion of nuclear matter during initial moments of collision
- Model by homogen. universe filled with nucl. matter $ds^2 = -dt^2 + a(t)^2 (dx^2 + dy^2 + dz^2)$
- Fluid fields reduce to $\Phi(t) = (T, \mu, \pi_{\text{bulk}})$
- Expansion rate given by $H = \frac{\dot{a}(t)}{a(t)} = -\frac{\partial_t n}{\partial n}$ 3n

Overview

[Introduction](#page-1-0)

[Nuclei as static fluids](#page-7-0) [Interactionless limit](#page-12-0) [Fluid dynamics](#page-18-0) [& equation of state](#page-18-0)

[Results](#page-25-0)

[Conclusion & Outlook](#page-31-0)

[Results](#page-25-0)

Fluid solutions

- Viscosity creates heat and bulk pressure
- $\bullet\,$ Dynamics independent of initial r

Phase diagram & entropy prod.

- \bullet Initial & final point of trajectory in phase diagram are not same due to viscosity
- Entropy production follows Hubble rate after delay

Produced entropy

- \bullet More entropy produced for higher γ and viscosity
- **•** Dynamics almost independent of τ_{bulk} for τ_{bulk} small enough

Final temperature

- Final temp. scales with viscosity & inverse relaxation time
- $T(t = t_f)$ independent of relax. time for τ_{bulk} small enough
- Any value of $T(t = t_f)$ can be obtained

Overview

[Introduction](#page-1-0)

[Nuclei as static fluids](#page-7-0) [Interactionless limit](#page-12-0) [Fluid dynamics](#page-18-0) [& equation of state](#page-18-0) [Results](#page-25-0)

[Conclusion & Outlook](#page-31-0)

[Conclusion & Outlook](#page-31-0)

Conclusion

First steps toward fluid-dynamic description:

- Established set of equations & EoS to describe soft part of HIC
- Study entropy production during compression & expansion
- **Bulk visc. & relaxation time can be chosen** such that $T(t = t_f)$ is similar to temp. found in initial moments of fireball

Outlook

- Apply QFT calculations to model
- More realistic $1 + 1D$ setup \rightarrow Includes shear viscosity & baryon diffusion
- **Include fluctuations & correlations**

Thank you for your attention!

[Backup](#page-36-0)

Bulk viscosity parametrization

Massieu potential

- \bullet Massieu potential $w = \beta p$
- Phase coexistence $w = (1 r)w' + rw''$
- Evolution eq.for volume ratio parameter $u^{\mu}\partial_{\mu}r=-\frac{n_{p}(\gamma)G^{pq}(\gamma,r)f_{q}}{n_{r}(\gamma)G^{rs}(\gamma,r)[c''_{q}(\gamma)-\gamma]}$ $\overline{n_r(\gamma)}G^{rs}(\gamma,r)[c_s''(\gamma)-c_s'(\gamma)]$
- Modified conservation equation

$$
u^\mu \partial_\mu \gamma^n + G^{nm}(\gamma,r) \left[f_m - [c_m^{\prime\prime} - c_m^\prime] \frac{n_p(\gamma)G^{pq}(\gamma,r) f_q}{n_l(\gamma)G^{ls}(\gamma,r)[c_s^{\prime\prime} - c_s^\prime]} \right] = 0.
$$

Combining the EoS

- Composite EoS $p=\frac{1}{2}$ $\frac{1}{2}(1-f)p$ нкс $+\frac{1}{2}$ $\frac{1}{2}(1+f)p$ lqcd
- **•** Transfer function $f(T,\mu)=\tanh\left(\frac{T-T_{\sf trans}(\mu)}{\Delta T_{\sf trans}}\right)$ with $T_\mathsf{trans}(\mu) = 0.1\,\mathsf{GeV} + 0.28\mu - 0.2\,\mathsf{GeV}^{-1}\mu^2\,$ & $\Delta T_{\text{trans}} = 0.1 T_{\text{trans}}(\mu = 0)$

LQCD & HRG

Lattice EoS: Expansion around eq. pressure $p_{\mathsf{LQCD}}(T,\mu) = p(T) + \sum_{n=2,4,6}$ $\chi_n(T)$ $\frac{n(T)}{n!}\mu^n$ **Hadron resonance gas:** Total pressure is sum of partial pressures $p_{\textsf{HRG}}(T,\mu)=\sum_{\text{baryons}}d_{i}p_{F}(T,B_{i}\mu;m_{i})+$ $\sum_{\text{mesons}} d_i p_B(T, 0; m_i)$

Nucleon-meson model

- **Effective model for cold,** dense nuclear matter
- **Interactions via scalar,** pseudo-scalar and vector meson exchange

Apply mean-field approximation \rightarrow Fields self-consistently determined by gap equations

 \Rightarrow First-order phase transition captured

Fluid-dynamic EoM

- EoM are set of coupled, first-order PDEs with discontinuous initial conditions \rightarrow Weal solutions need to be expected
- Uniqueness of weak solutions given by Rankine-Hugoniot condition