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Standard model of HIC
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Observables
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e Exp. data described well by fluid dynamics
across different energies & systems

e Largest uncert. from fluid fields in initial state 5



Initial state models

e Many models for IC
(TrenTo, IP-Glasma,
CGC,
free-streaming,...)
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2021 |-
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e Fixed by fit/Bayesian
analysis
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All fluid description?

e Fluid dynamics valid outside eq. (holographic
models, eff. kin. theory)
— Can fluid dynamics describe soft QCD?
— Only inputs from QFT (EoS, transport
coefficients)

e Idea not new: Weizacker 1938 (liquid drop
model), Landau 1953 (ideal fluid dynamics)
and Stocker et al., Katscher et al., Houvinen
et al. & Karpenko et al. (multi fluid model)



Nuclei as static fluids



Nuclei as static fluids




nucleus
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Two approaching nuclei

o P Decomposition
0.15
son] | o given by
%().05— NH = nut + VM,
R Iy TH = eutu” + (p +
3 0 3
2 [fm)] ﬂ-bulk)AMV + ﬂ-ILLV

Fluid fields for full collision system via

Landau frame matching 7" u" = —eu”
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Stability conditions

e Gradients in T', i, u* — dispersion

e Isolated nuclei at first order phase trans. — T
& p const.

e v changes sign around z = 0
— Gradient in u*
— Initially: n =0, ¢ = 0 = Gradients no
physical meaning

e Picture breaks down when nuclei start to
overlap 19



Interactionless limit
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Interactionless limit
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Interactionless limit

e QCD formally free at asymptotically
high energies
— Nuclei pass through each other
— Use matching to gain insights into

expectations of collision dynamics

e Fluid fields are obtained via matching

procedure at different times
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Matching procedure

Composite system:
NF = nut+ v, TH = eutu” + (p+ mpuik) A" + 1
Extract fluid fields via

o TH " = —eu

o P+ Thuk = A" T,

o T =TM — euru” — [p + Tpu] A"
e Solve nu” + v* = N* + NI for n, v/’
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Fluid fields
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Large densities & viscous corrections require

careful treatment of evolution equations
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Temperature & chemical potential
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Apply EoS to obtain T" & u:

e I'— 0 & pu— 0.93MeV for low densities

e Indications of expected trajectory, but 7" much
to high

e Description including interactions needed 18



Fluid dynamics

& equation of state
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Fluid dynamics
& equation of state
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Second-order fluid dynamics

e Fluid dynamics based on conservation laws
— Additional constituent relations needed for
viscous fields
— Israel-Stewart equations derived from
V,S5* >0
— Entropy production 2
VHSM — 7Tbu|k + 7T27)7¥w + (EZI(ZTV)';V#

e Additional transport coefficients: viscosities &
conductivities (7, (, k) and relaxation times

(Tsheara Thulk Theat) 21



Fluid dynamics outside equilibrium

e |S-theory includes relaxation times
Tbu|ku”aM7Tbu|k + Cvuu“ + Thuk + ... = 0
— Equations remain valid outside
equilibrium
— Glasma behaves like fluid
— Kin. th. & fluid dynamics can give
equivalent results
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Equation of state

/T = const.
.~ “crossover
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Nucleon-
meson model

n>0
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Composite equation of
state from LQCD,
HRG & nucleon-meson
model interpolated by
transfer functions

At phase transition: T" & i not sufficient for

description

— Additional parameters needed: Volume ratio

parameter r



Equation of State
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e Smooth transition between LQCD &
HRG

e Includes first order phase transition
24



Model system

e High compression & expansion of nuclear
matter during initial moments of collision

e Model by homogen. universe filled with nucl.
matter ds® = —dt? + a(t)?(dz? + dy? + dz?)

e Fluid fields reduce to ®(t) = (T, i, Tpulk)

e Expansion rate given by H = % _ _%
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Fluid solutions
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e Viscosity creates heat and bulk pressure

e Dynamics independent of initial r

28



Phase diagram & entropy prod.
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e Initial & final point of trajectory in phase
diagram are not same due to viscosity

e Entropy production follows Hubble rate after

delay 2



Produced entropy
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e More entropy produced for higher v and

viscosity

e Dynamics almost independent of 7y for Thuik

small enough
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Final temperature

e Final temp. scales with

viscosity & inverse
. relaxation time
§ 1.00
50.75- 2_</[2<_+p;] e T'(t =ty) independent
0.50 - 0 of relax. time for Ty
00 05 10 13 small enough

(C/ 8)mas

e Any value of T'(t = ty)
can be obtained
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Conclusion & Outlook
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Conclusion

First steps toward fluid-dynamic description:

e Established set of equations & EoS to describe
soft part of HIC

e Study entropy production during compression
& expansion

e Bulk visc. & relaxation time can be chosen
such that T'(t = ty) is similar to temp. found
in initial moments of fireball
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e Apply QFT calculations to model

e More realistic 1 + 1D setup — Includes

shear viscosity & baryon diffusion

e Include fluctuations & correlations

35



Thank you for your attention!
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Bulk viscosity parametrization

Bulk viscosity
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Massieu potential

e Massieu potential w = SBp
e Phase coexistence w = (1 — r)w’ + rw”

e Evolution eq.for volume ratio parameter

o n (’}/)qu('%r)f
WO = = s

e Modified conservation equation

L n nm n GP9(y,r)f
ut aﬁlﬁy +G (777') {fm - [C;,:l - C%]WM} =0.



Combining the EoS

e Composite EoS
p=35(1— f)prre + 3(1 + f)pLaco

e [ransfer function

f(T, 1) = tanh (%ﬁ;‘::“)) with

Tirans(t) = 0.1 GeV + 0.28 — 0.2GeV 12 &
ATirans = O-lT‘crans(,u = O)



LQCD & HRG

Lattice EoS: Expansion around eq pressure

praeo(Ts ) = p(T) + 394 n' L
Hadron resonance gas: Total pressure is

sum of partial pressures
PHRG (T7 :u) — Zbaryons dzpF<T7 leua mz) +
Zmesons dipB (T7 0; ml)



Nucleon-meson model

0.00010

e Effective model for cold,

dense nuclear matter
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Apply mean-field approximation — Fields
self-consistently determined by gap equations

= First-order phase transition captured



Fluid-dynamic EoM

e EoM are set of coupled, first-order PDEs
with discontinuous initial conditions

— Weal solutions need to be expected

e Uniqueness of weak solutions given by

Rankine-Hugoniot condition
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