Calibration de l'étiquetage des jets issus de quarks b dans ATLAS

Sébastien CORRÉARD

sous la direction d'Alexandre ROZANOV

- Introduction : le LHC et ATLAS
- L'étiquetage des jets b
- Calibration de l'étiquetage
- Le canal tt H→bb

Motivations du LHC : le boson de Higgs

Le modèle standard a été testé avec une grande précision (10⁻³ - 10⁻⁴) par les accélérateurs récents (LEP, Tevatron...)

Masse des particules ?

- → Mécanisme de brisure spontanée de la symétrie électrofaible
- → Recherche du boson de Higgs : la pièce manquante m_H > 114.4 GeV/c² (LEP) et m_H < 1 TeV/c² (théorie) m_H = 114⁺⁶⁹₋₄₅ GeV/c² (ajustement électrofaible)

Motivations du LHC : nouvelle physique

absence de boson de Higgs \rightarrow nouvelle physique à l'échelle du TeV

Le modèle standard, théorie effective à basse énergie d'une théorie plus fondamentale ? → Super symétrie, Théorie Grand Unifiée, ...

Questions ouvertes :

- Pourquoi 3 familles de fermions ?
- Famille additionnelle de quarks et leptons ?
- Gravité ?
- Déconfinement quark/gluon ?

•

Le LHC : Large Hadron Collider

Accélérateur en construction, installé dans l'ancien tunnel du LEP. Mise en service prévue en 2007

Interactions p-p à 14 TeV (également Pb-Pb à 1.15 PeV) Taux de croisement des faisceaux : 40 MHz

Luminosité : 2007-2009 : L~10³³ cm⁻²s⁻¹, soit \int Ldt ~ 10fb⁻¹ par an 2009-20XX : L~10³⁴ cm⁻²s⁻¹, soit \int Ldt ~ 100fb⁻¹ par an

conçu pour découvrir le boson de Higgs < 1 TeV en cas d'absence, nouvelle physique ~ TeV

Trajectographe interne

Pixels : détecteur à silicium

- SCT : micropistes silicium
- **TRT** : trajectographe à pailles avec fonction radiation de transition

dans un aimant solénoïde

tt H→bb

- trajectoires des particules chargées
- paramètres des traces : paramètre d'impact, impulsion, ...
- reconstruction des vertex
- séparation électrons/pions (radiation de transition)

Calorimètre

Électromagnétique : calorimètre à échantillonnage Pb/Ar, dans un cryostat

- mesurer l'énergie et la direction des gerbes électromagnétiques
- séparation γ/π^0

$$H \rightarrow ZZ^{(*)} \rightarrow 4e$$
 $H \rightarrow \gamma\gamma$

Hadronique : calorimètre acier/scintillateur

- déterminer l'impulsion transverse manquante
- mesurer la contribution hadronique de l'énergie des jets

Calorimètre

Permet de déterminer l'énergie et la direction des jets

Le jet contient des top informations sur le parton initial

Bien reconstruire un jet permet de remonter à cette information

Spectromètre à muons

Chambres à dérive et aimants (toroïdaux)

détecter les muons

mesurer leur impulsion

 $H \rightarrow ZZ^{(*)} \rightarrow 4\mu$

 \Rightarrow Reconstruit les vertex et les trajectoires des particules chargées

Le détecteur à pixels

Implication du CPPM :

- chargé de construire 1/3 du tonneau (avec Allemagne et Italie)
- 3 échelles déjà produites, dont 1 avec l'électronique finale
- production lancée

Paramètre d'Impact

Définition du paramètre d'impact signé

Paramètre d'Impact

• Distribution du paramètre d'impact

Méthodes d'étiquetage des jets b

- Durée de vie des hadrons beaux :
 - τ ~1.5 ps, si E=50 GeV, distance de vol ~ 5 mm
 - Paramètre d'impact 2D et 3D
 - Vertex Secondaire
- Leptons mous (p_T~10 GeV/c) non isolés :

– électrons/muons issus de B (\rightarrow D) $\rightarrow \ell$

Canaux sensibles à l'étiquetage

- → $\sigma(tt)$ =833pb, physique du top : m_{top}, Γ_{top} , corrélation de spin... m_{top} → contraintes sur m_H
- tt H→bb → recherche d'un boson de Higgs léger 114 GeV/c² < m_H < 140 GeV/c²
- $W H \rightarrow bb \rightarrow recherche du boson de Higgs$

tt

SUSY → recherche du t et du b, du h→bb MSSM (m_h<130 GeV/c²)

le canal ti H→bb : signal

État final complexe : 6 jets, 1 ℓ , E_t^{miss} +jets ISR/FSR Requiert l'étiquetage de 4 jets b $\rightarrow (\epsilon_b)^4$

le canal ti H→bb : bruit de fond

Étiquetage des jets b

• Distribution de signification $S(a_0) = \frac{a_0}{\sigma(a_0)}$ des traces

(pour donner plus de poids aux traces les mieux mesurées)

Lissage des distributions densités de probabilité b(S) et u(S)

poids d'un jet :

$$W_{2D} = \sum_{\text{traces}} ln \left(\frac{b(S)}{u(S)} \right)$$

Vertex Secondaire

- Reconstruction explicite du vertex secondaire (SVX)
- \Rightarrow 3 variables supplémentaires :
 - Masse reconstruite du vertex secondaire : M
 - Rapport E_{SVX}/E_{jet} : F
 - Nombre de vertex secondaires à 2 traces : N

On ajuste la distribution de ces 3 paramètres par les fonctions u(M,F,N) et b(M,F,N) $w_{SVX} = ln\left(\frac{b(M,F,N)}{u(M,F,N)}\right)$

Méthode combinée

Définition des jets b

Poids du jet → étiquetage de la saveur du jet

Efficacité de sélection :

$$\epsilon_{b} = \frac{N_{b} \text{ sélectionnés}}{N_{b} \text{ total}} = 60\%$$
Facteur de rejet des jets légers

$$(u, d, s \text{ ou g})$$

$$R_{léger} = \frac{N_{léger \text{ total}}}{N_{léger \text{ sélectionnés}}} \approx 150$$

Effets réalistes

L'algorithme d'étiquetage tient compte des effets « réalistes » suivants :

- Inefficacité des pixels : 3%
- Inefficacité des modules et chips : 1 et 2%
- détecteur initial (2 couches de pixels)
- bruit d'empilement des événements de biais min.
- descriptions détaillées de la matière et de l'électronique
- effets d'alignement

Calibration de l'étiquetage des jets b

Calibration = construction des fonctions de densité de probabilité

- 1. Calibration sur simulations MC description du détecteur
- Calibration sur les données exemples :

 a. impact de la résolution
 b. propriétés physiques des jets b

Calibration sur simulations MC

Une simulation aussi proche que possible de la réalité est nécessaire pour construire de bonnes courbes de calibration

 \Rightarrow Bon ajustement du MC grâce aux tests en faisceau \Rightarrow Bonne description du détecteur

Développement de la description du détecteur :

Validation description : tests faisceau

Été-automne 2004 : tests combinés en faisceau

Validation description : tests faisceau

Résultats des tests combinés en faisceau

Étiquetage : impact de la résolution

Exemple de dégradation des résolutions sur les traces :

$$\sigma_{a_0} \rightarrow \sigma'_{a_0} = \sqrt{\sigma_{a_0}^2 + (30 \,\mu\text{m})^2}$$
$$\sigma_{z_0} \rightarrow \sigma'_{z_0} = \sqrt{\sigma_{z_0}^2 + (150 \,\mu\text{m})^2}$$

événements ttH et tt

Impact de la dégradation de la résolution sur les traces :

résolution sur les traces	σ_{a_0} original σ_{z_0} original	$\sigma'_{a_0} = \sqrt{\sigma_{a_0}^2 + (30 \mu\text{m})^2}$ $\sigma'_{z_0} = \sqrt{\sigma_{z_0}^2 + (150 \mu\text{m})^2}$
performances d'étiquetage pour ε _b =60%	R _u =352 ± 20	R _u =168 ± 6
	-50	2%

Calibration : impact de la résolution

Impact de la calibration sur les performances d'étiquetage :

résolution sur les traces	$\sigma'_{a_0} = \sqrt{\sigma_{a_0}^2 + (30 \mu\text{m})^2}$ $\sigma'_{z_0} = \sqrt{\sigma_{z_0}^2 + (150 \mu\text{m})^2}$	ε _b =60%
calibration ne correspondant pas à la réalité (résolutions originales)	R _u =143 ± 4	
calibration correspondant à la réalité (résolutions dégradées)	R _u =168 ± 6	

> Important d'avoir de bonnes résolution, mais il faut aussi les connaître

Impact de la résolution

Résumé :

- avoir une bonne résolution sur les traces est la priorité
- à résolution donnée, une bonne calibration améliore les performances d'étiquetage

On pourrait extraire les résolutions des données réelles, et produire des courbes de calibration adaptées à ces résolutions.

Calibration : propriétés physiques des jets b

Canal tt : bruit de fond important pour l'étude ttH, mais peut être mis à profit pour sélectionner des jets b dans les données

Canal semileptonique* : pour déclenchement, reconstruction plus facile, et peu de fond

Deux quarks b dans l'état final. Idée : en étiqueter un, et sélectionner l'autre à l'aide d'une reconstruction cinématique.

Calibration : propriétés physiques des jets b

Reconstruction complète de l'événement :

- Recherche de 3 jets qui maximisent $|\Sigma \vec{p}_T|$

- Un jet étiqueté b parmi ces 3 jets
- Fit contraint \rightarrow coupure sur χ^2

On sait quels sont les jets légers et quels sont les jets b \Rightarrow sélection d'un échantillon de jets b

Calibration : propriétés physiques des jets b

Échantillon de jets b

Reconstruction des courbes de calibration

Le canal ti H→bb

- Continuation de l'analyse précédente
- Hypothèse : m_H=120 GeV/c²
- Deux types d'analyse : coupures et likelihood (LH)
- Résultats sur événements de simulation rapide
- « vrai » étiquetage sur événements de simulation détaillée

Deux analyses

Méthode des coupures

- Déterminer p^Z, avec la contrainte m_W (échec dans 25% des cas)
- Trouver la combinaison de 2 jets légers, 4 jets b qui minimise

$$\Delta = (\mathbf{m}_{\ell \mathbf{v} \mathbf{b}} - \mathbf{m}_{\mathrm{top}})^2 + (\mathbf{m}_{\mathrm{jjb}} - \mathbf{m}_{\mathrm{top}})^2$$

 Garder les événements où m_{jjb}, m_{ℓvb} consistant avec m_t, et m_{bb} consistant avec m_н

Méthode Likelihood

- Déterminer p_v^z avec la contrainte m_W (si échec, approximation $p_v^z = p_\ell^z$)
- •Utilise un **likelihood** à 6 variables pour trouver la meilleure combinaison
- •Garder les événements ou m_{bb} consistant avec m_H
- •Utilise likelihood à 8 variables pour séparer encore plus le signal du fond

Analyse en coupures

Événements Atlfast (simulation rapide), étiquetage aléatoire ε_b =60%, R_u=100, R_c=10

Événements attendus pour 30 fb⁻¹ :

Analyse en coupures	ttH(120)	ttbb	ttjj	ΣBkg	S/√B	S/√B _{red}
Nb evt	27	164	46	180	2.0	3.9

S/VB_{red}=N(ttH)/ VN(ttjj)

Analyse likelihood (LH)

Événements Atlfast (simulation rapide), étiquetage aléatoire ε_{b} =60%, R_u=100, R_c=10

LH combinatoire : Distinguer les bonnes combinaisons des mauvaises dans le signal

LH de signal : Distinguer les événements ttH du bruit de fond

Analyse LH	ttH(120)	ttbb	ttjj	ΣBkg	S/√B	S/√B _{red}
Nb evt	43	167	58	226	2.8	5.6

paramétrisation de l'étiquetage

Paramétrisation dépendant du p_T, basée sur :

- des événements tt/ttH
- l'algorithme 3D
- un détecteur à 2 couches de pixels
- des inefficacités modules/chips de 1/2 %
- \rightarrow Plus réaliste que l'étiquetage « théorique » ε_b =60%, R_u=100, R_c=10

Conclusions de l'analyse précédente :

Analyse LH	ttH(120)	ttbb	ttjj	ΣBkg	S/√B	S/√B _{red}
Nb evt	49	222	136	358	2.6	4.2

\Rightarrow Dégradation en termes de S/ \sqrt{B} : ~10%

étiquetage basé sur les traces

Étape suivante: événements issus de simulation détaillée et étiquetage des jets b basé sur les traces reconstruites

 \rightarrow plus réaliste : basé sur les paramètres des traces \rightarrow plus efficace : utilise les derniers algorithmes

Optimisation des coupures sur LH⁴⁰

Optimisation des 3 likelihoods :

Likelihood combinatoire Likelihood de signal Likelihood d'étiquetage des b

Pour le moment, l'optimisation a porté sur S/ $\sqrt{B_{réductible}}$

Les pics correspondent à des coupures LH pour lesquelles un seul événement du bruit de fond réductible survit.

* vrai" étiquetage des jets b sur événements de simulation détaillée

"vrai" étiquetage w_{btag}>3. :

$$\epsilon_b = 65\%$$

 $R_{léger} = 60$
 $R_c = 6.5$

étiquetage aléatoire fixe : $\epsilon_b = 60\%$ $R_{léger} = 100$ $R_c = 10$

Analyse	ttH(120)	ttbb	ttjj	ΣBkg	S/√B	S/√B _{red}
analyse précédente, coupures	27	164	46	180	2.0	3.9
cette analyse, coupures	41	114	77	191	3.0	4.7

 \Rightarrow même sur une analyse rudimentaire, apport important

⁴² "vrai" étiquetage des jets b sur ⁴² événements de simulation détaillée

"vrai" étiquetage w_{btag}>3. :

$$\epsilon_b = 65\%$$

 $R_{léger} = 60$
 $R_c = 6.5$

étiquetage paramétrisé : $\epsilon_b = 60\%$ $R_{léger} = 40$ $R_c = 6$

Analyse	ttH(120)	ttbb	ttjj	ΣBkg	S/√B	S/√B _{red}
analyse précédente LH	49	222	136	358	2.6	4.2
cette analyse LH	71	185	19	204	5.0	16.0

 \Rightarrow apport majeur des dernières méthodes d'étiquetage

Conclusions

• L'étiquetage des jets b requiert de très bonnes performances du détecteur \rightarrow tout faire pour optimiser celles-ci

 La calibration de l'étiquetage est possible (ajuster les résolutions, extraire les propriétés des jets b à partir des données)

• Les performances d'étiquetage des jets b sont déterminantes pour la physique (2D \rightarrow 3D \rightarrow SVX \rightarrow futur...)

• L'amélioration de la de découverte du boson de Higgs dans le canal tt H \rightarrow bb a été démontrée \rightarrow 5 σ . Restent encore des améliorations potentielles à explorer

Le boson de Higgs dans ATLAS

Le boson de Higgs dans ATLAS

Ajustement à partir de mesures de 47 précision électrofaibles

 $m_{\rm H} < 211 \text{ GeV/c}^2 \text{ à } 95 \% \text{ C.L.}$

 $m_{H} = 114^{+69}_{-45} GeV/c^{2}$

propriétés physiques des jets b

Peuvent différer entre la réalité et le MC :

- Multiplicité des jets b
- Rapport multiplicité chargée/neutre : B⁺/B⁰
- Rapport baryons/mésons : Λ_B/B
- Branching de désintégration
- Corrélation des désintégrations due aux éléments de matrices

Calibration sur ti : les coupures

Sélection des événements tt :

- 4 jets de p_T >15 GeV/c, dont 2 avec $|\eta|$ <2.5 (candidats b)
- 1 lepton isolé de p_T >15 GeV/c et $|\eta|$ <2.5
- p_T^{all}>300 GeV : événements bien dos-à-dos
- Pour les 3 jets formant le top : $|\Sigma p_T|$ >130 GeV/c
- Fenêtres de masse avant fit contraint :
 - m_W -9 GeV/c² < m_{Wrec} < m_W +9 GeV/c²
 - m_{top} -25 GeV/c² < m_{THrec} < m_{top} +25 GeV/c²
 - m_{top} -18 GeV/c² < m_{TLrec} < m_{top} +13 GeV/c²

Amélioration des méthodes

- Suppressions des traces provenant d'un vertex :
 - d'interaction avec la matière du détecteur
 - De désintégration de K ou Λ

Amélioration des méthodes "mauvaises" traces

Bad tracks if one of conditions:

- one shared hit in b-layer
- one shared hit in pixels
- two shared hits in SCT
- one ambiguous hit in b-layer

Amélioration des méthodes "mauvaises" traces

ttH/ttjj events, mH=120 GeV, with pile-up, 2 pixel layers Initial layout, b-layer 400 µm,

inefficiencies modules/chips 1-2 %, b-layer inef. 0.5-1.0 %

b- from ttH, u- from ttjj, ATLFAST jets, reconstructed vertex, SV1 method

$$\Delta R_{jj} > 0.8$$
, $\Delta R_{jbquark} > 0.8$

		No bao	d tra	acks	With bad tracks	R _{with/no}
R _u	ε _b =50%	1635	± ´	169	1693 ± 178	1.04
	ε _b =60%	386	±	19	418 ± 22	1.08
	ε _b =70%	75	±	2	79 ± 2	1.05

Leptons

• B→e[±]X : ~20%

Identification e[±] dans un jet :

- Calorimètre électromagnétique
- Informations du TRT
- B→µ[±]X : ~20%

Identification $\mu \pm dans un jet$:

┿

- Chambre à muons
- Calorimètre hadronique

Correspondance d'une trace dans le détecteur interne

Test en faisceau combine

Système de déclenchement

Ferme de PC

- sélectionner les événements a priori intéressants
- 3 niveaux de déclenchement