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ML-based Particle Flow

e Build PF candidates out of hits and tracks

e Interesting problem for ML: Variable number of
inputs (hits, tracks) and outputs (PF candidates)

e Similar problems: image segmentation, tracking...

e Dolores’ talk tomorrow: End-to-end ML-based
reconstruction for FCC-ee
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Dataset - CLD fullsim
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Similar approach for each detector! Can we avoid tuning of the
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Pandora parameters for each detector?



Datasets

10-15 particle gun
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Results: clustering

Improved efficiency of clustering o the 10-15 particles dataset
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Results: energy correction -

e Better clustering, energy correction for neutral hadrons
leads to better mass resolution
e Key: high-level features (% energy in ECAL/HCAL; sum

of E ;) complementing the complex shower geometry |EEisEes
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information extracted by the GNN Soal_dispersion
e Better clustering is key - sum of the hits the most

'm portant featu re Mean absolut;O;HAP vaI:JOe_1(feature ;%Oportance)
neutrons

Hadronic Resolution

Hadronic Resolution

« Baseline
x ML
x  Pandora

« Baseline
x ML
x  Pandora

50
Energy [GeV]

40 50
Energy [GeV]

ML-based Particle Flow for CLD, ECFA Workshop Paris, Oct 2024




Results: PID

Confusion Matrix

e Simplified PID: electron, CH (assign pion mass), NH
(assign neutron mass), photon
Predict unit vector p/|p| + energy correction + PID
Separate model heads for charged (containing a
track) and neutral (containing no track) particles

e All classes in both heads (to accounts for errors in
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What about fake rate?

e Lots of fakes!

e But: less energy stored in them Fake energy rate = E of fakes / Total E
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Results - 10-15 particles dataset

e Better clustering efficiency, energy correction for neutrals leads to better
invariant mass resolution (here, particles species are present equally in the
same quantity - not the case for physics events!)
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Results: K¢ 10

e Not feasible to do direction regression - weighted average of the hits from
(0,0,0) is a better solution - similar to Pandora
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Future work

e Demonstrate the model on physics events
e Improve angular resolution with ML
e Integrate MLPF into FCC software
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K —10 110 dataset

e Still highly collimated photons
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