

GRAiNITA status report

Marie-Hélène Schune IJCLab – CNRS Univ. Paris-Saclay

S. Barsuk¹, Beschyko⁴, D. Breton¹, A. Boyarintsev², I. Boyarintseva^{2,1}, H. Chanal³, A. M. Dubovik², Y. Hou³, G. Hull¹, D. Klekots⁴, A.Kotenko⁴, J. Lefrancois¹, M. Magne³, S. Monteil³, M-H Schune¹, N.Semkiv⁴, I. Tupitsyna², M. Yeresko³

¹ Université Paris-Saclay, CNRS-IN2P3, IJCLab, Orsay, France
² Institute of Scintillation Materials of the National Academy of Science of Ukraine, Kharkiv, Ukraine
³ Université Blaise Pascal, CNRS-IN2P3, LP-Clermont, Aubiere, France
⁴ Kyiv National Taras Shevchenko University Ukraine

зга ECFA worksnop. 9-11 October 2024

GRAiNITA concept (2019)

Inspired by LiquidO technique for neutrino detector (A. Cabrera et al. LiquidO Commun Phys 4, 273 (2021))

Typical sampling calorimeters: $\frac{\sigma_E}{E} \sim \frac{10\% - 15\%}{\sqrt{E}}$ Crystal calorimeters : $\frac{\sigma_E}{E} \sim \frac{1\% - 2\%}{\sqrt{E}}$

Requirements:

- fine sampling
- scintillation light locally contained

3rd ECFA workshop. 9-11 October 2024

Where are we?

Small (2 x 2 x 5.5 cm³) prototype filled with ZnWO4 grains + water or Heavy Liquid (EGL or LST_fastloat (d=2.8)) and 16 WLS fibers read out by SiPM and a Wave-Catcher

Depolished fiber in the center to allow for green light injection

	ZnWO ₄
Effective Z	61
Density (g/cm^3)	7.87
Refractive index	2.0 - 2.3
Light yield (photons/MeV)	~ 9000
Peak emission wavelength (nm)	480
Decay time (μs)	20
Radiation length (cm)	1.20
Molière radius (cm)	1.98

built in 2023

1. Light is confined

2. Most Probable value (fit by Landau) : ~400 \Rightarrow ~ 10 000 photo-electrons/GeV

⇒ opens the road to a a statistical fluctuation of $\frac{1\%}{\sqrt{E}}$ due to photon statistics

3rd ECFA workshop. 9-11 October 2024

A test beam ?!

In March, we were informed of the possibility to be parasitic in a test beam for LHCb-U2 calorimeter tests in the H2 region in the CERN North Area

We decided to put our small prototype in a beam of muons and pions (about only ~5% of the pions are supposed to interact in our prototype). It was a nice week-end

Many thanks to Yuri Guz Loris Martinazzoli and Matteo Salomoni

GRAiNITA

- triggered by the drift chamber + scintillators
- read-out by a 16-channels wave catcher adapted to count the number of photo-electrons in a 25 μ s window 3rd ECFA workshop. 9-11 October 2024

Millions of triggers

- ~ 0.2 million of high-quality muons passing through GRAiNITA
- ~ 3.8 millions of high-quality pions passing through GRAiNITA

(x,y) map for all tracks weighted by the response from each fiber

Confirmation of the light confinement

(x,y) map for all tracks weighted by the global answer from the prototype

9

Uniformisation of the fiber response

For each fiber:

- plot the fiber response (avoiding edge effect) and fit with Landau \otimes Gaussian \rightarrow MPV
- compute the average of the MPV (<MPV>).
- \rightarrow 16 coefficients (one per fiber)

Difference to <MPV>

Muon/HL

confirmation of the possibility to have a statistical fluctuation of $1\% / \sqrt{E}$ due to photon statistics

Towards the uniformity study

©Britannica Dictionnary

Principle of the method (LHCb calorimeter)

Beam Test Results of the LHCb Electromagnetic Calorimeter

Grey = simulation

~0.8% constant term for LHCb calorimeter

~±9% variation Simplified simulation^(*) indicates that $\frac{\sigma_E}{E}$ ~ 1% should be at reach

 $\binom{(\star)}{1+0.07\cos\left(\frac{2\pi X}{7\,mm}\right)+0.07\cos\left(\frac{2\pi Y}{7\,mm}\right)}$

Towards the use of the π beam data

About 5% of the π interact in the prototype π beam has higher-stat but is more less pure

Use the tracks close to a fiber (here Fiber8) for the modelling of the response

Pion fit :

Muon Fit:

Landau&Gaussian (parameters from Muon, but MPV) + Asym-CB (mean and sigma related to Landau \otimes Gaussian)

Is this shape universal enough ?

Conclusion

- Confirmation of the NPhe ~ 10k/GeV : statistical fluctuation of $\frac{1\%}{\sqrt{E}}$ at reach
- Next question : constant term due to non-uniformity
 - If the track is more than 0.5 mm away from the limit of the fiber, the variations are small
 - A priori enough data for a first study of the uniformity, preliminary results are encouraging
 - Limitations due to the prototype size

