Bunch structure studies at the Cool Copper Collider

3rd ECFA workshop on e+e- Higgs, Top & EW Factories

October 10th, 2024

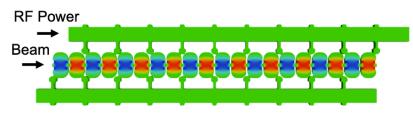
Dimitris Ntounis¹, Lindsey Gray^{2,} Elias Mettner³, Caterina Vernieri¹

¹Stanford University &

SLAC National Accelerator Laboratory

²Fermilab National Accelerator Laboratory

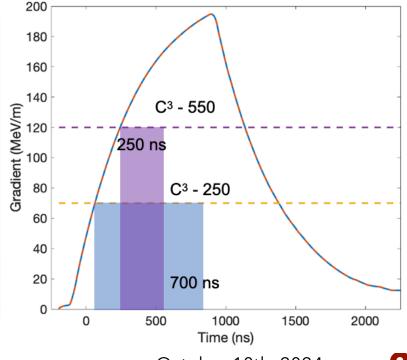
³University of Wisconsin-Madison



The Cool Copper Collider

- Cool Copper Collider (C³): newest proposal for a linear e⁺e⁻ collider relying on normal conducting copper accelerating technology, with a novel cavity design that utilizes distributed coupling.
- cryogenic temperature operation (LN2 at 77K), lower surface fields and higher accelerating gradients
 - \rightarrow cost-effective, compact 8 km footprint.

Electric field magnitude for equal power from RF manifold



Innovations

- Optimized design of RF cavities to minimize breakdown.
- Small aperture, distributed coupling from a common RF manifold → possible with precision CNC

75 MeV/m @250 GeV 120 MeV/m @550 GeV

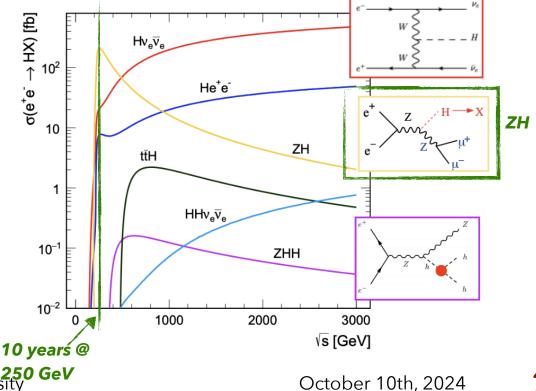
JINST 18 P07053

Dimitris Ntounis

SLAC & Stanford University

• C³ targeted at operations at 250 GeV (*ZH* mode) and 550 GeV (*ZHH* mode - only possible for linear

The Cool Copper Collider - Physics


- colliders). The targeted inst. luminosity of $1.3(2.4) \times 10^{34}$ cm⁻² s⁻¹ at 250 (550) GeV would allow 2 (4) ab⁻¹ of
- statistics after **10 years at each energy**.

•

•

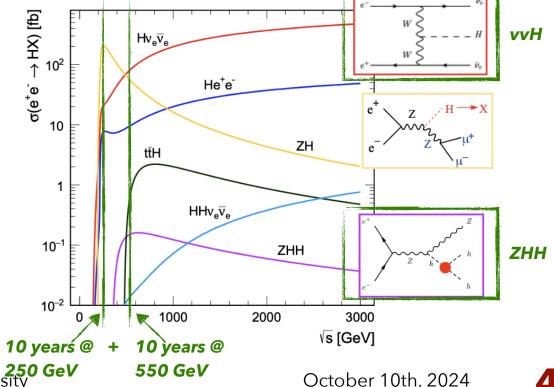
It's important to evaluate and optimize emissions due to construction and operation for the entire run time of the collider.

Parameter	Value						
\sqrt{s} (GeV)	250	550					
Luminosity ($cm^{-2} sec^{-1}$)	1.3×10^{34}	2.4×10^{34}					
Number of bunches per train	133–200	75					
Train repetition rate (Hz)	120	120					
Bunch spacing (ns)	5.3–3.5 ^a	3.5					
Site power (MW)	150	175					
Beam power (MW)	2.1	2.45					
Gradient (MeV/m)	70	120					
Geometric gradient (MeV/m)	63	108					
rf pulse length (ns)	700	250					
Shunt impedance $(M\Omega/m)$	300	300					
Length (km)	8	8					

Dimitris Ntounis Target beam parameters for C^3 . SLAC & Stanford University

JINST 18 P07053

SLAC 🛞


The Cool Copper Collider - Physics

- C³ targeted at operations at 250 GeV (ZH mode) and 550 GeV (ZHH mode only possible for linear colliders).
- The targeted inst. luminosity of $1.3(2.4) \times 10^{34}$ cm⁻² s⁻¹ at 250 (550) GeV would allow 2 (4) ab⁻¹ of statistics after **10 years at each energy**.
- It's important to evaluate and optimize emissions due to construction and operation for the entire run time of the collider.

Parameter	Value						
\sqrt{s} (GeV)	250	550					
Luminosity ($cm^{-2} sec^{-1}$)	1.3×10^{34}	2.4×10^{34}					
Number of bunches per train	133–200	75					
Train repetition rate (Hz)	120	120					
Bunch spacing (ns)	5.3–3.5 ^a	3.5					
Site power (MW)	150	175					
Beam power (MW)	2.1	2.45					
Gradient (MeV/m)	70	120					
Geometric gradient (MeV/m)	63	108					
rf pulse length (ns)	700	250					
Shunt impedance $(M\Omega/m)$	300	300					
Length (km)	8	8					

•

•

Target beam parameters for C^3 . SLAC & Stanford University **Dimitris Ntounis**

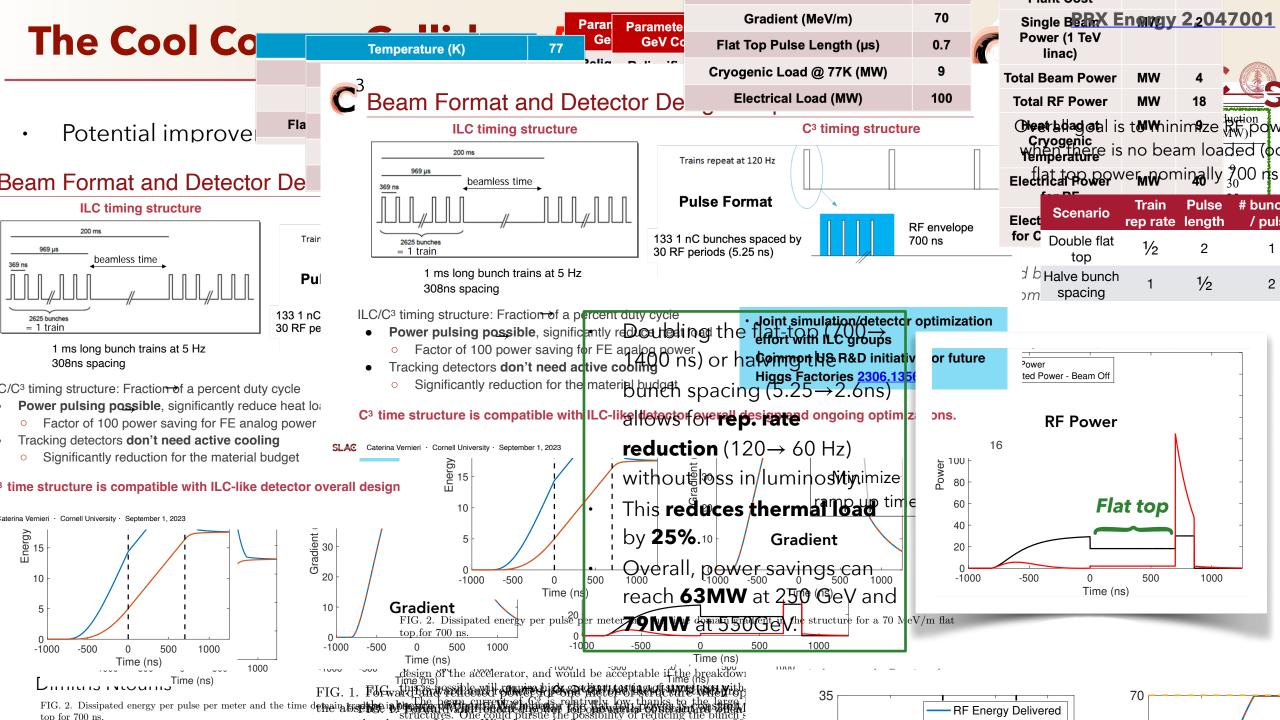
JINST 18 P07053

First-step luminosity optimization Process:

- **1.**Optimize $\epsilon_x^*, \epsilon_y^*, w_y$ and σ_z^* for C³-550 wrt to maximizing \mathscr{L}_{inst} . **2.**Evaluate optimized parameters on C³-250.
- **3.**Examine effect of modifications in $\beta_x^*, \beta_y^*, \Delta x, \Delta y$.
- For each set of parameters, use <u>GUINEA-PIG</u> to estimate H_D , as well as evaluate the magnitude of the beam-induced background $[\mathcal{O}(10^4) \text{ samples generated for the studies here}]$
 - New parameter set (Parameter Set 2 **PS2**) proposed based on target luminosity requirements:

$$\mathscr{L}_{C^{3}-250}^{(\text{target})} = 1.3 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \text{ , } \mathscr{L}_{C^{3}-550}^{(\text{target})} = 2.4 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$$

In order to collect: $\mathscr{L}_{int} = 2 \text{ ab}^{-1} @ \sqrt{s} = 250 \text{ GeV}, 4 \text{ ab}^{-1} @ \sqrt{s} = 550 \text{ GeV}$


Parameter changes:

- Reduce ϵ_v^* from **20 nm** to **12 nm**
- Increase ϵ_x^* from **900 nm** to **1000 nm**
- Introduce vertical waist shift w_v of **80 µm**

With the new parameters, the target luminosity is reached (and exceed for C³-250 by by **55%**), while the beaminduced background remains at the same levels.

SLAC 🚳

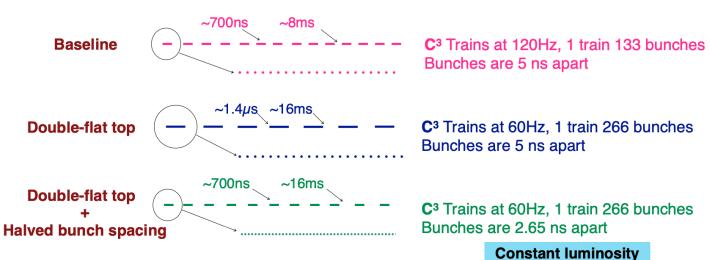
The Cool Copper Collider - Power Optimizations

- Changes in flat-top duration, bunch spacing and rep. rate can be combined to improve the luminosity per unit power up to 3x!
- The energy consumption throughout the entire lifetime of the machine can be reduced significantly!

~700ns

~8ms

Requires additional studies to evaluate feasibility on the accelerator (high-gradient tests with double flat top) and detector (evaluation of occupancy tolerances) side!

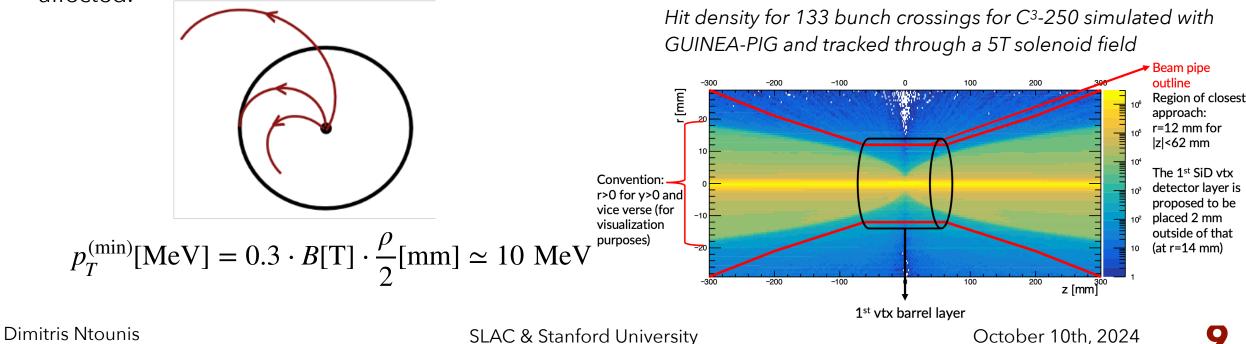

	Lu	minosity f	or two	beam p	arameter sets	Total site powe	er consumption	L	$P_{\rm site}$	
					\mathcal{L} (10 ³⁴	$cm^{-2}s^{-1})$	P _{site} (MW)	$(10^{34} \text{ cm}^{-1})$	$s^{-2} s^{-1} (GW)$,-1
Scenario	Flat top (ns)	Δt_b (ns)	n_b	f_r (Hz)	C ³ -250 (PS1)	C ³ -250 (PS2)	Both scenarios	PS1	PS2	
Baseline Double flat top Halve bunch spacing Combined-half repetition rate Combined-nominal repetition rate	700 1400 700 1400 1400	5.26 5.26 2.63 2.63 2.63	133 266 266 532 532	120 60 60 60 120	1.35 1.35 1.35 2.70 5.40	1.90 1.90 1.90 3.80 7.60	150 125 129 154 180	9.0 10.8. 10.5 17.5 30.0	12.7 15.2 14.7 24.7 42.2	
Beam configuration scenarios for C^3 , which include modifications in the bunch spacing $\Delta t_{b'}$ the number of bunches per train $n_{b'}$ and/or the train repetition rate $f_{r'}$. Dimitris Ntounis SLAC & Stanford University October 1									o ~3x _{site} gaint 7	

The Cool Copper Collider - Sustainability Scenario

C3 meeting@LCWS

• Reduce train repetition rate from 120Hz to 60Hz, while increasing the number of bunches per train from 133 to 266.

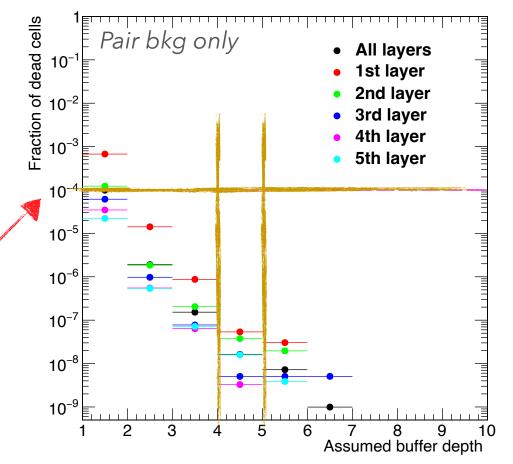
- This change:
 - Maintains the same lumi!
 - Reduces power consumption by ~25%
 - Reduces the bunch spacing from
 5.26ns to 2.65 ns -> need to
 check detector compatibility!



			••••••			
	2					
scenario	$C^{3} - 250$	C^{3} -550	C^3 -250 s.u.	C^3 -550 s.u.		
Luminosity $[x10^{34}]$	1.3	2.4	1.3	2.4		
Gradient $[MeV/m]$	70	120	70	120		
Effective Gradient [MeV/m]	63	108	63	108		
Length [km]	8	8	8	8		
Num. Bunches per Train	133	75	266	150		
Train Rep. Rate [Hz]	120	120	60	60		
Bunch Spacing [ns]	5.26	3.5	2.65	1.65		
Bunch Charge [nC]	1	1	1	1		
Crossing Angle [rad]	0.014	0.014	0.014	0.014		
Single Beam Power [MW]	2	2.45	2	2.45		
Site Power [MW]	$\sim \! 150$	$\sim \! 175$	~ 110	~ 125		

8

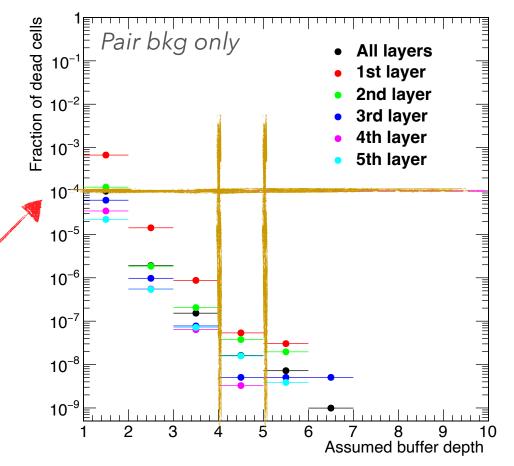
Pair background at C³


- The produced incoherent pairs are mostly at low p_T and get significantly deflected in the strong magnetic field (~T) of the detector. Thus, most of them are "washed" away from the Interaction Region (IR) within the beam-pipe → pair background envelope
- At C³, ~ 0.1 % or ~ 40 particles/BX) reach the detector and increase its occupancy \rightarrow might compromise the stringent precision requirements
- The vertex barrel detector, which is the closest to the IP (r=14 mm for the 1st layer of SiD) is mostly affected.

SLAC 🛞

Pair background at C³

- Detector occupancy : fraction of dead cells, i.e. cells with a number of hits ≥ the available number of buffers (called buffer depth).
- In the current readout strategy for C³, hits will be stored in the buffer system and read out after each bunch train.
- We estimated the occupancy by running full detector simulation for SiD in dd4hep for a full C³ bunch train (133 BXs).
 - For ILC detectors, an occupancy upper limit of 10^{-4} and buffer depth of 4 has been proposed.


Occupancy in the vertex barrel as a function of assumed buffer depth for C^{3} -250.

٠

SLAC

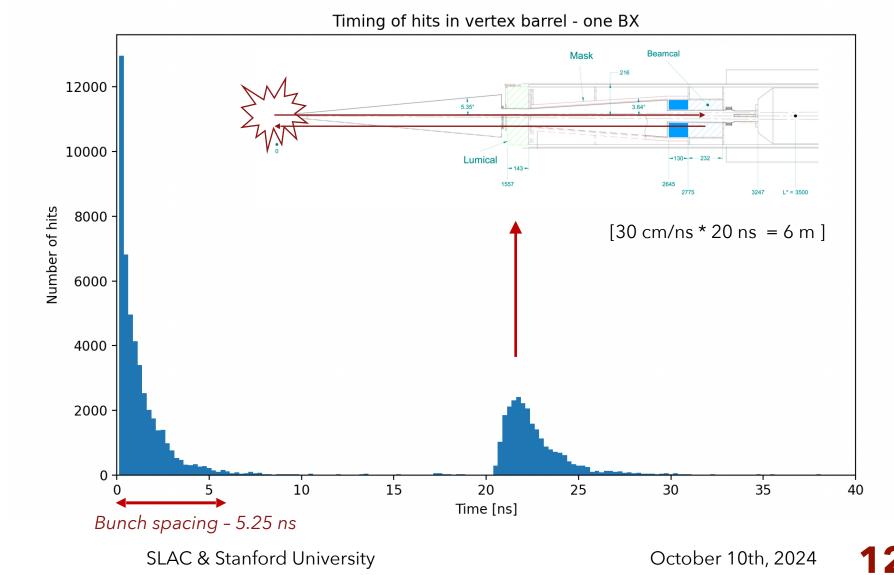
Pair background at C³

- Detector occupancy : fraction of dead cells, i.e. cells with a number of hits ≥ the available number of buffers (called buffer depth).
- In the current readout strategy for C³, hits will be stored in the buffer system and read out after each bunch train.
- We estimated the occupancy by running full detector simulation for SiD in dd4hep for a full C³ bunch train (133 BXs).
- For ILC detectors, an occupancy upper limit of 10^{-4} and buffer depth of 4 has been proposed.
- Occupancy in the SiD vertex barrel for the C³ beam structure is well within the limits set for ILC.

Occupancy in the vertex barrel as a function of assumed buffer depth for C^{3} -250.

SLAC

Time distribution within each BX for C³

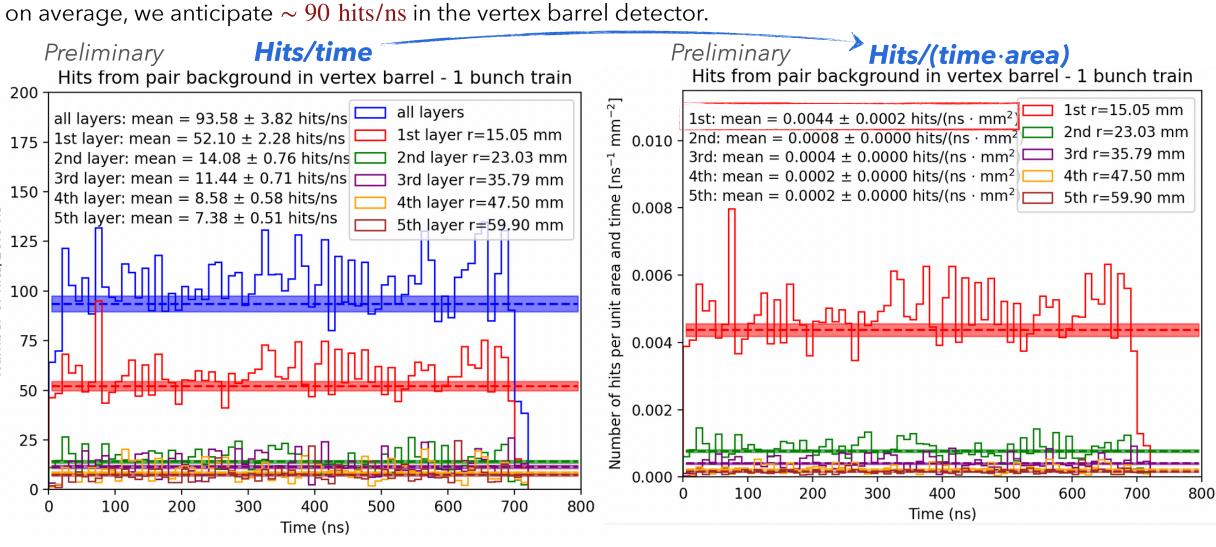

- Time distribution of hits in the SiD vertex barrel within a single BX.
- The normalization corresponds to a full bunch train for C³-250.

٠

٠

٠

- Most hits contained in time within the bunch spacing.
- The secondary peak at ~20-25 ns is due to backscattering from the BeamCal.



-SLAC 🚇

Dimitris Ntounis

Time distribution over a train for C³

Time distribution of hits in vtx barrel per unit time for a full C³-250 train:

Dimitris Ntounis

200

175 -

150

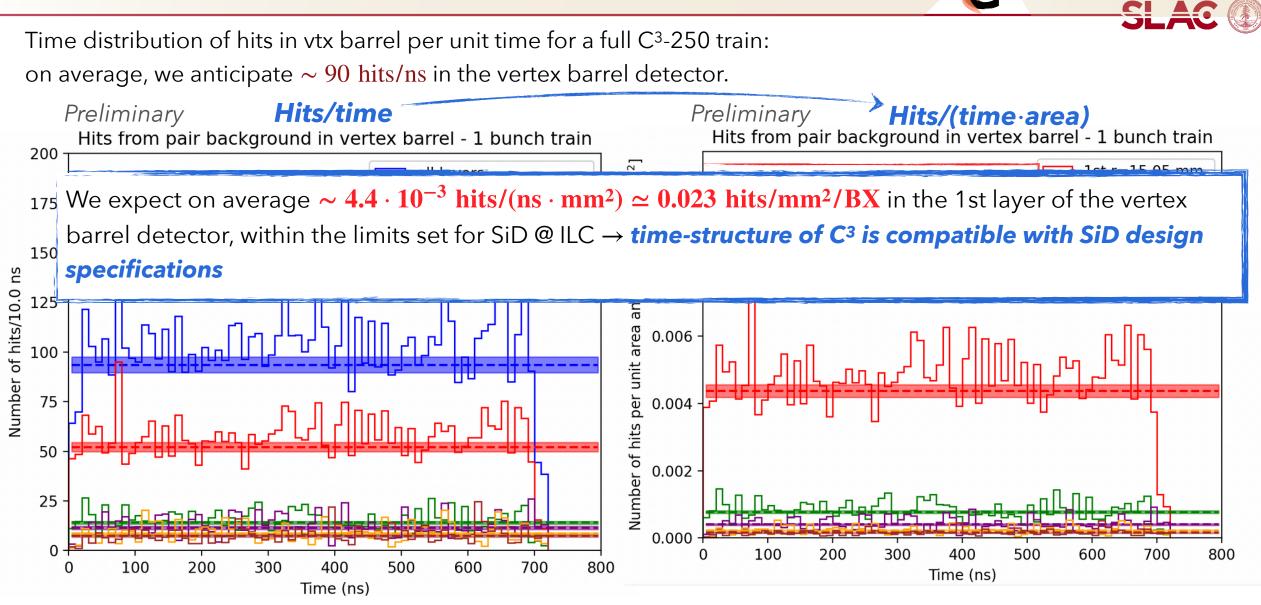
125

100

75

50

25

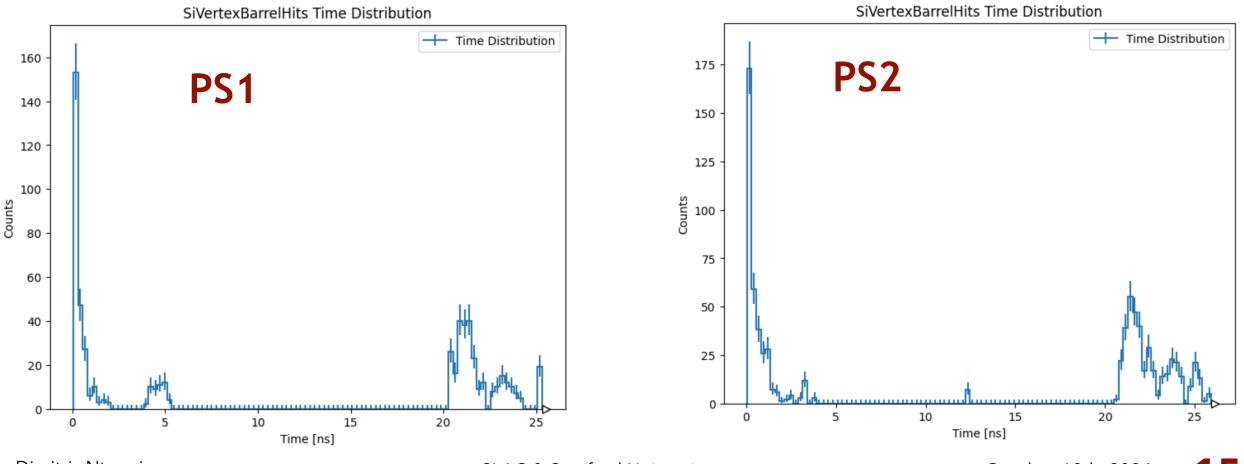

0

0

Number of hits/10.0 ns

SLAC

Time distribution over a train for C³

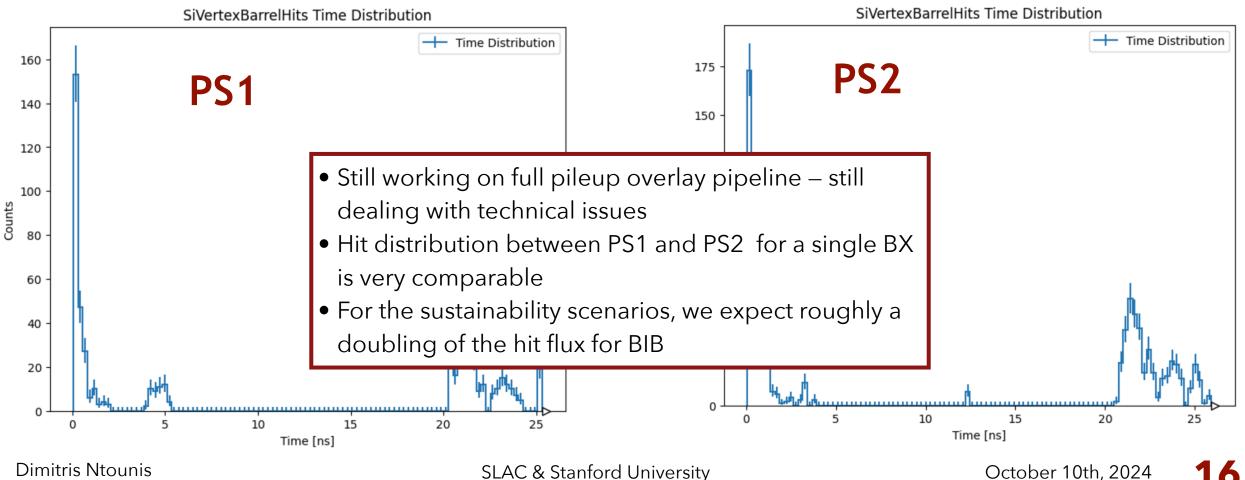


SLAC & Stanford University

Pileup Overlay

٠

Using overlay timing from <u>k4reco</u> to overlay pair background and hadron photo production (see Lindsey's talk!)


SLAC & Stanford University

-SLAC

Pileup Overlay

.

Using overlay timing from <u>k4reco</u> to overlay pair background and hadron photo production (see Lindsey's talk!)

SLAC 🛞

Conclusions

- We have simulated and validated the two leading BIBs for C³, incoherent pair production, and hadron photo production.
- We have performed out-of-time pileup mixing within key4hep.
- We have introduced additional beam scenarios for, C³, with the purpose of increasing the luminosity or reducing the power consumption.
- The **C³ beam configuration and time-structure has been** validated to be compatible with ILC-like detectors.
- Preliminary results indicate that this is also the case for the modified scenarios, but work is ongoing to fully validate this.
- Currently in the process of preparing manuscript to document our results and share with the community.

Thank you for your attention!

For more information on C³, visit: https://web.slac.stanford.edu/c3/

Conclusions

- We have simulated and validated the two leading BIBs for C^3 , incoherent pair production, and hadron photo production.
- We have performed out-of-time pileup mixing within key4hep. •
- We have introduced additional beam scenarios for, C³, with the • purpose of increasing the luminosity or reducing the power consumption.
- The C³ beam configuration and time-structure has been validated to be compatible with ILC-like detectors.
- Preliminary results indicate that this is also the case for the modified scenarios, but work is ongoing to fully validate this.
- *Currently in the process of preparing manuscript to document our* Thank you for Your attention! and share with the community.

SLAC

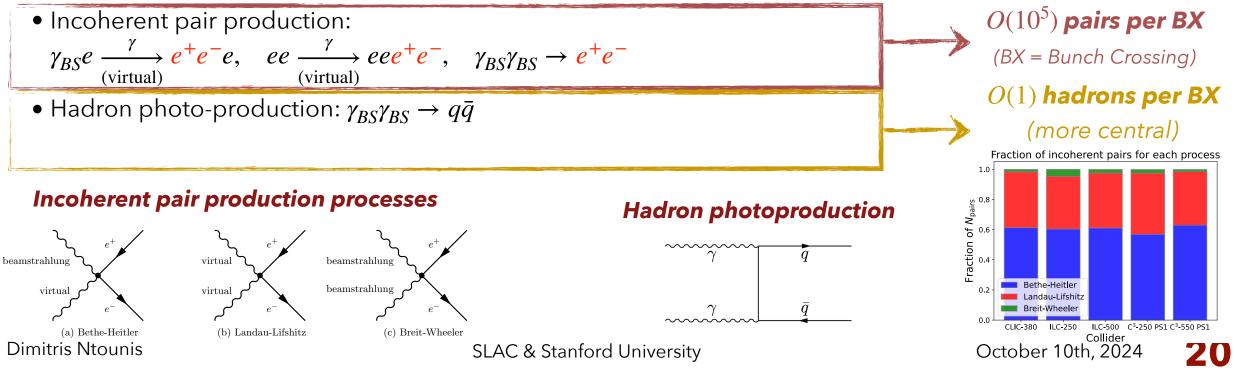
Thank you for your attention!

For more information on C³ Questions? https://web.slac.st-

Dimitris Ntounis

SLAC & Stanford University

Backup


Backup

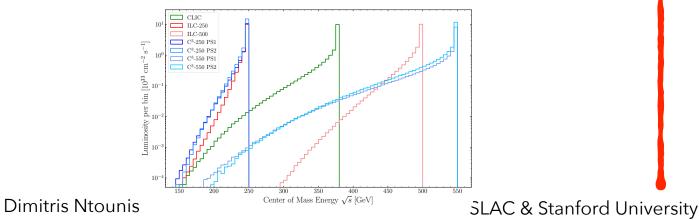
SLAC & Stanford University

Beam-Beam interactions at e+e- colliders

- Nm-sized beams → high charge densities at the IP → interactions between bunches → production of secondaries, that collectively constitute the **beam**induced background (BIB).
- BIB particles are by-products of photons radiated when the two bunches intersect at the IP. Those photons are called **Beamstrahlung (BS).**
- Dominant processes for Higgs Factories:

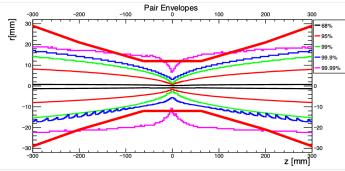
e⁺e⁻ Pairs

Man


Beamstrahlung

Beam-Beam interactions at e+e- colliders

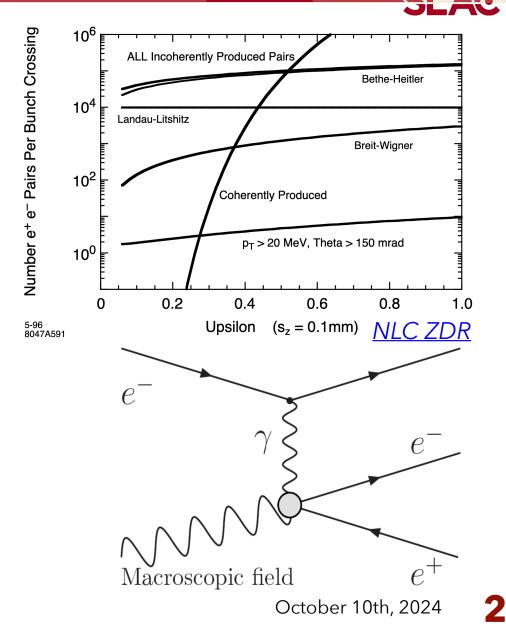
• The effects of beam-beam interactions on the experiments can be split in **two categories**:


Physics Analyses

- BS widens the luminosity spectrum considerably
- Enables collisions at lower \sqrt{s}
- Softens initial state constraints -> important for kinematic fits
- Need to unfold the luminosity spectrum for measurements.
- Photoproduced jets affect clustering performance, JER, JES

Detector Performance

- High flux in vertex barrel and forward sub detectors
- Increase in detector occupancy → might miss interesting Physics (HS) events!
- Impacts detector design decisions, e.g. radius of 1st vertex barrel layer, buffer depth etc.



PRAB 27, 061001

SLAC

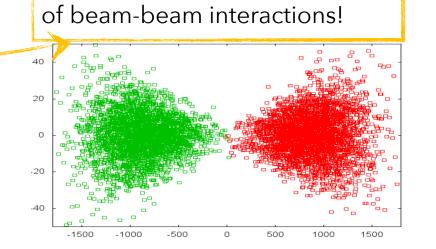
Beam-Beam interactions at e+e- colliders

- In addition to incoherent pair production, which stems from interactions of individual, real or virtual, photons, e⁺e⁻ pairs can also be produced through the following mechanisms:
 - Coherent pair production: interaction of BS photon with the collective EM field of the beams \rightarrow exponentially suppressed for $\langle \Upsilon \rangle \lesssim 0.5$
 - Trident cascade: interaction of virtual photon with the collective EM field of the beams \rightarrow non-negligible for $\langle \Upsilon \rangle > 1$
- Those backgrounds are negligible for HFs, but become significant for high Beamstrahlung advanced-accelerator-concept (<u>AAC</u>) colliders, e.g. WFA-based.

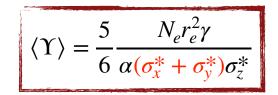
SLAC & Stanford University

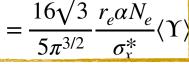
24 23

Luminosity at linear e⁺e⁻ colliders

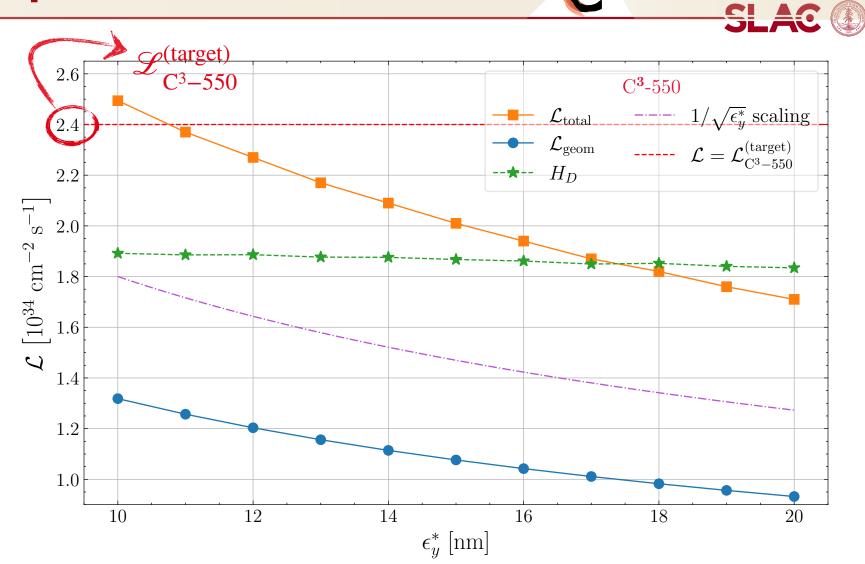

- Instantaneous Luminosity*: $\mathscr{L}_{inst} = H_D \frac{N_e^2 n_b f_r}{4\pi \sigma_r^* \sigma_v^*}$
- N_e : # of particles/bunch
- n_b : # of bunches/bunch train
- f_r : train rep. rate
- $\sigma^*_{x,y}$:horizontal and vertical RMS beam sizes at the IP
- σ_z^* : bunch length
- H_D :enhancement factor that accounts for the effects of beam-beam interactions (~1.5-2.5).
- Strength of beam-beam interactions and number of produced beam-induced background (BIB) particles: expressed through the **Ypsilon parameter** $\langle \Upsilon \rangle$.
- Larger values of $\langle \Upsilon \rangle$ correspond to stronger Beamstrahlung (BS) \rightarrow emission of more BS photons and reduction in the energy of beam particles.

*assuming zero crossing angle (i.e. recovered by crab crossing)

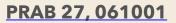



 $= H_D \mathscr{L}_{\text{geom}}$

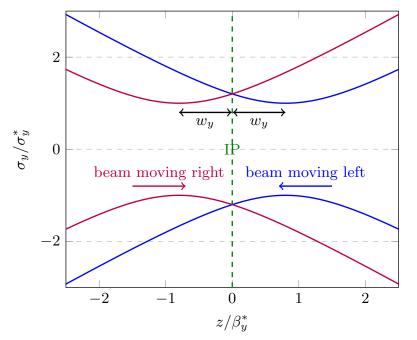
 $\epsilon_{x,y}^*\beta$

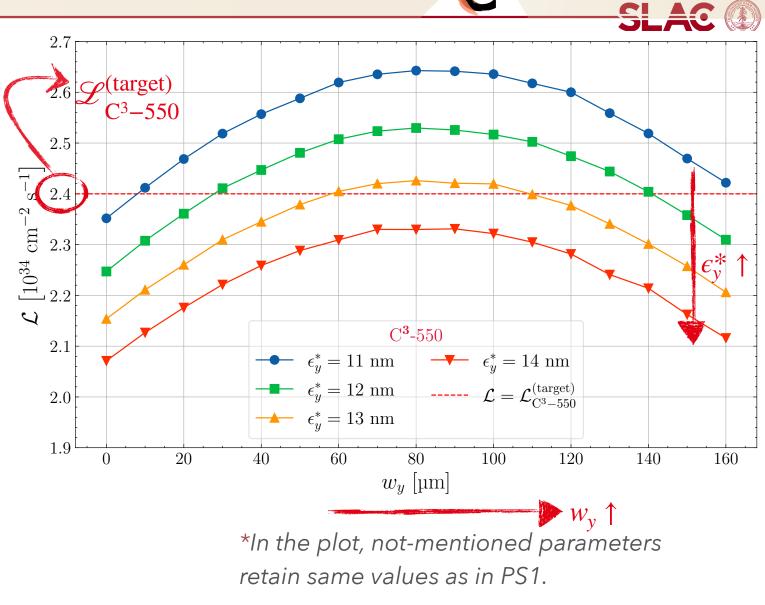

Luminosity depends on strength

PRAB 27, 061001


- Start by lowering vertical emittance ϵ_v^* .
- \mathscr{L} scales as $\sim 1/\sqrt{\epsilon_y^*}$ and BIB does not increase, so an excellent candidate for increasing \mathscr{L} .
 - However: lowering emittances very challenging on the technical side (stringent accelerator requirements)

*In the plot, not-mentioned parameters retain same values as in PS1.


٠

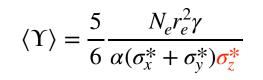


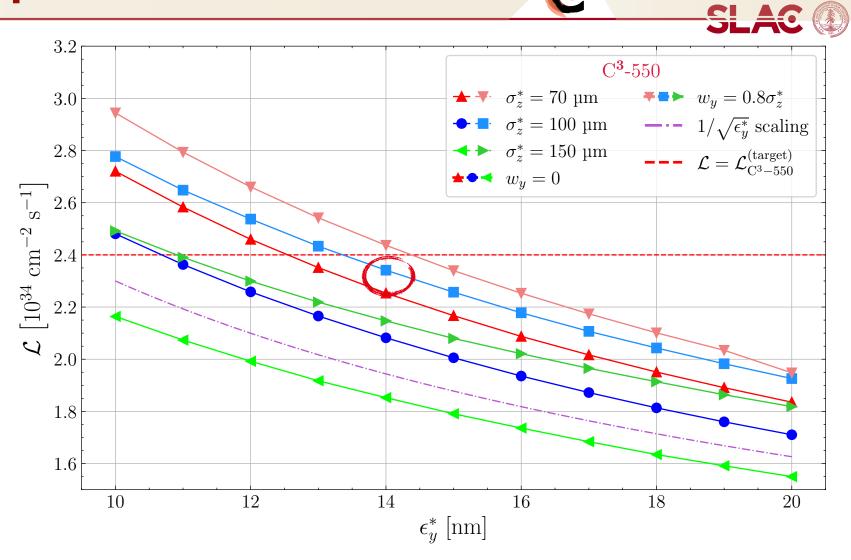
Emittance requirements can be relaxed by introducing a waist shift w_{y} , i.e. placing the vertical focal point before the IP.

For a w_y of 80 µm, \mathscr{L} is increased by ~ 10 % Waist shift

Similar gain as for ILC/CLIC, see e.g. <u>"Beam-</u> <u>Beam Effects in Linear Colliders" by</u> D.Schulte

Dimitris Ntounis


•

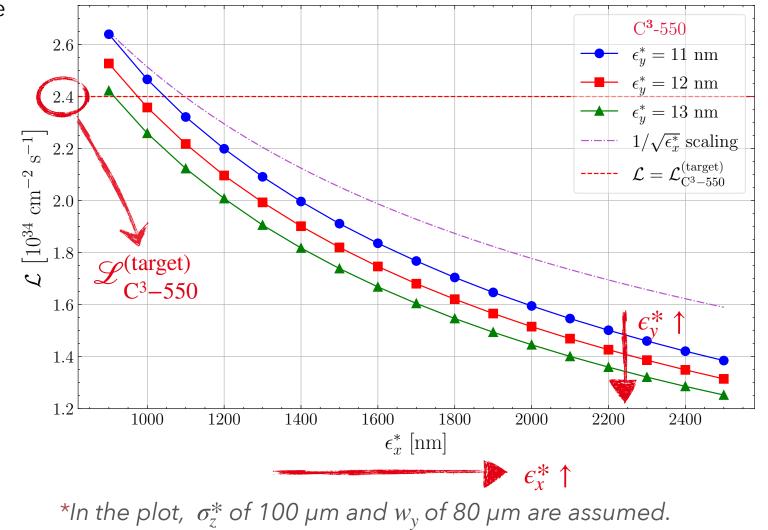

•

SLAC & Stanford University

- We can also modify the bunch length σ_z^* , this affects \mathscr{L} through $H_D(\sigma_z^*\downarrow \Rightarrow H_D\uparrow)$
- Lowering σ_z^* increases \mathscr{L} .
- **However:** at the same time, it increases the BIB, potentially compromising detector performance.

*In the plot, not-mentioned parameters retain same values as in PS1.

SLAC & Stanford University


PRAB 27, 061001

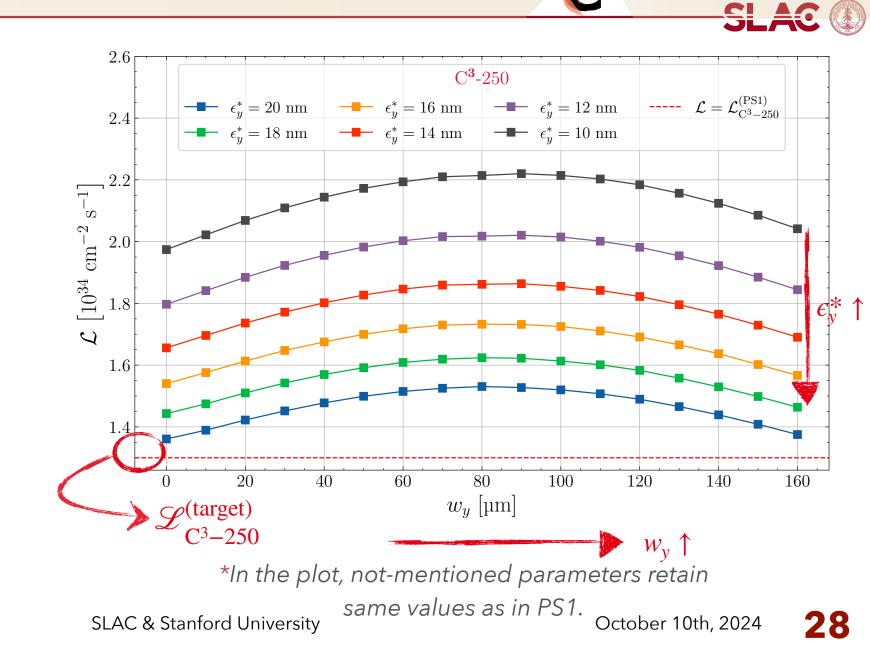
C

PRAB 27, 061001

- To keep BIB under control, we investigate variations in ϵ_x^* .
- \mathscr{L} decreases with increasing ϵ_x^* faster than $1/\sqrt{\epsilon_x^*}$ due to the additional contribution from H_D .
- To keep the BIB at similar levels, ϵ_x^* is slightly increased from 900 nm to 1000 nm.
- For this value of ϵ_x^* and a decrease of ϵ_y^* from 20 nm to 12 nm, the target luminosity is achieved.

٠

٠

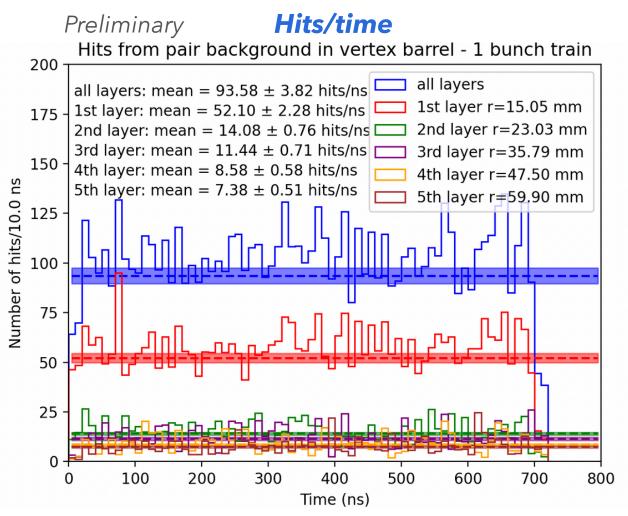

•

•

SLAC & Stanford University

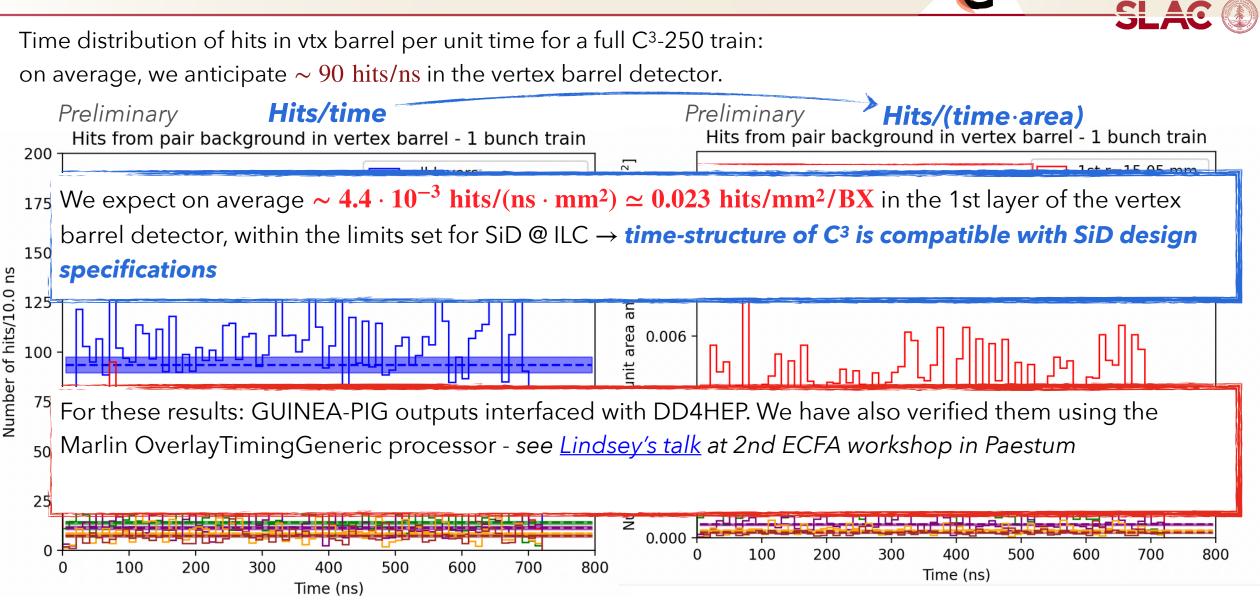
Evaluation on C³ - 250

- A waist shift w_y of 80 µm is also optimal at 250 GeV.
- The target luminosity can also be achieved for higher ϵ_y^* , but at 12 nm, the luminosity increases by ~ 50 %.
- With these parameter choices, the BIB for C³-250 remains at the same levels as for PS1.



PRAB 27, 061001

Dimitris Ntounis


Time distribution over a train for C³

Time distribution of hits in vtx barrel per unit time for a full C³-250 train: on average, we anticipate ~ 90 hits/ns in the vertex barrel detector.

SLAC

Time distribution over a train for C³

Dimitris Ntounis

•

٠

٠

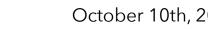
SLAC & Stanford University

8000

6000

October 10th, 2024

4000 Presently generating the appropriate bkg mixture 2000


See Lindsey's talk at C³ workshop for more details

- from estimated virtual photon flux.
- Results so far with **full SiD simulation indicate** that we are within the limits set for ILC.

Technical progress on migrating from PYTHIA5.7 the process helping resolve bugs in CIRCE

a) ь) J 2 c) C3 $e^+e^- \rightarrow jj$ with Beamstrahlung 10⁻² 10^{-3} 10 10^{-1} 50 100 150200250 10^{-12} M_{ii}/GeV T. Ohl's talk at 2nd ECFA workshop in Peastum E. Mettner's talk at LCWS 2023

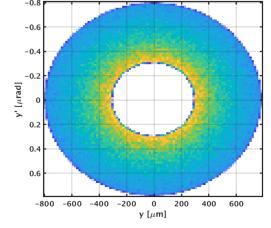
- Hadron photoproduction at C³ Hadrons from beamstrahlung have a rate
 - ~ $\mathcal{O}(10^5)$ smaller that incoherent pairs, but are more central and lead to higher-multiplicity final states \rightarrow impact reconstruction.
- PYTHIA8 used above $\sqrt{s_{\gamma\gamma}} \simeq 10$ GeV, dedicated • generator by T. Barklow below that
 - and using latest Whizard and CIRCE versions \rightarrow in

SJ

12

SJ 2

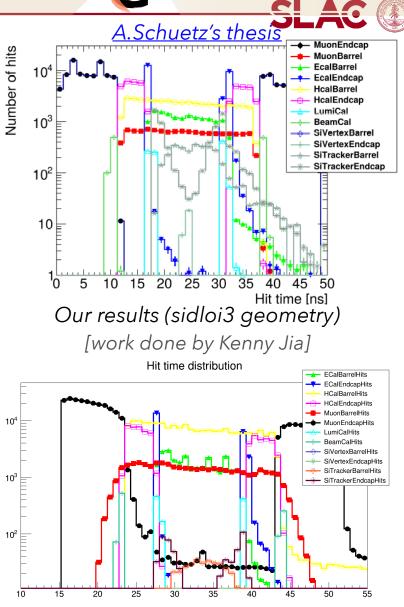
All layers


2nd lave

3rd laye

5th lave

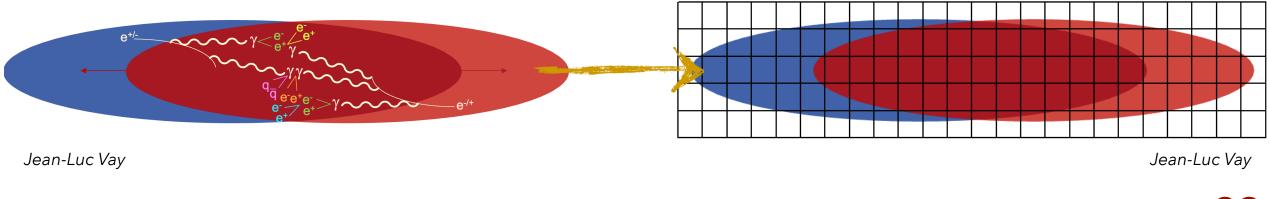
Halo muon machine background at C³


Muons from beam interactions at the collimators were an important background at SiD and where taken into account for ILC detector studies

- Trying to reproduce latest ILC results using existing MUCARLO files for ILC BDS (*thanks to Daniel Jeans*) and SiD geometry \rightarrow Qualitative agreement, but quantitative differences to be understood.
- **MUCARLO**: not well documented and no longer maintained \rightarrow need a new framework to provide machine background muons for LC detectors.
- We are in the progress of evaluating the potential of FLUKA as an alternative to MUCARLO.

Ideas/collaboration on how to move forward are more than welcome!

Dimitris Ntounis



October 10th, 2024

Simulation of Beam-Induced Background

- For the simulation of BIB at e+e- colliders, two simulation tools have traditionally been used, <u>GUINEA-</u>
 <u>PIG</u> and <u>CAIN</u>.
- Both of them are Particle-In-Cell (PIC) codes that rely on the description of the colliding bunches through an ensemble of macroparticles, distributed on a 3D grid. Poisson solvers are used to update the EM field and charge/current density at each time step.
- QED processes are simulated on top of the EM solvers.
- More modern simulation tools, such as <u>WarpX</u>, are also being adapted to serve the purposes of background simulations for Higgs factories → see J.L. Vay's <u>talk</u> at the recent C3 workshop

Simulation of Beam-Induced Background

For all C³ studies, we use well-established and/or modern software tools, to guarantee modularity, preservation and reusability of our code:

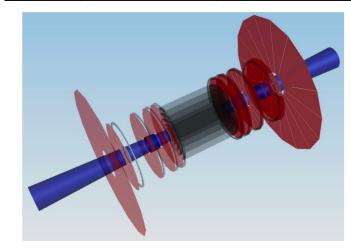
- For the simulation of beam-beam interactions, the tools GuineaPig++ and CAIN v2.4.2 have been used and their results cross-validated.
- For full detector simulation with GEANT4, **DD4hep** is used.
- The SiD detector geometry (02_v04) is ported from k4geo (lcgeo).



* Also: efforts with MUCARLO ongoing to simulate the halo muon background Dimitris Ntounis SLAC & Stanford University

-SLAC

Typical detector dimensions for e+e- colliders



Dimensions in cm

			-
Layer	Inner radius	Outer radius	{
	[mm]	[mm]	
1st	13	17	
2 nd	21	25	
3rd	34	38	
4th	46.6	50.6	
5th	59	63	

Vertex Barrel:

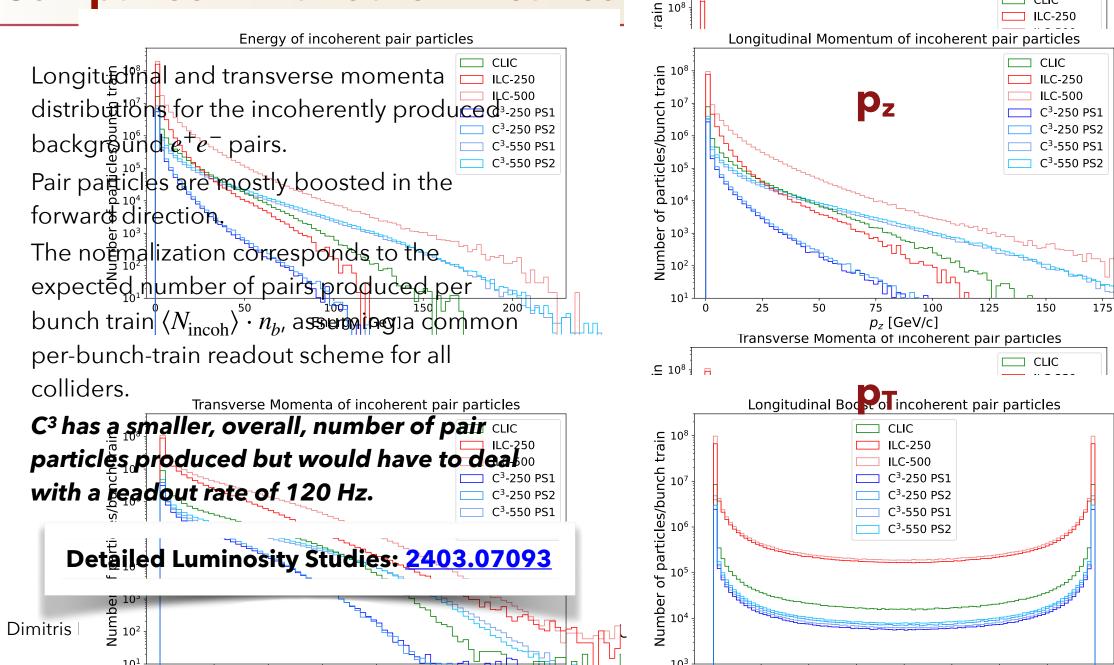
Barrel	Technology	Inner radius	Outer radius	z extent
Vertex detector	Silicon pixels	1.4	6.0	+/- 6.25
Tracker	Silicon strips	21.7	122.1	+/- 152.2
ECAL	Silicon pixels-W	126.5	140.9	+/- 176.5
HCAL	RPC-steel	141.7	249.3	+/- 301.8
Solenoid	5 Tesla SC	259.1	339.2	+/- 298.3
Flux return	Scintillator-steel	340.2	604.2	+/- 303.3
Endcap	Technology	Inner z	Outer z	Outer radius
Vertex detector	Silicon pixels	7.3	83.4	16.6
Tracker	Silicon strips	77.0	164.3	125.5
ECAL	Silicon pixel-W	165.7	180.0	125.0
HCAL	RPC-steel	180.5	302.8	140.2
Flux return	Scintillator/steel	303.3	567.3	604.2
LumiCal	Silicon-W	155.7	170.0	20.0
BeamCal	Semiconductor-W	277.5	300.7	13.5

https://pages.uoregon.edu/silicondetector/sid-dimensions.html

*SiD geometry version SiD_o2_v4 used in our simulations

- Preliminary Studies indicate that the pair background particle flux is within the limits set in the SiD DOE Final Report: <u>https://www.osti.gov/biblio/1182602</u>
- Our estimate for the flux in the innermost layer of the vertex detector is :

0.043 hits/(ns · mm²) · (5.25 ns/BX) = **0.023 hits/mm²/BX**


• We are currently in the process of validating our results and repeating the studies for all subdetectors.

The highest hit rates and occupancies result from the estimated $0.03 \text{ hits/mm}^2/\text{ bunch crossing}$ for the innermost layer, for a bunch train pixel occupancy approaching 10 percent. The time information (i.e., bunch crossing number) reduces this occupancy to $<< 10^{-4}$ per pixel giving considerable headroom should occupancies be higher than expected.

Dimitris Ntounis

Comparison with other linear co

Number of particles/bunch train ⁰¹
⁰¹
⁰¹
⁰¹
⁰¹
⁰³
⁰¹ 105

PRAB 27, 061001

particles/bunch train 104 104 104

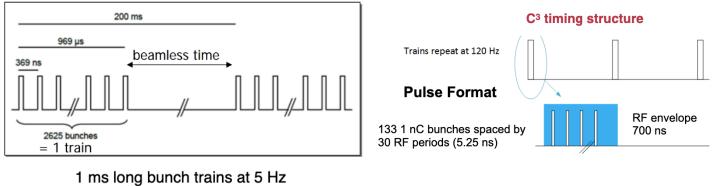
of

Number 10³ 10²

 10^{1}

CLIC

Energy of incoherent pair particles


Beam Parameters related to timing

- **ILC:** One train every 200 ms (5 Hz) with 1312 bunches/train.
 - Each bunch is separated by 369 ns. In the remaining time until the next train arrives, the detector has to read out the analog signals and do the digital processing.
- C³: One train every 8.3 ms (120 Hz) with 133 bunches/train.
- Each bunch is separated by 5.25 ns.
 - In the remaining time until the next train arrives, the detector has to read out the analog signals and do the digital processing.
- **Comparison:** C³ will record *O*(10) times fewer bunches than ILC, leading to reduced occupancy. But, the readout will have to take place ~25 times faster.

Collider	NLC[16]	CLIC[10]	ILC[18]	C ³	C^3
CM Energy [GeV]	500	380	250 (500)	250	550
σ_{z} [μ m]	150	70	300	100	100
β_x [mm]	10	8.0	8.0	12	12
β_{y} [mm]	0.2	0.1	0.41	0.12	0.12
ϵ_x [nm-rad]	4000	900	500	900	900
$\epsilon_{\rm p}$ [nm-rad]	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5

Caterina Vernieri et al 2023 JINST 18 P07053

ILC timing structure

308ns spacing

٠

٠

٠

Comparison with other linear colliders - Tables

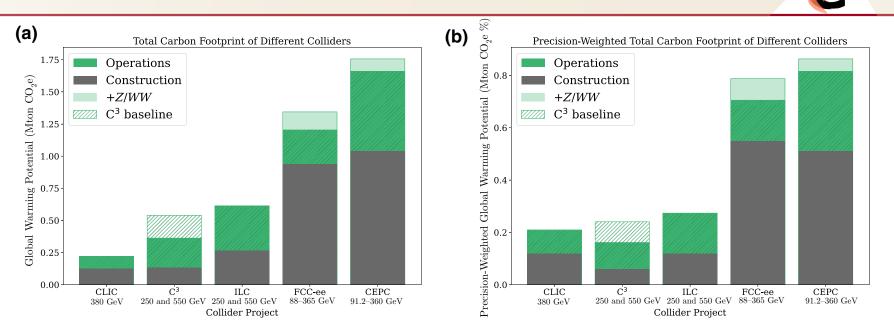
Parameter	Symbol[unit]	CLIC [19]	ILC-250 [20]	ILC-500 [20]	$C^{3}-250 (PS1) [6]$	$C^{3}-550 (PS1) [6]$
CM Energy	\sqrt{s} [GeV]	380	250	500	250	550
RMS bunch length	$\sigma_z^*[\mu m]$	70	300	300	100	100
Horizontal beta function at IP	β_x^* [mm]	8.2	13	22	12	12
Vertical beta function at IP	$\beta_y^* [\mathrm{mm}]$	0.1	0.41	0.49	0.12	0.12
Normalized horizontal emittance at IP	20 L J	950	5000	5000	900	900
Normalized vertical emittance at IP	ϵ_y^* [nm]	30	35	35	20	20
RMS horizontal beam size at IP	$\sigma^*_x \; [\mathrm{nm}]$	149	516	474	210	142
RMS vertical beam size at IP	$\sigma_y^* \; [\mathrm{nm}]$	2.9	7.7	5.9	3.1	2.1
Num. Bunches per Train	n_b	352	1312	1312	133	75
Train Rep. Rate	$f_r [{ m Hz}]$	50	5	5	120	120
Bunch Spacing	[ns]	0.5	554	554	5.26	3.5
Bunch Charge	$Q[\mathrm{nC}]$	0.83	3.2	3.2	1	1
Bunch Population	$N_e[10^9 \text{ particles}]$	5.18	20.0	20.0	6.24	6.24
Beam Power	P_{beam} [MW]	2.8	2.63	5.25	2	2.45
Final RMS energy spread	%	0.35	~ 0.1	~ 0.1	~ 0.3	~ 0.3
Crossing Angle	$ heta[\mathrm{rad}]$	0.0165	0.014	0.014	0.014	0.014
Crab Angle	$\theta[\mathrm{rad}]$	0.0165/2	0.014/2	0.014/2	0.014/2	0.014/2
Gradient	[MeV/m]	72	31.5	31.5	70	120
Effective Gradient	[MeV/m]	57	21	21	63	108
Shunt Impedance	$[M\Omega/m]$	95			300	300
Effective Shunt Impedance	$[M\Omega/m]$	39			300	300
Site Power	[MW]	168	125	173	~ 150	~ 175
Length	[km]	11.4	20.5	31	8	8
	[m]	6	4.1	4.1	4.3	4.3

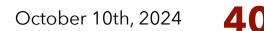
Dimitris Ntounis

C³

-SLAC 🛞

Comparison with other colliders - Sustainability




TABLE VI. For each of the Higgs factory projects considered in the first row, the center-of-mass energies (second row), ac site power (third row), annual collision time (fourth row), total running time^a (fifth row), instantaneous luminosity per interaction point (sixth row), and target integrated luminosity (seventh row) at each center-of-mass energy are given. The numerical values were taken from the references mentioned in the table in conjunction with Ref. [19]. For the CEPC the new baseline scenario with 50 MW of synchrotron radiation power per beam is used. We consider both the baseline and the power optimizations from Table IV (in parentheses) for C^3 power requirements.

Higgs factory	CLIC [44]	ILC	[12]	C ³	[11]	Cl	EPC [59,60)]			FCC	[20,61,	62]	
\sqrt{s} (GeV)	380	250	500	250	550	91.2	160	240	360	88, 91	, 94	157, 16	3 240	340-350	365
P (MW)	110	111	173	150 (87)	175 (96)	283	300	340	430	222	2	247	273	357	7
$T_{\text{collisions}} [10^7 \text{ s/year}]$	1.20	1.6	50	1.	60		1.3	0					1.08		
$T_{\rm run}$ (years)	8	11	9	10	10	2	1	10	5	2	2	2	3	1	4
$\mathcal{L}_{inst}/IP \;(\times 10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	2.3	1.35	1.8	1.3	2.4	191.7	26.6	8.3	0.83	115 2	230	28	8.5	0.95	1.55
$\mathcal{L}_{int} (ab^{-1})$	1.5	2	4	2	4	100	6	20	1	50	100	10	5	0.2	1.5

^aThe nominal run schedule reflects nominal data-taking conditions, which ignore other run periods such as luminosity ramp-up.

Dimitris Ntounis

SLAC & Stanford University

PRX Energy 2, 047001

SLAC