

Development of precision tracking detectors at Fermilab

Artur Apresyan

The third ECFA workshop on e⁺e⁻ Higgs, EWK and Top Factories 9-11 October 2024

Requirements

- Physics goals
 - Identify b/c quarks and tau leptons from Higgs
 - Perform a precise measurements of the Z boson
- Require a 5 µm spatial resolution, angular resolution of 0.1 mrad
- Very low mass budget
 - First detector layer material budget of 0.2% X₀
 - Total tracking material budget $< 30\% X_0$
- Particle ID with time-of-flight

Detector length 1300 cm Preshower Dual Readout Calorimeter DCH Rout = 200 cm DCH Rin = 35 cm VTX Cal Rin = 250 cm Cal Rout = 450 cm Magnet z = ± 300 cm

IDFA

Activities in Fermilab

- Many active directions of R&D ongoing, some highlights:
 - Development of Low-Gain Avalanche Diode sensors and electronics
 - Monolithic Active Pixel Sensors
 - 3D-integrated sensors
 - Al-enabled pixelated sensors

AC-coupled LGADs

- Improve 4D-trackers to achieve 100% fill factor, and high position resolution
- Active R&D, many applications in colliders and beyond
 - 100% fill factor, and fast timing information at a per-pixel level
 - Signal is still generated by drift of multiplied holes into the substrate and AC-coupled through dielectric

4 10/9/24 A. Apresyan I 3rd ECFA workshop on e+e- Higgs, EWK and Top Factories

AC-LGAD sensors prototypes

- Several rounds manufactured over the last few years
 - R&D from developments for HL-LHC, synergies between HEP and NP
 - Optimize position resolution, timing resolution, fill-factor, ...
- Extensive characterization and design studies
 - Optimize the geometry of readout, and sensor design for performance

BNL strip AC-LGAD

HPK pads AC-LGAD

🚰 Fermilab

Long AC-LGAD strip sensors performance

- Position reconstruction
 - Achieve 15-20 μm resolution in 10mm strips, 500 μm pitch
- Excellent time resolution
 - Achieve 30-35 ps for 10 mm strips

Development of monolithic AC-LGADs

- Develop MAPS sensors in a commercial process that will provide fast timing (10 ps) and precise spatial resolution (5 μm)
 - Target application 4D tracking detectors for future e⁺e⁻ Higgs factories
- Electronics for signal processing are placed in dedicated pand n-wells contained within a deep p-type well
 - Intrinsic gain will allow MAPS detectors to perform precise time measurements in addition to spatial measurements

7 10/9/24 A. Apresyan I 3rd ECFA workshop on e+e- Higgs, EWK and Top Factories

US-Japan funded R&D

- Within this research program, the main activities of our proposal:
 - Optimize the design and geometry of AC-LGADs that will serve as the basis of the MAPS design.
 - Produce small-scale MAPS prototypes, from which the most promising architectures will be determined. Optimize the isolation of the signal collection in the sensing parts of the chip from the readout electronics.
 - Produce and characterize the full-scale prototypes

Simulations

- TCAD simulations were used to establish the feasibility of the proposed work, and we started discussions with a US vendor.
 - The initial TCAD studies are based on our previous work to establish designs for 8" sensor wafer production

🚰 Fermilab

Simulations

- TCAD simulations were used to establish the feasibility of the proposed work, and we started discussions with a US vendor.
 - The initial TCAD studies are based on our previous work to establish designs for 8" sensor wafer production

- Substrate current pulses for bias voltages from 250 (brown) to 405 (red) volts showing the onset of gain.
- Rise time of the top electrodes will be determined by the details of the CMOS well capacitance

R&D program for 2024-2025

- In the coming calendar year, the goals are:
 - BNL will design and produce AC-LGAD sensors with 55x55 μm^2 and 100x100 μm^2 pixel sizes, and flip-chip to available readout
 - Fermilab will focus on ASIC design and electronics for testing
 - KEK will design and manufacture AC-LGAD sensors, and flip chipping with readout ASIC
- Work with SkyWater to modify their standard epi layer
 - Adapt and optimize SkyWater process to develop particle detectors
 - Use thicker, higher-resistivity epitaxy with deep-well implants on a standard CMOS substrate

ARCADIA DMAPs sensors

- Sensor design and fabrication platform on LF11 is technology
 - Full-chip FDMAPS for Future Lepton Colliders and Space Instruments
 - Scalable architecture with very low-power: 10 mW/cm²
- Technology demonstrators
 - Main demonstrator (512 x 512 pixels) 25x25 μ m² pixels
 - Several other demonstrators produced: pixel and strip test structures down to 10 μ m pitch, small-scale demonstrator for fast timing, etc

ARCADIA-MD3 Main Demonstrator

- Pixel size 25 μm x 25 μm
 - 1.28 x 1.28 cm2 silicon active area, "sidebuttable"
 - Triggerless data-driven readout and lowpower asynchronous architecture with clockless pixel matrix
 - Event rate up to 100 MHz/cm²
 - High-rate operation (16 Tx): 17-30 mW/cm² depending on transceiver driving strength
 - Low-power operation (1 Tx): 10 mW/cm² (all data conveyed in 1 transceiver, others turned-off)

Manuel Rolo [INFN]

Test beam with ARCADIA-MD3

- Test beam at FNAL (120 GeV protons) in Summer 2024
 - Mini-telescope with 3 ARCADIA-MD3 sensors
 - Threshold, sensor HV and incidence angle parametrization: study of cluster size, collection efficiency, spatial resolution

Characterization of ARCADIA-MD3

- Excellent performance demonstrated in testbeam
 - Position resolution around 5 μ m
- Efficiency near 100%

NFN

Detailed measurements are now continuing
 with laser
 _____Resolution vs VCASN

3D-integrated sensors project

- Development of low-power, highly granular detectors in (\vec{x}, t)
 - Required to achieve breakthroughs across HEP, NP, BES, and FES
 - Adoption of 3D-integration has been cost-prohibitive in academia
- Supported by DOE "Accelerated Innovation in Emerging Technologies"
 - Joint development effort of SLAC, FNAL and LLNL teams
 - Partner with industry leaders to implement new technologies
 - Design goal is to achieve position resolution ~5 μm , timing ~ 5-10 ps

Section of the Sony Exmor camera chip showing the hybrid bond interface

16 10/9/24 A. Apresyan I 3rd ECFA workshop on e+e- Higgs, EWK and Top Factories

Technical approach

- The research program consists of three main thrusts towards developing the proposed detector:
 - Thrust 1: Design and manufacture Low-Gain Avalanche Diodes (LGADs) devices compatible with 12" foundry processes
 - **Thrust 2:** Design application specific integrated circuit (ASIC) techniques to meet various application needs for granularity, precision timing, and power.
 - **Thrust 3:** Enable a new generation of particle detectors that utilize 3D-integration, combining state-of-the-art 12" wafers from different foundries.

Development of sensors

- In partnership with Tower Semiconductor
 - Full wafer run on 12" process, using their 65 nm process
 - Layout Variations: pixels vs. strips

Pulse simulations

- Simulations of a "standard" LGAD and Tower's process.
 - "Standard" process 20 μm thick high resistivity
 - "Tower" process 10 μm thick, moderate resistivity
- Signals from Tower process are narrower and faster rise time

🚰 Fermilab

Additional processing

- The basic functionality of the device looks good with 10 μm epitaxy.
- Structures to be produced:
 - DC LGAD: "standard" devices
 - AC LGAD: 100% fill factor, good position resolution
 - Deep junction LGAD: for higher radiation hardness
- Design status:
 - Device simulations and layout ongoing
 - Fabrication run at Tower
 Semiconductor expected to start
 before the end of the year

ta from CLGAD V5 sta

Readout ASIC Design

- The first 28nm readout ASIC prototype (1x3 mm²) submitted to TCMS in August
 - Linear pixel array: two variants of 50μ m and one variant of 100μ m size pixels
 - Main goals are to test the main ingredients to implement in the full chip
- During the next year, we will tape-out another MPW run (5x6 mm²)
 - Main priority is a 50x50 µm² pixels, but can be bump-bonded also to larger pitch
- For the next project phase, we would proceed to wafer-to-wafer bonding of 12" LGAD and 12" 28nm ASIC wafers.

First readout ASIC prototype: block schematic and layout

Readout ASIC Design

- Analog frontend in deep n-well shared between column pixels
 - Analog section is about 40% of the 50 μ m pixel area
 - Minimum input charge: 1.3 fC
 - Time of Arrival (ToA) Jitter: 10 ps RMS
- Digital section includes:
 - TDC performing both TOA and TOT measurements
 - 2D Vernier Architecture: time resolution 6.25 ps
 - Implementation based on silicon demonstrated design
 - Overall good performance: few issues observed that are well understood and will be fixed in the next round
 - Readout logic:
 - Sparsified readout; SLAC's SUGOI protocol for ASIC slow-control configuration;

Fermilab

Smart Pixels project

- Al embedded on a chip to:
 - Filter data at the source for data reduction
- Data reduction through
 - Filtering through removing low p_T clusters
 - Featurization through converting raw data to physics information
- Customizable (reprogrammable weights) neural networks
 implemented directly in the front-end

Analog frontend prototype

- The AFE prototype designed in HPC+ 28nm
 - ROIC pixel size is $25 \,\mu m^2$
 - Low power performance : $\sim 5\mu$ W/pixel
- Preamplifier dynamic range 64 aC 2.1 fC
 - Equivalent noise charge (ENC) 31e⁻ with 400e⁻ threshold (no sensor cap)
 - Total charge dispersion < 100e⁻ across entire matrix with 400e⁻ threshold (no sensor cap)
 Fermilab

- Use AI/ML due to complicated pulse shapes, and drift & induced currents
 - y-profile is sensitive particle's p_T , x-profile uncorrelated with p_T
- Co-Design development with analog frontend pixels connected to a fully combinatorial digital classifier

🚰 Fermilab

- Combinatorial design reduces dynamic power
- Digital power estimated to be 300 μ W for 256 pixels: ~1 μ W/pixel
- Total power density (AFE + digital) < 1 W/cm²

Summary

- Many exciting R&D areas that promise to enable and enrich the physics potential of the FCC-ee experiments
 - New, disruptive technologies are emerging
- Collaborative efforts are a key for the progress in many challenging directions
 - Integration with the ongoing international efforts within DRD and RDC efforts are crucial!

