

A Straw Tracker for FCC-ee

Liang Guan and Junjie Zhu University of Michigan

3rd ECFA Workshop on e+e- Higgs, Electroweak and Top Factories Paris, France 09 October 2024

Momentum resolution requirement for FCC-ee

Important to reconstruct the recoil mass distribution for the Higgs mass and ZH cross section measurements

$$M_{recoil}^{2} = (\sqrt{s} - E_{l\bar{l}})^{2} - p_{l\bar{l}}^{2} = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^{2}$$

- Sensitivity dominated by the $Z \rightarrow \mu \mu$ channel
- Required momentum resolution expected to be comparable to the beam energy spread (~0.16% @ 240 GeV)
 - σ(p_T)/p_T ~ 0.2% at 45 GeV
 - 5/10 better than current CMS/ATLAS inner tracker p_{T} resolution @ 45 GeV
- Current proposals for FCC-ee experiment inner tracker:
 - CLD: full silicon pixel+strip (TPC under consideration)
 - IDEA/ALLEGRO: Silicon pixel + Drift Chamber + Outer silicon wrapper

IDEA Inner Tracker concept as an example

A straw tracker for FCC-ee

- We propose to have an ultra-light weight straw tracker (combined with pixel & silicon wrapper) for particle tracking at FCC-ee experiment:
 - Single hit resolution: 100-150 µm. Similar or better momentum resolution than the IDEA pixel-only detector -- more hits (N) and longer lever arm (L)
 - Low material and multiple scattering for low $\ensuremath{\mathsf{p}_{\mathsf{T}}}$
 - Complement silicon tracker for pattern recognition
 - Particle identification (π -K, K-p identifications)
 - Could provide hardware-level trigger primitives

p _T -resolution due to hit position resolution	$rac{{\sigma _{p_T}}}{{p_T}} _{meas} \simeq \sqrt{rac{{720}}{{N + 4}}} rac{{\sigma _x \; p_T}}{{0.3B{L^2}}}$		
	Silicon Tracker	Gaseous Tracker	
Single hit resolution (σ_x)	3-5 µm	100-150 µm	
Measurements points (N)	6	100-120	
Level arm (L)	o.3m	1.5M	

Liang Guan (Iguan@cern.ch)

CLD tracking based on limited highspatial resolution si-layers

IDEA tracking concept: large number of sampling along track

Straw tracker features

- Straw trackers could potentially provide robust high-performance tracking and particle identification.
 - Sense wire failures limited to single straws.
 - Radially symmetric electric field. Good spatial resolution, independent of particle incident angle
 - Different straw radii to optimize hit occupancy
 - Counting rate: a few kHz/cm² without significant gain drop (d=10-15mm drift tubes. <u>Ref.</u>). Single straw rate up to a few hundred kHz – matches Zpole operation with O(100) kHz event rate.
 - Relatively low wire density: <1 wire/cm²
 - Flexible layouts for central and endcap regions
 - Possibility to use different gas mixtures at the same time with optimization for tracking and PID.

ATLAS Muon Spectrometer drift tube position resolution. arXiv: 1906.12226

Straw tracker used in various experiments

red color- straw tracker created with our participation

From Temur Enik https://indico.cern.ch/event/1307673/contributions/5608746/

Straw construction technologies

Winding

- Production speed: 1 m/min
- Maximal length: 5.5 m
- Diameters: 2,4,6,10,20 mm
- Wall thickness: 15+ um

Example: Mu2e

- two layers 6 µm-thick Mylar, max length: 1.2 m
- 23k straws

Ultrasonic welding

- Production speed: 1 m/min
- Maximal length: 5.5 m
- Diameters: 5,10,20 mm
- Wall thickness: 15, 20, 36, 50 um

Example: <u>DUNE</u>

- 19 µm-thick Mylar film, max length: 3.83 m
- 200k+ straws

A strawman layout of the straw outer tracker

Straw tracker simulation in DD4HEP

- Incorporated toy straw modules in the DD4HEP framework to study geometries.
- Nominal geometry:
 - straws: 12 μ m thick mylar wall (0.05 μ m Al coating). 10 μ m-radius Tungsten wire.
 - straw modules: 10 multilayers x 10 straw (d=10-15mm) layer/per multilayer.
 - No Endplate supporting structure yet.

Material budget from simulation

- Nominal geometry X/X₀: ~1.2% @ θ=90° (assume Helium gas).
- Material budget dominate by Mylar (X₀=39.95 g/cm²)
- Break down of material contributions in straw trackers of 100 layers:

^{*} For comparison: 1.5 m Ar = 1.5% X/X₀

Understanding momentum resolution

- A simple python simulation developed to understand the effect of hit locations and resolution on the track momentum resolution
 - 2 Tesla magnetic field
 - 5 layers of pixel from 5 cm to 30 cm (σ=5 μm), 112 layers of straws from 30 cm to 180 cm (σ=120 μm), and a silicon wrapper layer at 200 cm (σ=10 μm)
 - Smear hit according to the resolution in the respective layer
 - χ² minimization using scipy to calculate "measured" track p_T
- Ongoing work with ACTS to perform track fitting including detector and multiple scattering effects.

Particle Identification Capability

- Essential for flavor physics and bring significant benefits for other areas
 - Flavor physics measurements: $B_{S}^{0} \rightarrow D_{S}^{\pm}K^{\mp}$, $B \rightarrow K^{*}vv$, $B_{s} \rightarrow \phi vv$, ...
 - s-quark jet identification \rightarrow K identification (H \rightarrow ss, V_{ts}, V_{bs}, H \rightarrow bs, ...)
- The straw tracker could provide PID at low momentum range based on dE/dx or dN/dx measurements, similar as the Drift Chamber (DCH).
- Induced current signal and timing properties are expected to be similar to DCH's.

Will hear from the <u>next talk</u> many details and progress already made with dN/dx

Straw Garfield simulation

- Ar-based gas: traditionally used for drift time-based tracking. High ionization density (~40 clusters/cm) and moderate electron drift velocity 40 μm/ns (@E~2 kV/cm). Mean cluster arrival time separation: ~6 ns
- He-based gas: lower ionization density (~15 clusters/cm) and 30 μm/ns (@E~2 kV/cm). Mean cluster arrival time separation: ~20ns

	CH ₄	Ar	He	CO ₂
k				
1	78.6	65.6	76.60	72.50
2	12.0	15.0	12.50	14.00
3	3.4	6.4	4.60	4.20
4	1.6	3.5	2.0	2.20
5	0.95	2.25	1.2	1.40
6	0.60	1.55	0.75	1.00
7	0.44	1.05	0.50	0.75
8	0.34	0.81	0.36	0.55
9	0.27	0.61	0.25	0.46
10	0.21	0.49	0.19	0.38
11	0.17	0.39	0.14	0.34
12	0.13	0.30	0.10	0.28
13	0.10	0.25	0.08	0.24
14	0.08	0.20	0.06	0.20
15	0.06	0.16	0.048	0.16
16	(0.050)	0.12	(0.043)	0.12
17	(0.042)	0.095	(0.038)	0.09
18	(0.037)	0.075	(0.034)	(0.064)
19	(0.033)	(0.063)	(0.030)	(0.048)
≥ 20	$(11.9/k^2)$	$(21.6/k^2)$	$(10.9/k^2)$	$(14.9/k^2)$

Number of electrons per cluster

Straw Garfield simulation

- Simulation of straw drift time (convolution of earliest cluster arrival time with the amplifier response) to understand electronics requirements :
 - 100-200 ns drift time in Ar-based gas.
 - ~50% longer drift time in He-based gas as expected.
 - Overall comparable with ATLAS sMDT drift time expect similar rate behavior and specifications for readout electronics to do tracking (alone...)

Straw tracker R&D activities

- R&D have been initiated recently to assess drift properties and position resolution from straws to provide baseline references for tracking performance evaluation.
- Beam test of straw prototype at CERN SPS beam line with ATLAS drift tube Frontend (ASD+TDC, well established for drift time-based tracking, 400 kHz hit rate)
- Straws: 5/10 mm diameter (20/36um Mylar wall)
- Gas: Ar/CO 93/7 or 70/30 (1-3 bar)
- Measurements:
- charge gain
- ADC/ToT mode operation
- drift time vs. radius (rt function)
- position resolution

Straw tracker R&D activities

 Straw r-t characterized (impact parameter measured with precision tracker) to allow comparison with simulations and studies of intrinsic position resolution.

 Measurements of induced current from drift tubes in Ar-based gas ongoing to understand electronics requirements for cluster counting.

Liang Guan (Iguan@cern.ch)

Identified fast amplifier:

 40dB gain, 870MHz bandwidth for LGAD readout

Ge, J. J., et al. NIM A1040 (2022): 167222.

Conclusions

- A straw tracker could be a good option for FCC-ee experiments
 - Reasonable material budget (~1.2% X₀ for ~100 layers w. 12 μm Mylar wall)
 - Could use >4 m straws to extend the tracker volume
 - Robust technology used in many experiments
 - Could achieve high-performance tracking. Particle identification to be offered similar as Drift Chamber (DCH) (demonstration still needed).
- Still challenges. Many developments essential: thin-wall straw production, precision tracker mechanical assembly, optimal front-end electronics and gas for tracking and cluster counting.
- Synergies with DCH community on PID and endplate mechanics beneficial.
- R&D program ongoing within the DRD1 Community (under Work Package 3).
 Interested groups and individuals are encouraged to join the efforts!

Backup

09-10-2024

Second coordinate measurements can be achieved with stereo angle straw arrangement

Example: GlueX experiment central tracker Reference: https://doi.org/10.1016/j.nima.2020.163727

Backup

Material Budget

CLD

IDEA

ATLAS sMDT/MDT Frontend Mezzanine card and Front-end electronics for straw readout

schematic

TDC

Flat mezzanine card

ATLAS sMDT ASD Spec.		ATLAS sMDT TDC Spec.		
Technology	CMOS 130nm	Technology	CMOS 130nm	
#. of channels	8	#. of channels	24	
Power consumption	10 mA/ch	Package	BGA 144	
Input capacitance	60pF	TDC LSB	0.78 ns	
Shaper	bipolar	Nonlinearity	+- 80 ps	
Peaking time	12 ns	Power consumption	360 mW per chip	
Dynamic range	5-100 fC	Dynamic range	17 bits (102µs)	
sensitivity	8 mV/fC	Output data rate	320 Mbps x 2	
ENC	1 fC	Max. hit rate	400 kHz/ch	
Charge readout	ADC, ToT	Mode	Lead/trail edge, pair	

Backup

Liang Guan (Iguan@cern.ch)