

CMOS R&D targeting a vertex detector for Higgs factories

On behalf of IPHC-Strasbourg teams and collaborators

- Large size sensor: MIMOSIS program
- CMOS sensor R&D in TPSCo 65 nm technology
- Strategy toward a vertex detector for FCCee
- Not covered here but contributions from IPHC: OBELIX for Belle-2 upgrade, MOSAIX for ALICE-ITS-3

FCCee VTX requirements

$$\begin{split} \Delta d_0|_{res.} &\approx \quad \frac{3\sigma_{r\phi}}{\sqrt{N+5}}\sqrt{1+\frac{8r_0}{L_0}+\frac{28r_0^2}{L_0^2}+\frac{40r_0^3}{L_0^3}+\frac{20r_0^4}{L_0^4}}\\ \Delta d_0|_{m.s.} &\approx \quad \frac{0.0136\,\mathrm{GeV/c}}{\beta p_T}r_0\,\sqrt{\frac{d}{X_0\sin\theta}}\sqrt{1+\frac{1}{2}\left(\frac{r_0}{L_0}\right)+\frac{N}{4}\left(\frac{r_0}{L_0}\right)^2} \end{split}$$

d = layer thickness, N = # layers

Drasal, Riegler, https://doi.org/10.1016/j.nima.2018.08.078

- Data flux •
 - Continuous beam \Rightarrow Data flux significantly higher than ILC, \checkmark
 - Higher radiations doses as well, for both ionising radiation and fluence.
- Beam pipe ٠
 - Cooling mandatory as well as shielding, \checkmark
 - Compensated by small inner radius ~12 mm \checkmark
- Challenge: ٠
 - ✓ How to reach the targeted resolution with an adapted read-out architecture while fulfilling all the other requirements ?
 - How to propose a robust but ambitious VTX concept? \checkmark
 - ✓ Spoiler:
 - Not easy

Spatial resolution per layer	$\simeq 3$	μm
Pixel pitch	14-20	μm^{-1}
read-out time	$\simeq 500$	ns 2
Power dissipation	$\simeq 20 - 50$	mW/cm^2
Sensor thickness	40 - 50	μm 3
Safety factor on particle rate	3	4
Maximum Hit rate	75 / 25	MHz/cm^{2} 5
Maximum Hit rate	$22.5 imes 10^{-3} \ / \ 7.5 imes 10^{-3}$	$hits/mm^2/BX$ ⁵
Assumed cluster multiplicity	5	
Fired pixel rate	$375 \ / \ 125$	MHz/cm^{2} 5
Fired pixel rate	$0.33 \ / \ 0.11$	fired pixels/ mm^2/BX ⁵
Occupancy/pixel/read-out	$3.45\times 10^{-3}\ /\ 1.15\times 10^{-3}$	/pixel/readout ⁵
Ionising radiation (1^{st} layer)	30 / 10	MRad/year ⁵ ⁶
Corresponding Fluence	$\simeq 1.8 imes 10^{14} \ / \ 6 imes 10^{13}$	$n_{eq(1\ MeV)}/year$ 5 7
	/ 1:	

¹ Depending on charge sharing/encoding

² Compromise between power dissipation and pile-up at $\sqrt{s} = 91 \ GeV$

 3 To allow bending

⁴ due to beam background uncertainties estimates

⁵ With / without safety factor

- ⁶ assuming beam running 180 days/year, and average incident angle of $\simeq 70^{\circ}$.
- ⁷ assuming NIEL factor of 5×10^{-2}

	thickness (mm)	Mat. Budget $(X/X_0 \%)$
Beam pipe ¹		
Au	0.005	0.16%
$AlBeMet 162^2$	0.35	0.14%
Paraffin	1.0	0.18%
$AlBeMet 162^2$	0.35	0.14%
Total beam pipe	1.705	0.61%
Single layer		
Silicon sensor	0.050	0.05%
Cables, flex and support		$\simeq 0.10\%$
Material per layer		$\simeq 0.15\%$
¹ described in [6]		
2 62% Be and 38% Al allov		

[6] A. Novokhatski et al. Estimated heat load and proposed cooling system in the FCC-ee Interaction region beam pipe. In Proc. IPAC'23, number 14 in International Particle Accelerator Conference, pages 260-263. JACoW Publishing, Geneva, Switzerland 2023.

MIMOSIS program

MIMOSIS sensor for CBM-MVD @ FAIR •

✓ Based on ALPIDE architecture

- Multiple data concentration steps
- Elastic output buffer
- 8 x 320 Mbps links (switchable)
- Triple redundant electronics

✓ A milestone for Higgs factories

- « 5 μ m / \leq 5 μ s » + enhanced bandwidth
- Improve radiation hardness

Physics parameter	Requirements	
Spatial resolution	~ 5 um	
Time resolution	~ 5 us	
Material budget	0.05% X ₀	
Power consumption	< 100 – 200 mW/cm ²	
Operation temperature	- 40 °C to 30 °C	
Temp gradient on sensor	< 5K	
Radiation tol* (non-ion)	~ 7 x 10 ¹³ n _{eq} /cm ²	
Radiation tol* (ionizing)	~ 5 MRad	
Data flow (peak hit rate)	@ 7 x 10 ⁵ / (mm ² s) > 2 Gbit/s	

MIMOSIS Sensor

Parameter	Value
Technology	TowerJazz 180 nm
Epi layer	\sim 25 μm
Epi layer resistivity	$> 1k\Omega cm$
Sensor thickness	60 µ m
Pixel size	26.88 µm × 30.24 µm
Matrix size	1024 × 504 (516096 pix)
Matrix area	$\approx 4.2 \mathrm{cm}^2$
Matrix readout time	5 µs (event driven)
Power consumption	40-70 mW/cm ²

LICLab, UMR9012 - CNRS / Université Paris-Saclay / France

eurizo

European networ

^f Facility for Antiproton and Ion Research in Europe GmbH, Germany

Requirements already achieved with MIMOSIS-1

GOETHE

		MIMOSIS-2 (Q2/2023)	Major issues		
MIMOSIS-0 (2018)N• Demonstrate pixel concept.•• Demonstrate zero suppression.•• Demonstrate readout concept.•	VIMOSIS-1 (2020) Full dimension sensor Add buffer structure. SEE hardening 1/2	 On-chip pixel group Final pixels. SEE hardening 2/2 MIMOSIS-2.1 	 MIMOSIS-2.1 (Q4 2023) = M-2 corrected Delivered May 2024 		MIMOSIS-2.1
24 October 9th	A.B	esson, Université de Stra	Tested in beam in July-September asbourg	MIMOSIS-3 Final ser Submiss 	nsor for mass production sion in 2025

Supported by

Bundesministerium für Bildung

MIMOSIS (CBM-MVD) & options for sensing elements

A.Besson, Université de Strasbourg

DESY & CERN test beam

MIMOSIS-2.1: excellent performances

DESY & CERN test beam

Observation:

 \Rightarrow MIMOSIS-2.1 p-stop 50µm combines high cluster multiplicity with rad. tolerant structure.

Might yield best combination of spatial resolution and radiation tolerance (rad tolerance t.b.c in 2025).

260

CMOS sensor R&D in TPSCo 65 nm technology

CE_65 family & SPARC chips

- ALICE ITS-3 and EP WP 1.2 R&D: TPSCo 65 nm (2020-2024)
 - Exploratory phase on the technology
 - ✓ APTS, DPTS, CE_65, etc.

٠

٠

- ✓ Chips dedicated to ALICE ITS-3: MOSAIX in ER2
- 2021-2024: Prototypes CE_65 (MLR1 ER1) designed by IPHC
 - Small size prototype family with analog output to explore charge
 - ✓ Different variants (epitaxial layer, etc.) and pitchs (15 to 25 µm), squared or hexagonal collecting diode position matrix
 - ✓ Working group (IPHC, APC, ETH Zurich, Prague, Japan)

- SPARC to be submitted in ER2 designed by IPHC
 - \checkmark Prototype to explore asynchronous read-out based on different stages of arbiters
 - 32 x 28 pixels
 - 16 x 24 μm pitch
 - ✓ Expected added value
 - Power optimization (linear with hit density) (Periphery + analog Power to be added)
- Versatile architecture both for vertexing and tracking
 2024 October 9th

A.Besson, Université de Strasbourg

IPHC: A. Kumar, A. Dorokhov, S. Bugiel, J. Baudot, A. Besson, C. Colledani, Z. El Bitar, M. Goffe, C. Hu-Guo, K. Jaaskelainen, S. Senyukov, H. Shamas, I. Valin, Y. Wu(USTC)
Zürich: E. Ploerer, A. Ilg, A. Lorenzetti, A. Macchiolo
Prague: P. Stanek, L. Tomasez, A. Kostina
Hiroshima: Y. Yamaguchi, T. Katsuno
Tokyo: H. Baba, T. Gunji
Tsukuba: T. Chujo, J. Park, D.Shibata, S.Sakai

Jean Soudier, Frédéric Morel, Jérôme Baudot, Grégory Bertolone, Foudil Dadouche, Andrei Dorokhov, Xiaochao Fang, Abdelkader Himmi, Jean-Baptiste Kammerer, Anthony Krieger, Hung Pham, Wilfried Uhring, and Isabelle Valin. A versatile and fast pixel matrix read-out architecture for maps. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated* Equipment, 1067:169663, 2024.

First proposed by W. Snoeys et al H. Pernegger et al., 2017 JINST 12 P06008

TPSCo 65 nm & spatial resolution

^{рсв} СЕ_6	_{وہہ} 5 resul	Process tS	Pitch(um)	HV(V)	Sp. Res.(um) (telescope resolution subtracted)
10	SQ	GAP	22.5	10	~5.1
02	SQ	GAP	18	10	~4.1
19	SQ	GAP	15	10	~3.2
18	SQ	STD	22.5	10	~2.4
23	SQ	STD	18	10	~1.8
06	SQ	STD	15	10	~1.3

- ✓ How to reach the resolution with an adapted read-out architecture and fulfilling all the other requirements ?
 - Implementing an adapted read-out architecture (power, time) \Rightarrow pitch ~ 20-25 µm
 - Binary read-out: \Rightarrow small pitch ~ 14 µm (GAP)
 - \Rightarrow conflicting with the footprint of the read-out architecture
 - Idea: decouple the relationship pitch resolution with charge sharing AND charge encoding (few bits ADC)
 - Keep seed S/N high enough but improve resolution
 - Optimum ? Allow ~30% of charge sharing

Chip: CE65 (MLR1) Process : std-A/mod_gap

DC amps: I = 1µA

Just - 5.09. Jul - 100 µA. V. AC amp :: HV + 10 V, I ____ = 1 pr

SF: L - 18A V - 3.3

d-A(15 μm) AC amp. (σ = 3.1 μm

std-A(15 μm) SE (σ = 2.8 μ

15 um) DC amp. (σ = 2.8 um

x_{track} - x_{cluster} (µm)

uments active monolithic ging proce mm 069-169896 65 8 E ented CP implei Phys al et Methods in Aglieri structures ci

25

TPSCo65 nm R&D in DRD3/7

- Letter of intent submitted to DRD3 WP1:
 - ✓ OCTOPUS : Optimized CMOS Technology fOr Precision in Ultra-thin Silicon
 - Target 3 µm spatial resolution
 - Improve time resolution O(100ns)
 - Relax Power constraints
 - ✓ Step 1: explore architectures & spatial resolution \Rightarrow MPR2
 - Exploit previous MLR1/ER1/ER2 results
 - Determine the most suitable architecture (from SPARC in ER2)
 - ✓ Step 2: large size demonstrator usable for beam telescopes \Rightarrow MPR3

- Other Lol implying IPHC:
 - ✓ Generic R & D for trackers \Rightarrow Project submitted to DRD3 WP1
 - ✓ Potential targets: Belle-2, ALICE 3, LHCb, FCCee outer tracker, etc.
 - ✓ Opportunity for common read-out architecture development
- Other WPs, e.g.
 - Bent sensors, cooling in DRD8
 - ✓ Simulations in DRD7 WP2.c

Institute	Contact	Domain of contribution			
IPHC	J.Baudot	Simulation, design, test			
IFIC-Valencia	C. Marinas	Design, test, integration			
IGFAE-USC	A. Gallas	Test, integration			
INFN Pavia/University of Bergamo	G. Traversi	Simulation, design, test			
CPPM	M. Barbero	Design, test			
IRFU	S. Panebianco	Design, test			
GSI	M. Deveaux	Test, simulation			
LPNHE	G. Calderini	Design, test			

Institute	Contact	Main areas of contribution
APC Paris	M. Bomben	Simulations, testing
Bonn University	J. Dingfelder	ASIC design, testing
CERN	D. Dannheim	Testing, DAQ, ASIC design support (through DRD7)
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations
ETH Zurich	M. Backhaus	ASIC design, testing
FNSPE Prague	P. Svihra	ASIC design, DAQ, testing
GSI	M. Deveaux	Simulations, testing
HEPHY Vienna	T. Bergauer	DAQ, testing, ASIC design
IPHC Strasbourg	A. Besson	ASIC design, testing
Zurich University	A. Macchiolo	Testing, DAQ, simulations

Numl	ber	Deliverable/Milestone Title	WP project #	Lead	Туре	Dissemination Level	Due Date
M1		Report on Demonstrators	4	DESY	Report	DRD3 report	Month 9 (Q1 2025)
D1	PR2	Beam Telescope Demonstrator Matrix Submission 3 µm	1, 2	ірнс 🤇	Prototype	Manual / Presentation column height	Month 24 (Q2 2026)
M2		Report on Demonstrator Matrix Characterization	3, 4	DESY	Report	Publication	Month 36 (Q2 2027)
D2 M	PR3	Full Beam Telescope Sensor Submission	2, 3	ІРНС (Prototype	Manual / Presentation	Month 48 (Q2 2028)
МЗ		Report on Beam Telescope Sensor Performance	3, 4	DESY	Report	Publication	Month 60 (Q2 2029)
D3	ER	LC Vertex Sensor Demonstrator Submission	1, 2	ІРНС (Prototype	Manual / Presentation	Month 66 (Q4 2029)
M4		Report on LC Vertex Sensor Demonstrator Performance	3, 4	DESY	Report	Publication	Month 78 (Q4 2030)

Strategy toward a vertex detector for FCCee

Schnecke: a vertex detector for FCCee

- Full acceptance in φ
- > Double sided can be considered.
- Number of layers = free parameter
- > Competitive for mat. Budget. AND full azimuthal acceptance

Table 3: Barrel dimensions (single and double sided option)

Layer	1	2	3	4	5
Radius (mm)	12-13 24		36	48	60
Zmax (mm)	90	120	120	120	120
Perimeter (mm)	75	151	226	302	377
# Chips per ladder	6	8	8	8	8
# ladders	4	8	12	16	20
Layer	1-2		3-4		5-6
Radius (mm)		12-13	35-36		59-60
Zmax (mm)		90	120		120
Max perimeter (mm)		82	226		377
# Chips per ladder		6	8		8
# ladders	4		12		20
Single chip dimension				30×22	$2.2 \ mm^2$
Sensitive area chip dimensio	on			30×19	$9.2 \ mm^2$

Bending setup @ IPHC

120 mm

- Bent sensors pioneered by Alice ITS-3,
 - IPHC : working program dedicated to bent sensor with MIMOSIS
 - e.g. functional tests @ R = 12 mm

Summary

- TJ 180nm: MIMOSIS program on track
 - $\checkmark\,$ MIMOSIS-3 \Rightarrow to be submitted in 2025
 - ✓ MIMOSIS-2.1/3 \Rightarrow Suitable large scale prototypes for integration tests (e.g. bent sensors)
- TPSCo 65 nm
 - \checkmark CE65 family (MLR1/ER1) \Rightarrow Exploration of resolution / charge sharing / charge encoding emulation
 - \checkmark SPARC prototype \Rightarrow first asynchronous architecture to be submitted in ER2
 - ✓ OCTOPUS LoI in DRD3 \Rightarrow R&D program targeting fine resolution for Higgs factory VTX
 - \checkmark Other EoIs (tracker, etc.) \Rightarrow synergies to be exploited
- Vertex detector for FCCee
 - ✓ Target: FCCee: Eol/LOI for sub-detector concept
 - Submit a realistic/robust vertex detector concept adaptable to all detector concepts
 - Backbone: chip design fulfilling the requirements based on an architecture developed through DRD3 projects
 - Optimize charge sharing / charge encoding for resolution
 - Global design: versatile enough to cope with stitched / unstitched approaches.
 - Simulation: quantify precisely figures of merit (resolution down to tagging capabilities)
 - Integration: bent sensors and ladders to demonstrate the feasibility of the Schnecke concept

Back up

DRD3 Tracker Project Calendar

- Generic R & D for trackers
 - ✓ Project submitted to DRD3 WP1
- Milestones
 - ✓ M1 Q1-2025: matrix design concept established
 - ✓ M2 Q3-2025: test system concept established
 - ✓ M3 Q2-2026: tape-out of sensor prototype(s) within MPR2
 - ✓ M4 Q4-2026: test system operational
 - ✓ M5 Q1-2027: early test results
 - ✓ M6 Q4-2027: main figures of merit evaluated
- Ongoing discussions inside Belle-2, ALICE 3 and LHCb communities
 ✓ Integrate DRD3 ?

Institute	Contact	Domain of contribution
IPHC	J.Baudot	Simulation, design, test
IFIC-Valencia	C. Marinas	Design, test, integration
IGFAE-USC	A. Gallas	Test, integration
INFN Pavia/University of Bergamo	G. Traversi	Simulation, design, test
СРРМ	M. Barbero	Design, test
IRFU	S. Panebianco	Design, test
GSI	M. Deveaux	Test, simulation
LPNHE	G. Calderini	Design, test

MIMOSIS-2 – what was changed?

Reworked blocks in MIMOSIS-2

(F. Morel @ Mimosis sensor perspectives and next steps towards the CBM-MVD https://indico.gsi.de/event/15130/)

MIMOSIS-1 and MIMOSIS 2 follow the same outside specs but:

- Major features added.
- Majority of all blocks reworked.
- \Rightarrow High risk submission

Bug example: Output driver powering issue:

Status Sept. 2023:

- 3 bugs spotted, fixes under evaluation.
- Resubmission required for full bug fix.
- Updated test plans accounting for MSIS-2 limits.

MIMOSIS calendar

		2023		2024			2025				2026					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
MIMOSIS-1 tests (irradiation, SEE)																
MIMOSIS-2 fabrication																
MIMOSIS-2 tests																
MIMOSIS-2.1 design																
MIMOSIS-2.1 fabrication																
MIMOSIS-2.1 lab tests																
MIMOSIS-2.1 test beams							DESY	CERN		?						
MIMOSIS-3 design																
MIMOSIS-3 pixel choice freezing																
MIMOSIS-3 Verifications / design review / overhead																
MIMOSIS-3 fabrication																
MIMOSIS-3 lab tests	lest beJu	eam: Iy 15 th	(DES)	()												
MIMOSIS-3 test beams	 September 18th (CERN-SPS) 2025 : 1 additional test beam 													?		

Latch-up studies

Requirement for MVD:

• Must withstand LET< 35 MeV cm²/mg. (H. Darwish, PhD under preparation)

Test with MIMOSIS-1:

- Withstands LET=20 MeV cm²/mg.
- Limitation: dE/dx of Ca-ions used

Test with MIMOSIS-2 (Au ions):

- No LU for LET \lesssim 50 MeV cm²/mg.
- Some LU seen above.
- => MIMOSIS-2 meets requirements

Protection system for Latch-up (1 fast electronic fuse/sensor) likely not required.

