

Simulated performance of ALLEGRO calorimeter

Giovanni Marchiori¹, Gregorio Bernardi¹, Nicolas Morange², <u>Tong Li¹</u> on behalf of the ALLEGRO working group ¹APC-Paris ² IJCLab-Orsay 3rd ECFA workshop on e⁺e⁻ Higgs, Top & Electroweak Factories, Paris, 9-11 October 2024

Noble Liquid Calorimetry and ALLEGRO

Sampling calorimetry relying on ionization of liquefied noble gas: Based on alternating layers of absorbers, noble liquid and read-out electrodes

Successful in many HEP experiments:

• MarkII, DØ, H1, NA48/62, ATLAS

ALLEGRO = A Lepton coLlider Experiment with Granular calorimetry Read-Out • A Noble-Liquid ECAL Based, general-purpose detector concept for FCCee

- **Muon Tagge HCAL Barrel** ECAL Barrel **Drift Chambe**
- Vertex Detector
- Drift Chamber (±2.5 m active)
- Silicon Wrapper + ToF
- Solenoid B=2T, sharing cryostat with ECAL
- High Granularity ECAL:
 - - Noble liquid + Pb or W
- High Granularity HCAL / Iron Yoke:
 - - Scintillator + Iron
- Muon Tagger

ALLEGRO ECAL design

Barrel design driven by the solution for electrodes:

- 1536 straight inclined (50°) 1.8 mm absorber plates
- Multi-layer PCBs as readout electrodes
- 1.2-2.4 mm LAr gaps (LKr considered)
- 40 cm deep (22 X_0) •

- $\Delta \theta = 10$ (2.5) mrad for regular (strip) cells, $\Delta \phi = 8$ mrad Endcap:
- "Turbine design" with many thin absorber plates

Clustering performance

- Topo and sliding-window clustering algorithms re-designed based on the new calorimeter segmentation
- Nice event display tool was developed
- Enabled clustering with ECal + HCal combination

Resolution correction and calibration

- S-curve is observed in θ resolution due to the finite cell size that will lead to a bias of measurement to the center of cell
 - A "common" detector effect:
 - We have observed that curve before in the ATLAS detector
 - Corrected by re-defining the barycenter calculation
 - Use log E_cell weights:
- Energy resolution to single pion with combined reconstruction in ECal and HCal

Photon identification

- Photon and pi0 behave similarly in calorimeter
- Series of discriminant parameters calculated based on shower shapes
 - Energy of cluster, num. of cells, energy fraction of layers... ٠
 - BDTs trained using these shape parameters
- Test custom detector versions
 - Move strip layer to L2, L3, L4, and L5 (default is L1)

Outlook

- First complete geometry implementation of the ALLEGRO benchmark is available
- Lots of exciting work ahead in optimisation & converting the concept to actual detector

allegro.web.cern.ch

0.8 1 Signal (photon) efficiency

3rd ECFA workshop on e⁺e⁻ Higgs, Top & Electroweak Factories, Paris, 9 - 11 October 2024