Towards an asymmetric detector for HALHF

Antoine Laudrain (he/him)

& Mikael Berggren, Jenny List, Martina Mezzolla

ECFA workshop on Higgs/EW/Top factories 2024 Parallel session WG3 — 10.10.2024

HELMHOLTZ

antoine.laudrain@desy.de

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Future lepton colliders landscape

Circular

- High lumi at "low" energy (Z/H)
- Upgradable to hadron (muon?) collider

DESY. Antoine Laudrain (he/him) 📧 | ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

- Extendable to higher energy

Future lepton colliders landscape

Circular

- High lumi at "low" energy (Z/H)
- Upgradable to hadron (muon?) collider

All big and expensive machines. Large CO2 footprint.

Antoine Laudrain (he/him) 📧 📔 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF DESY.

- Extendable to higher energy

"Simply" decrease the size of the tunnel...

But shorter tunnel = lower beam energy => 6

DESY. Antoine Laudrain (he/him) 📧 | ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

"Simply" decrease the size of the tunnel...

- But shorter tunnel = lower beam energy => 6
- Except if you can get higher gradients! •
 - RF: ~30 MV/m (ILC)
 - Plasma wake field acceleration (PWFA) cavities: ~ expected O(1000 MV/m) — ie x30!

"Simply" decrease the size of the tunnel...

- But shorter tunnel = lower beam energy => 6
- Except if you can get higher gradients!
 - RF: ~30 MV/m (ILC)
 - Plasma wake field acceleration (PWFA) cavities: ~ expected O(1000 MV/m) — ie x30!
- PWFA not yet available: •
 - Requires ~10 years of development.
 - Only for electron acceleration.

"Simply" decrease the size of the tunnel...

- But shorter tunnel = lower beam energy => 6
- Except if you can get higher gradients!
 - RF: ~30 MV/m (ILC)
 - Plasma wake field acceleration (PWFA) cavities:
 ~ expected O(1000 MV/m) ie x30!
- PWFA not yet available:
 - Requires ~10 years of development.
 - Only for electron acceleration.
- => Size of the facility could be reduced by a factor ~2 (on the electron side):
 - ILC(250 GeV): 10 km (e-, SRF) + 10 km (e+, SRF)
 - Hybrid: <1 km (e-, PWFA) + 10 km (e+, SRF)

DESY. Antoine Laudrain (he/him) 📧 🕴 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

etor ~2 (on the electron side): +, SRF) +, SRF)

"Simply" decrease the size of the tunnel...

- But shorter tunnel = lower beam energy => 6
- Except if you can get higher gradients!
 - RF: ~30 MV/m (ILC)
 - Plasma wake field acceleration (PWFA) cavities:
 ~ expected O(1000 MV/m) ie x30!
- PWFA not yet available:
 - Requires ~10 years of development.
 - Only for electron acceleration.
- => Size of the facility could be reduced by a factor ~2 (on the electron side):
 - ILC(250 GeV): 10 km (e-, SRF) + 10 km (e+, SRF)
 - Hybrid: <1 km (e-, PWFA) + 10 km (e+, SRF)

Can we do better than 1 km + 10 km?

DESY. Antoine Laudrain (he/him) 📧 🕴 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

etor ~2 (on the electron side): +, SRF) +, SRF)

The HALHF concept

Hybrid Asymmetric Linear Higgs Factory

- : mix of plasma (e⁻) and SRF (e+) acceleration
- : (not circular)
- : (but could go up to ttbar threshold)

Length = ~3.3 km: similar to XFEL@DESY $Cost = ~2.1 B \in +/-25\% = ~ ILC/4 = ~ EIC$

DESY. Antoine Laudrain (he/him) 📧 | ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

arxiv:2303.10150

: 500 GeV e⁻ & 31.3 GeV e⁺ (also gives $\sqrt{s} = 250$ GeV)

Length dominated by e- BDS *Cost still dominated by tunnel and RF linac*

4

Disclaimer

- I am **not** an accelerator physicist, not an expert of PWFA.
- **Assumptions for the rest of this talk**: •

 - PWFA for positron is still not available.
- - => This talk focuses on the physics and detector side, not accelerator side.

Electron-beam driven PWFA is proven working for electron acceleration in ~10-15 years.

• These might be strong assumptions, but we need a starting point to think about a detector!

- Baseline: 500 GeV e⁻ and 31 GeV e⁺ => $\gamma \sim 2.1$.
 - Can we still do Higgs physics in such conditions?
 - Experience: HERA had $\gamma = 3...$
 - ... Yet, it's not quite the same physics!

- Baseline: 500 GeV e⁻ and 31 GeV e⁺ => $\gamma \sim 2.1$.
 - Can we still do Higgs physics in such conditions?
 - Experience: HERA had $\gamma = 3...$
 - ... Yet, it's not quite the same physics!
- Study cases: Higgs mass measurement (ZH recoil).

DESY. Antoine Laudrain (he/him) 📧 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

- Baseline: 500 GeV e⁻ and 31 GeV e⁺ => $\gamma \sim 2.1$.
 - Can we still do Higgs physics in such conditions?
 - Experience: HERA had $\gamma = 3...$
 - ... Yet, it's not quite the same physics!
- Study cases: Higgs mass measurement (ZH recoil).
- Most advanced concept is the ILD at the ILC.
 - Fast simulation available.
 - Good comparison point.

The International Large Detector

- Baseline: 500 GeV e⁻ and 31 GeV e⁺ => $\gamma \sim 2.1$.
 - Can we still do Higgs physics in such conditions?
 - Experience: HERA had $\gamma = 3...$
 - ... Yet, it's not quite the same physics!
- Study cases: Higgs mass measurement (ZH recoil).
- Most advanced concept is the ILD at the ILC.
 - Fast simulation available.
 - Good comparison point.
- Modify the fast simulation and run physics analysis benchmarks.

DESY. Antoine Laudrain (he/him) 📧 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

The International Large Detector

- Process: $e^+e^- \rightarrow Z(\mu^+\mu^-)H$
- Measure Higgs mass via recoil mass.
- Detector: ILD with fast simulation (SGV), including correct tracking.

- Process: $e^+e^- \rightarrow Z(\mu^+\mu^-)H$
- Measure Higgs mass via recoil mass.
- Detector: ILD with fast simulation (SGV), including correct tracking.
- Resolution loss due muons being boosted forward:
 - less lever arm => lower muon momentum resolution.
 - $\sigma_{\text{ILD}_{@}\text{HALHF}} = 2.2 \times \sigma_{\text{ILD}_{@}\text{ILC}}$

- Process: $e^+e^- \rightarrow Z(\mu^+\mu^-)H$
- Measure Higgs mass via recoil mass.
- Detector: ILD with fast simulation (SGV), including correct tracking.
- Resolution loss due muons being boosted forward:
 - less lever arm => lower muon momentum resolution.
 - $\sigma_{\text{ILD}_{@}\text{HALHF}} = 2.2 \times \sigma_{\text{ILD}_{@}\text{ILC}}$
- Mitigation: extend the barrel in the forward region!
 - $\sigma_{e-ILD_{@}HALHF} = 1.2 \times \sigma_{ILD_{@}ILC}$
 - => loss of only 20% on recoil mass.

- Process: $e^+e^- \rightarrow Z(\mu^+\mu^-)H$
- Measure Higgs mass via recoil mass.
- Detector: ILD with fast simulation (SGV), including correct tracking.
- Resolution loss due muons being boosted forward:
 - less lever arm => lower muon momentum resolution.
 - $\sigma_{\text{ILD}_{@}\text{HALHF}} = 2.2 \times \sigma_{\text{ILD}_{@}\text{ILC}}$
- Mitigation: extend the barrel in the forward region!
 - $\sigma_{e-ILD_{@}HALHF} = 1.2 \times \sigma_{ILD_{@}ILC}$
 - => loss of only 20% on recoil mass.

=> What constrains these modifications?

DESY. Antoine Laudrain (he/him) 📧 | ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Beam-strahlung

Creation of many e+e- pairs...

e-beam high E, lower N

DESY. Antoine Laudrain (he/him) 📧 🕴 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Beam-strahlung

Creation of many e+e- pairs...

e-beam

high E, lower N

DESY. Antoine Laudrain (he/him) 📧 | ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Beam-strahlung: impact of beam charge

- Energy = 500 : 31.3 GeV
- charge = $1:4 \times 10^{10}$ particles*
- $\sigma_z = 75 : 75 \,\mu m$

*: charge asymmetry to improve power consumption, keeps lumi constant

DESY. Antoine Laudrain (he/him) 📧 | ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Baseline HALHF, ILD detector model

Beam-strahlung: impact of beam charge

- Energy = 500 : 31.3 GeV
- charge = $1:4 \times 10^{10}$ particles*
- $\sigma_z = 75 : 75 \,\mu m$

*: charge asymmetry to improve power consumption, keeps lumi constant

DESY. Antoine Laudrain (he/him) 📧 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Baseline HALHF, ILD detector model

Beam-strahlung: finding a suitable config...

- Energy = 500 : 31.3 GeV
- charge = $1.33 : 3 \times 10^{10}$ particles
- $\sigma_z = 75 : 75 \,\mu m \,HALHF$:

DESY. Antoine Laudrain (he/him) 📧 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

=> Reduce the charge asymmetry: a bit better forward, a bit worse backward.

Beam-strahlung: finding a suitable config...

- Energy = 500 : 31.3 GeV
- charge = 1.33 : 3 x 10¹⁰ particles
- σ_z = **75 : 300 μm**

DESY. Antoine Laudrain (he/him) 📧 | ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Increase bunch length, almost there. Other ideas?

Detector model: ILC

del: ILC 11

Beam-strahlung: finding a suitable config...

- Energy = 500 : 31.3 GeV
- charge = $1.33 : 3 \times 10^{10}$ particles
- $\sigma_z = 75 : 300 \,\mu m$

DESY. Antoine Laudrain (he/him) 📧 | ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Beam-strahlung: optimising the detector config

- Minimum clearance between beam pipe and backgrounds = 5 mm.
- TPC length doubled: 2350 mm \rightarrow 4700 mm.
- FTD positions rescaled accordingly.

DESY.

VXD extended as much as possible without hitting the beam pipe.

ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Towards a Geant4 implementation

- Why is it needed?
 - **Additional magnetic field** in the forward direction (for example additional dipole) could help muon momentum resolution.
 - SGV only allows for simple solenoidal magnetic field...
- => Modify G4 ILD detector model with the previous modifications. ILD geometry implementation does not easily allow for asymmetric detectors. => use the symmetric extended detector and focus on the forward region.

Towards a Geant4 implementation

Standard ILD

DESY. Antoine Laudrain (he/him) 📧 🕴 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Towards a Geant4 implementation

DESY. Antoine Laudrain (he/him) 📧 🕴 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Improved e-ILD

DESY. Antoine Laudrain (he/him) 📧 🕴 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Towards a Geant4 implementation Single (non-boosted) Z(µµ)H event

DESY. Antoine Laudrain (he/him) 📧 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

18

Conclusion: HALHF the size, twice the fun!

Beam backgrounds constrain the available space for the detector.

- Fixed a set of beam parameters ($1.3:3 \times 10^{10} \text{ e/bunch}$, 75:300 µm bunch length).
- Enables more detailed detector design (esp. forward region, B field to come)
- Large MC samples from ILC available for SGV and G4.
- SGV ("fast-sim" ILD) can now include asymmetric detectors.
 - Impact of boost on luminosity measurement (Bhabha's / ee $\rightarrow \gamma\gamma$)
 - Impact of boost on flavour tagging.
- **Improved geometry implemented in Geant4** (as modification of ILD).
 - Will allow playing with magnetic field configuration.
- end Feb. 2025)!

• There will be a HALHF contribution to the EPPSU (will be finalised at next HALHF workshop,

Thanks for your attention!

Questions?

Improved detector with boosted collisions TPC hits distribution (z axis)

Some events crash the reconstruction, technical issue to be solved.

DESY. Antoine Laudrain (he/him) 📧 | ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Impact on physics: F/B asymmetry

- Process: $e^+e^- \rightarrow \mu^+\mu^-$
 - [black] ILD@ILC
 - [red] extended ILD @ HALHF

DESY. Antoine Laudrain (he/him) 📧 🕴 ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Impact on physics: F/B asymmetry

- Process: $e^+e^- \rightarrow \mu^+\mu^-$
 - [black] ILD@ILC
 - [red] extended ILD @ HALHF

- Move to the CM frame to ease the comparison:
 - Core of distribution is the same (as expected)
 - => in particular: same width
 - Tail extends on one side and is cut on the other.
- Lose on one side, but gain on the other.
- => Need more studies, especially for systematic **uncertainties** (since setup itself is asymmetric).

Beam-strahlung: impact on luminosity

- Luminosity computed by Guinea-Pig:
 - Total luminosity
- ullet
 - Using bunch charge N = 1.33:3 x 10^{10} with $\sigma_z = 75:300 \ \mu m_z$ reduces beam backgrounds to acceptable levels... ... while only reducing peak lumi by 35% compared to ILC design.

Lumi [µb / bunch]	ILD TDR	HALHF N = 2 : 2 x 10^{10} $\sigma_z = 75 : 75 \ \mu m$	HALHF N = 1.33 : 3 x 10^{10} σ_z = 75 : 300 μ m
Total lumi	1.12	1.35	0.80
Lumi within 1% of nominal CM energy	0.92	0.80	0.56
Beam backgrounds?		large	mitigated

DESY. Antoine Laudrain (he/him) 📧 | ECFA HET 2024 — 10.10.2024 — Towards an asymmetric detector for HALHF

Luminosity considering only events within 1% of the nominal CM energy ("peak lumi").

Impact of beam parameters on luminosity

The price of solving beam backgrounds...

- All points: $E_{-} = 500 \text{ GeV}$, $E_{+} = 31.3 \text{ GeV}$.
- Luminosity computed by Guinea-Pig:
 - Total luminosity
 - Luminosity within 1% of the nominal CM energy ("peak lumi").

