3rd ECFA Workshop on e⁺e⁻ Higgs, Top & ElectroWeak Factories Paris, October $9^{th} - 11^{th}$ 2024

R&D on Noble Liquid Calorimeter for Future Collider Experiments

Farès Djama (CPPM Marseille) On behalf of DRD6–WP2

Requirements on Electromagnetic Calorimetry at FCC-ee

Allegro Proposal: A Sampling Metal/Noble Liquid Calorimeter

- This technique has been used since 50 years at accelerators. It has demonstrated:
 - Easy implementation of granularity
 - Easy to calibrate
 - Good energy resolution
 - Hermetic, Linear, uniform, stable
- Alternate absorbers and electrodes to make a complete cylinder.
- To achieve uniform sampling, absorbers and electrodes are rotated with respect to the radial direction by 50°.
- Gaps between absorbers and electrodes maintained by spacers.
- $R_{inner} = 2160 \text{ mm}, R_{outer} = 2560 \text{ mm}$, thickness of 22 X_0 .
- Absorbers are ~ 2 mm thick.
- Gaps go from 1.2 to 2.4 mm.
- Sampling fraction around 20 %.
- 1536 double-gap, $\Delta \phi = 8 \text{ mrad}$ (2 electrodes).
- Granularity in polar angle: drawn on electrode, $\Delta \theta = 10$ mrad.

- Challenges at FCC-ee:
 - Finer granularity
 - Very low noise
 - Light cryostat

A module of the Electromagnetic Calorimeter Barrel

Adaptation for Endcap

- 420 mm < R < 2750 mm
- Turbine implementation of the technique on the endcap: hermeticity, homogenous in ϕ , readout from the rear.
- But it has a major issue: Gap widening range is too large.
- Mitigation is being worked out:
 - 3 nested wheels.
 - But still sampling fraction varying a lot.
 - Solution to be evaluated: Variable absorber thickness.

Zoom between 2 nested wheels

3 nested wheels

Simple turbine

Electrodes

- Exploit the progress made on Printed Circuit Boards (PCB): thinner PCB and vias.
- Basic configuration: 7 conductive layers.
- Polar granularity drawn on the electrodes like scale on a ruler.
- Longitudinal granularity also drawn.
- Base line: $\Delta \theta = 10 \text{ mrad}$ (4 times less for strips)

 $\theta = 90^{\circ}$

 $\theta = 89.43^{\circ}$

Absorbers

- Prototypes of absorbers have been manufactured.
- Stainless steel glass fiber lead glass fiber stainless steel assembly.
- Base line was 0.050 mm of steel and glass fiber, and 1.8 mm of lead.
- But deformations were observed.
- No deformation for prototypes with a thicker steel (0.100 mm).

	Yielding point	σy at RT [MPa]	σy at 77 K [MPa]	CTE at 77 K [10 ⁻⁶ K ⁻¹]			
Τe	est	16.0	38.0	15.6			
La	minate theory	17.3	20.5	13.7			
FE	EA	16.0	20.0	14.5			

Laminate theory. Equivalent strain-stress

FEA. Equivalent strain-stress

- Room temperature: Measurements in agreement with Laminate Theory and Finite Element Method.
- At 77° K : LT and FEM underestimate measurements.

Fixation on outer rings

Fixation on inner rings

Spacers

A: Spherical spacer Total Deformation Type: Total Deformation

0.31574 Max

Penetration

0.28065

0.24557

0.21049

0.17541

0.14033

0.10525

0.070164

0.035082

0 Min

Unit: mm

Time: 1 s

- Tests showed that spherical spacers induce high pressure on absorbers and electrodes.
- 6 mm diameter cylindrical spacers gave better results.
- Simulation and tests: A spacer needed each 200 mm: 20 spacers for module length.
- 5 different heights because of radial gap variation.
- A total of $20 \times 5 = 100$ spacers per gap.
- Equivalent to 0.15 % of total liquid argon volume. Signal loss to be evaluated. •

Max

Simulation of absorber deformation with spherical and cylindrical spacers

Total Deformation Absorber Type: Total Deformation

0.050383 Max

0.044785

0.039187

0.033589

0.027991

0.022393

0.016794

0.011196 0.0055981 0 Min

Unit: mm

Time: 1 s

Cryostat and Feedthroughs

- Developping a very light cryostat made with carbon fiber including a full carbon composite honeycomb.
- Channel density in the feedthroughs will be 5 time larger than in ATLAS.
- Developping a connectorless feedthrough:
 - 3D printed epoxy resine structure with slits for strip cables, glued to the flange.
 - Passed leak and pressure tests at room and liquid nitrogene temperatures.

Assembly Studies and Tools

Assembly structure of a barrel module

CERN PCB Prototype V1

- First full depth prototype. Already shown at Paestum.
- 58 cm \times 44 cm.
- 12 depth layers, 40 cm depth.
- Readout from 2 edges.
- 16 θ towers.
- First Layer L0 not covered by absorber: It will play the role of a presampler.
- Strips in L1.
- 240 cells.

Estimated and measured cell and cross-talk capacitances

15

12

6

345

CERN PCB Prototype V2

- It is being finalized by the light of measurements, tests and simulation.
- Readout from outer radius.
- Industrial connectors.
- Optimised trace ordering.
- Simulation: Better γ/π^0 separation with strips in third layer.

13

Orsay PCB Prototype V3

- 6 conductive layers (2 signals, 2 shieldings, 2 readouts, no HV).
- 2 readout layers because it is easier to manufacture an even number of conductive layers.
- Tower 1 and 2 have also lateral shielding.
- 59 cm \times 9 cm.

Front view with lateral shielding and distances in μm

Widths: Signal: 127µm Top/bottom shielding: 254µm Lateral shielding: 127µm

A New Tool: Electrode Simulation

- Ansys HFSS Electronics Desktop.
- CERN prototype V1 design.

Long tower, injection to cell 10, baseline shielding

- Added 50 Ω transmission lines to injection and readout.
- Good agreement with cross-talk measurement, peak to peak and after shaping.

All xtalks

Can use the simulation to understand fine effects.

Time (ns)

Measurement of Cross-Talk Matrix for a Tower of PCB v1

Cell	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	-	0.8	1.1	1	0.7	0.9	0.7	0	0	0	0	0	0	0	0
2	0.6	-	0.7	0	0	1.2	0	0	0	0	0	0	0	0	0
3	0.9	0.7	-	2.3	0	0.7	0	0	0	0	0	0	0	0	0
4	0.9	0	2.3	-	0.7	0.2	0.7	0	0	0	0	0	0	0	0
5	0.6	0	0	0.7	-	0.1	0.3	0	0	0	0	0	0	0	0
6	0.7	1.1	0.7	0.2	0.1	-	2.8	0	0	0	0	0	0	0	0
7	0.6	0	0	0.7	0.3	2.8	-	0.9	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0.9	-	2.8	1.4	1.4	1.4	1.4	1.5	1.7
9	0	0	0	0	0	0	0	2.8	-	2.8	1.4	1.4	1.4	1.5	1.6
10	0	0	0	0	0	0	0	1.4	2.8	-	2.7	1.4	1.4	1.5	1.6
11	0	0	0	0	0	0	0	1.4	1.4	2.6	-	2.8	1.4	1.5	1.7
12	0	0	0	0	0	0	0	1.4	1.4	1.4	2.7	-	2.7	1.5	1.7
13	0	0	0	0	0	0	0	1.4	1.4	1.4	1.4	2.7	-	2.9	1.7
14	0	0	0	0	0	0	0	1.5	1.5	1.5	1.5	1.5	2.8	-	3.1
15	0	0	0	0	0	0	0	1.7	1.6	1.6	1.7	1.7	1.7	3.1	-

X-talk capacitances in pF in Tower2, rounded to once decimal

place. Digitized by Ronic Chiche at IJCLab.

16

Effect of Lateral Shields (PCB v3)

Effect of Shaping Time on Cross-Talk (PCB v3)

Effect of Adding an Absorber on One Side of PCB (PCB v3)

Beam Test Prototype

- Forseen by 2028 2029.
- Azimuthal width: 15°, like an Allegro barrel module: 64 PCB, 65 absorbers.
- Length: 620 mm, about 20 % of an Allegro barrel module.

Summary

- Significant progress has been made during 2024.
- The concept is being adapted for the endcap.
- Solutions are being investigated for mechanics: Structure conception and simulation, fixing and indexing, module and barrel mounting, spacers.
- Tests of absorber prototypes: Rigidity, yielding point, behaviour at cold.
- Many measurements of electrical properties on 2 prototype electrodes. Some fine effects understood. There are still measurements under investigation with help from electrical simulation.
- These measurements are used to better design next prototypes.
- Mechanics of our first test beam prototype is making good progress.
- Simulated performance will now be shown by Michaela.

Backup

Effect of Lateral Shields on Cross-Talk (PCB v3)

Lateral shields:

- Reduces capacitive coupling.
- Increases inductive coupling. Because of the pad-ground capacitance increasing, involved in inductive cross-talk.

⁽with lateral shielding)

Automatized Measurement Bench at Orsay

Simulation of Trapezoidal Absorbers and Alternative Components

