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* Detectors at a future Higgs factory can benefit from real-time machine learning in readout
- Edge intelligence: feature extraction, classification, data compression at-source
- Efficiency: lower computational power/storage needs for transmission & later DAQ stages
(eqg. trigger)

» Latency and radiation dosages require ML implementation in hardware/electronics
(FPGAs, ASICs)
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Guidelines:

> 100 Gbps throughput

< 1ms computational latency
< 10W power budget
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ML in Silicon Front-End Readout

* Future silicon pixel detectors will present
exceptional challenges
» Close to beamline = high occupancies/radiation
» Very high granularity (25 pm) pixel pitch
» Little room for services/cooling = minimize
material budget & power density

* ML at the front-end to reduce off-detector data
rate
- HET factory: reduce cabling, increase granularity

» Exascale (1075 bytes/sec) data rates anticipated
at FCChh

* “Smart pixel” collaboration: study Al/ML to filter

high prfrom pileup tracks (< 2 GeV) at source
using pattern of deposited charge
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“Smart Pixel” Pileup Track Filtering
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https://arxiv.org/abs/2310.02474

ML in Silicon Front-End Readout
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What hardware technology can implement
ML at the front-end?

e | owest power, fastest latency (< 25 ns), and ability to radiation-harden
algorithm: ASIC implementation

¢ Ability to reconfigure
- Zvs. WW vs. H vs. tt poles have different energies, backgrounds,
occupancies: motivates readout algorithm optimization; reduces
upgrade need
- Can also preserve option for “safe” non-ML operation mode
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eFPGAS

* “Embedded” FPGAs: reconfigurable logic in ASIC design for configurability ease of
FPGA with low power/footprint of chip — E
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* Patents of many commercial FPGAs recently expired TIL
» Open-source frameworks (eg. FABulous) allow for lowered barrier to entry for ASIC design FABULOUS

eFPGAs made easy
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eFPGA consists of:
« Array of 8x8 tiles (scalable & configurable) . = A = |
* Switch matrix [L. Ruckman]
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https://indico.slac.stanford.edu/event/8288/contributions/7652/

Proof-of-Concept eFPGA Tapeouts reeron
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* SLAC designed prototype eFPGAs with FABulous 28nm eFPGA Test Setup
and taped out in 130nm & 28nm CMOS on TSMC
MPW

» Area: 1 mm?2
» Very small logical capacity (< 500 look-up tables)

» Physics performance: classify pileup from signal
tracks
» Model: boosted decision tree with depth 5, 440
LUTs and quantized to ap fixed<28,19>

» Configured to eFPGA and read back with 100%
accuracy with respect to simulated expectation
and quantized software result

=Proof-of-concept for open-source design tools for
eFPGAs
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https://arxiv.org/abs/2404.17701

28nm eFPGA Power 2404.17701)
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» Clock frequency scans (10-250 MHz) indicate no detected bit errors
» Extremely stringent power requirements for readout in Higgs factory vertexing/tracking
detectors; O(10) mW / cm2 [rceweq
» Considerable power optimization expected from dedicated engineering design
» R&D into new technologies, eg. silicon photonics/analog compute elements?
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https://arxiv.org/abs/2404.17701
https://indico.cern.ch/event/1298458/timetable/#b-565605-physics-experiments-a

Front-End ML Architectures
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« BDTs, neural nets: simple classification ¥/
« Variational autoencoders can offer two front-end capabilities:
» Data compression: resource-constrained encoder on-chip followed by
decoder off-detector
» Anomaly detection: latent space variables can be used to flag inputs that
appear anomalous and/or outliers
m— Reconstructed
p On-Chip i
Latent Distribution
Normal
y —
‘ ) Abnormal
- - Jpoq
Reconstruction
Input Probability
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Autoencoders at the Front-End
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» Model: low-latency (< 25ns) and resource-constrained (< 30,000 LUTs) VAE
« Achieve faithful reconstruction of 10-bit pixel values with just 8 latent dimensions

« Outperforms on-chip classifier methodology in performance,
resources, and latency, with just 8% of the original data ; Loud Pixe
transmitted off-detector

» On-chip latent space variable can separate several classes :
of anomalous pixel events from background g
Track Reconstruction & Extrapolation Anomaly Detection
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Higgs Factory Applications
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« Reconfigurability of eFPGAs enables Dual Readout Waveform Analysis

— 14

: L : 3= Seemer PbWO,
generic ML methodologies: applicable P e
to wide variety of datasets & g PR
subsystems § |
o 06[ :' 2020 JINST 15
» Dual readout calorimetry: ML to b S
extract Cherenkov C and scintillation
: : Lt >4 G. Cumming
S photon yields from single waveform g N ] @ Cummings

Wavelength [nm]

» High granularity calorimetry: ML for
pattern recognition of hits = showers
& energy regression

» Liquid argon: ML to extract energy
and timing from time-domain
waveform

LAr Waveform Analysis

5
[C AREUS Simulation

E; [GeV]

=Get in touch if interested!

LARG-PROC-2021-001
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https://indico.mit.edu/event/876/contributions/2858/attachments/1067/1753/GECummings_USFCCWorkshop_CalVision.pdf
https://cds.cern.ch/record/2775033?ln=en

Conclusions

* Detectors at a future Higgs factory can benefit from real-time ML for advanced DAQ
systems

* Embedded FPGAs provide a low-power ASIC option for generic and reconfigurable
ML at the front-end

* SLAC proof-of-concept FABulous eFPGA in 28nm implements small ML and verifies
open-source design frameworks for future work

- Looking forward:

- Tape out larger eFPGA for more complex algorithms,
hardware verification, and power studies

- Implement radiation-hardness and/or cryogenic
tolerance

- Hope to deliver eFPGAs as a viable readout
technology for future Higgs factory detector
designs!
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28nm eFPGA Design
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Loading eFPGA
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Figure 7. Block diagram of the 28nm CMOS ASIC design.
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FABulous Design Workflow
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Smart Pixel Dataset
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* Sensors composed of 21x13 pixel array with 50x12.5 ym pitch, 30mm from
beam line with B =3.8T

* Track = 8 deposited (x,y) charge arrays with timesteps of 200 ps
+ ~550,000 tracks in dataset

X (16 mm)
y (16 mm) %
Yo —
Yo g
=
=
S=SSE===sse==s====se=—scss==sss =
== ¥$01625mm B
1.05 mm https://doi.org/10.5281/zenodo.10783560
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https://doi.org/10.5281/zenodo.10783560
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Figure 12. A diagram of the single tree BDT model used for proof-of-concept synthesis to the 28 nm eFPGA.
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Front-End VAE Performance

VAE + Off-Detector Classifier | On-Chip Classifier

Latency [ns] 15 25

LUTs 27,629 38,394
DSPs 680 723
FFs 850 931
BR @ SE=0.93 0.36 0.32
BR @ SE=0.98 0.23 0.18
Data Compression (%) 7.6 82

Table 1.
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Summary of model performance metrics, namely latency, on-detector
resources (LUTs, DSPs, FFs), background rejection (BR) for two fixed signal
efficiencies (SE) on the pileup classification task, and the percent of the original data
volume that is transmitted off the detector. Two models are shown: the VAE scheme
which includes an on-detector encoder followed by off-detector decoder and classifier
stages, and a classifier that can fit on-detector requirements.
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Smart Pixel Anomalies for VAE
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Figure 4. Display of the smart pixel simulated tracks and their pattern of charge
deposition across the simulated sensor of the smart pixel dataset, including a typical
background track (top left), along with the three types of anomalies, namely a dead
pixel (top right), loud pixel (bottom left), and a dead pixel row (bottom right).
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